• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Covering and illumination of convex bodies

    2021-12-02 06:37:52WUSenlinHEChan

    WU Senlin, HE Chan

    (School of Science,North University of China,Taiyuan 030051,China)

    Abstract: After a survey of classical results on Hadwiger’s covering conjecture,a long-standing open problem from convex and discrete geometry,we introduced two approaches to attack this conjecture and their related results. The first approach is Chuanming Zong’s quantitative program,which is theoretically feasible if Hadwiger’s covering conjecture is true. The other tries to confirm this conjecture by attacking it for high-dimensional centrally symmetric convex bodies,whose feasibility depends on the affirmative answer to a problem posedby P. Soltan.

    Key words: convex body;covering functional;Hadwiger’s covering conjecture;Soltan’s problem

    1 Introduction

    Hadwiger’s covering conjecture is a long-standing open problem from convex and discrete geometry,which has been studied by a large number of research papers,chapters of monographs (e.g.,[1-3]),and surveys (e.g.,[4-7]). Despite of the efforts of mathematicians including K. Bezdek,V.G. Boltyanski,H. Hadwiger,M. Lassak,F(xiàn).W.Levi,G.Livshyts,H.Martini,I.Papadoperakis,C.A.Rogers,O.Schramm,P.Soltan,V.Soltan,K. Tikhomirov,and Chuanming Zong,this conjecture is only completely solved in the two-dimensional situation and it is widely open even in R3. In this article,we briefly introduce this conjecture and classical known results,and mainly focus on more recent results in this direction and on two possible approaches towarding the complete solution of this conjecture.

    We denote by Knthe family of nonempty compact convex subsets of Rn,and by Kmn(0≤m≤n) the set of compact convex subsets of Rnwhose affine dimension is m. Each member of Knnis called a convex body,i.e.,a convex body in Rnis a compact convex set having interior points. For each K∈Kn,we denote by affK,intK,relintK,bdK,and relbdK the affine hull,interior,relative interior,boundary,and relative boundary of K,respectively.

    For two subsets A and B of Rn,and any λ∈R,we put

    For each x∈Rn,we denote the set A+{x} by A+x and call it a translate of A. For each λ∈(0,1) and each point x∈Rn,the set λA+x is called a smaller homothetic copy of A.

    For each K∈Kn,we put

    where cardD is the cardinality of D,i.e.,c(K) is the minimum number of translates of relintK needed to cover K.Note that,the definition of c(K) here is slightly more general than that in the literature,namely,c(K) here is defined on Kninstead of Knn. Concerning the least upper bound of c(K) over Knn,there is a long standing conjecture:

    Conjecture 1 (Hadwiger’s covering conjecture) For each integer n≥1 and each K∈Knn,we have

    the equality holds if and only if K∈Knnis a parallelotope.

    This conjecture is completely solved when n=2,see [8],and it is widely open even when n=3. See the monographs [1-3],and the surveys [4-7] for the history,known results,and relevant references of this conjecture.

    2 The functional c(K)

    2.1 Different interpretations of c(K)

    A unit vector in Rnis called a direction. Suppose that K∈Kn,x∈relbdK,and u is a direction. If there exists a positive number λ such that

    then we say that x is illuminated by u. Let A be a subset of relbdK and D be a set of directions. If each point in A is illuminated by at least one direction in D,then we say that A is illuminated by D. Put

    The following lemma is mentioned in[9] without a detailed proof. For the reader’s convenience,we include a proof given in [10] (in Chinese).

    Lemma 1 Suppose that K∈Kn,c∈Rn,and 0≤α≤β≤γ. Then

    Proof. We only consider the case when β>0. Let z be an arbitrary point in (αK+(1-α)c)∩(γK+(1-γ)c).Then there exist two points x and y in K such that

    Now we are ready to prove the following:

    Proposition 1 Let K∈Kn. If relbdK≠?,then

    Proof. Put m=c(K) and m′=c1(K). Then there exists a set C={ci|i∈[m]} of m points such that K?relintK+C. For each point x∈relbdK,there exists i∈[m] such that x∈relintK+ci. Clearly,ci≠o. Thus

    i.e.,x is illuminated by the direction -ci/||ci||. It follows that relbdK can be illuminated by

    which implies that m′≤m. Thus c1(K)≤c(K).

    It is clear that c(K)≤c3(K). By Lemma 2.3 in [11],we have c2(K)≤c1(K).

    In the rest we show that c3(K)≤c2(K). Put m=c2(K). Then there exist a number λ∈(0,1) and a set C={ci|i∈[m]} of m points such that

    By the definition of m,

    which implies that

    Let c0be a point in relintKC. For each i∈[m],the ray from cipassing through c0intersects relbdK in a point yi.Then there exists a number αi∈(0,1) such that

    Put

    Then γ∈(0,1). For each point x∈K,there exists a point z∈relbdK and a number η∈[0,1] such that x=ηc0+(1-η)z. Assume,without loss of generality,that z∈λK+(1-λ)c1. By Lemma 1

    which shows that x∈γK+(1-γ)c1. It follows that

    Hence c3(K)≤c2(K)=m,as claimed. □

    Thus,for each K∈Knsatisfying relbdK≠?,c(K) is the minimum number of directions needed to illuminate relbdK,the minimum number of smaller homothetic copies of K needed to cover K,as well as the minimum number of smaller homothetic copies of K needed to cover relbdK.

    It is shown in [12] that,when K∈Knncontains o in its interior,c(K) equals the least cardinality of a collection H of hyperplanes such that each exposed face of the polar body K*of K can be separated strictly from o by at least one hyperplane in H. Thus,Conjecture 1 has the following “dual” version (cf. [3]):

    Conjecture 2 Let K∈Knn(n≥3) and p be an arbitrary interior point of K. Then there exists a collection H of 2nhyperplanes such that each exposed face of K and p can be strictly separated by at least one hyperplane in H. Furthermore,2nhyperplanes are necessary only if K is the convex hull of n line segments having linearly independent directions which intersect at the common relative interior point p.See,e.g.,[12-15] for progresses towarding the solution of Conjecture 2.There are further interpretations of c(K),see,e.g.,[5] and [7].

    2.2 Known upper bounds of c(K)

    In 1955,F(xiàn).W. Levi (see [8]) proved that

    and c(K)=4 if and only if K is a parallelogram. He also pointed out that c(K)=n+1 whenever K∈Knnis smooth(at each boundary point of K,there exists a unique supporting hyperplane),and c(K)=2nwhen K∈Knnis a parallelotope.

    M. Lassak proved that c(K)≤8 holds for each centrally symmetric K∈K33,see[16]. However,centrally symmetric three-dimensional convex bodies satisfying c(K)=8 have not been characterized.

    In [17],B.V. Dekster proved that,if K ∈K33is symmetric about a plane,then c(K)≤8. It is shown by M. Lassak (cf. [18]) that c(K)≤6 whenever K∈K33is a body of constant width (see [19] for more information about this special class of convex bodies). However,it is conjectured that c(K)=4 holds for each three-dimensional convex body of constant width. For general three dimensional convex bodies,I. Papadoperakis proved that c(K)≤16,see [20]. Using I. Papadoperakis’ approach,A. Prymak and V. Shepelska proved that (see [21])

    and they remarked that substantial improvements of these estimations,which are better than those provided by M. Lassak in [9],will need new ideas. For general n≥2,C.A. Rogers and Chuanming Zong proved the following There are also many estimations of c(K) for special classes of convex bodies.

    If K∈Knnis the sum of finitely many segments then K is called a zonotope;if K∈Knnis the limit(with respect to the Hausdorff metric dH(·,·),see(1) below) of a sequence of zonotopes,then K is called a zonoid.H. Martini proved that

    holds for each zonotope K∈Knnwhich is not a parallelotope (see [23]). V. Boltyanski and P.S. Soltan (see [24])obtained the same estimation for zonoids. Later,V. Boltyanski showed that this estimation is valid also for belt bodies (see [25]).

    O. Schramm [26] proved that

    holds for each K∈Knnhaving constant width. This estimation yields c(K)≤2nfor n-dimensional bodies of constant width when n≥16.

    2.3 The upper semicontinuity of c(K)

    Hadwiger’s covering conjecture is hard partially because c(K) is upper semicontinuous. For two subsets L and M of Rn,the Hausdorff distance dH(L,M) between them is given by

    where B2nis the unit ball of Rn. Concerning the continuity of c(K),we have the following result (see,e.g.,Theorem 34.9 of [1]):

    Theorem 1 (Upper semicontinuity) For each K1∈Knn,there exists a positive δ=δK1such that

    Therefore,verifying Hadwiger’s covering conjecture for a dense subset of the metric space(Knn,dH(·,·))does not provide a complete solution. In fact,we already know that c(K)=n+1 for each K∈Knnwith smooth boundary,and this class of convex bodies are dense in (Knn,dH(·,·)).

    3 Covering functionals and Zong’s quantitative program

    Since c(K) is an affine invariant,it is more natural to measusre the difference between two convex bodies using the Banach-Mazur metric. For two convex bodies K1and K2,put

    where Anis the set of all non-sigular affine transformations on Rn. The number dBM(K1,K2) is called the Banach-Mazur distance between K1and K2. It is clear that dBM(K1,K2)=0 if and only if K1and K2are affinely equivalent.Denote by ~ the affine equivalence,and by[K] the equivalence class of K∈Knn. For each pair of convex bodies K1and K2,put

    Then (Knn/~,dBM) is a compact metric space.

    Using dBM(·,·),G. Livshyts and K. Tikhomirov proved that,for each K[0,1]nthat is sufficiently close to[0,1]nin dBM(·,·),we have c(K)≤2n-1(see [27]).

    For each K∈Knnand each m∈N,we put

    and Γm([K])=Γm(K). Since c(K) equals the the least number of smaller homothetic copies of K needed to cover K,c(K)≤m if and only if Γm(K)<1. Concerning the continuity of Γm(·),Chuanming Zong proved the following:

    Theorem 2([28]) For each ε>0,and each pair of convex bodies K,L∈Knnsatisfying dBM(K,L)≤ln(1+ε),we have

    Hence Γm(·) is uniformly continuous on (Knn/~,dBM). K. Bezdek and M.A. Khan proved that Γm(·) is Lipschitz continuous. More precisely,they showed that (see [29])

    Now it is clear that

    Based on these observations,Chuanming Zong proposed the following program to attack Hadwiger’s covering conjecture.

    (?。〨et a good guess c^nof cnby estimating Γ2n(K) for special classes of convex bodies.

    (ⅱ)Choose a suitable ε>0 and construct an ε-net N of Knn.

    (ⅲ)For each K∈N verify that Γ2n(K)≤c^n.

    As pointed out in [7],this is the first attempt at a computer-based resolution of Hadwiger’s covering conjecture. It is feasible if (2) holds true,and it is more promising for lower dimensional situations.

    We note that,after proving (2),we still need to characterize n-dimensional convex bodies satisfying c(K)=2n.

    Known estimations of Γm(·).

    Although there is still no characterization of convex bodies in Knnsatisfying c(K)=2n,Chan He et al. proved the following result concerning the greatest lower bound for Γ2n(K) (see [30])

    and “=” holds if and only if K~[0,1]n.

    For the Euclidean disc B22,triangle Δ,tetrahedron T,cross-polytope B13,and the Euclidean ball B23,precise values of Γm(·) for paricular choices of m are known,see Table 1.

    Table 1 Known precise values of Γm(·)

    For each pair of positive integers m and n,put

    When n=2,the precise values of Γ-(n,m) and Γ+(n,m) are known for some particular m. See Table 2.

    Table 2 Known values of Γ-(2,m) and Γ+(2,m)

    In particular,M. Lassak proved that Γ7(K)=1/2 holds for each centrally symmetric K∈K22(cf. [31]).

    When n≥3,estimating Γm(K)is more difficult.This situation can be seen from the following estimation(cf.[32])

    One can also use the knowledge of covering functionals for lower dimensional convex bodies to estimate Γm(K) for higher dimensional convex bodies. In this direction,Donghai Ji et al. observed that,if K∈Knnand C=K×[-1,1],then

    Note that the estimation (3) is not always best possible. Characterizing the situation when the inequality in(3) becomes equality is still open and interesting.

    If K∈Knnis symmetric about the origin o,then (Rn,||·||K) is a Banach space having K as the unit ball,where

    is the gauge or the Minkowski functional of K. Let ε∈[0,2],u∈bdK. The number

    is called the directional modulus of convexity. For each u∈bdK and each number λ>0,put

    Since λ(P) plays an important role in the estimation above,the authors proved the following properties for λ(P).

    (?。㊣f dimP≥1,then λ(P)≤1/2.

    (ⅱ)If P∈Knn,then λ(P)≥1/(n+1);the equality holds if and only P is a simplex.

    (ⅲ)If P is centrally symmetric and planar,then λ(P)=1/2.

    (ⅳ)If P is centrally symmetric,then λ(P)=min{λ(F)|F is a facet of P}.

    (ⅴ)If P is three-dimensional,centrally symmetric,and each facet of P is also centrally symmetric,then λ(P)=1/2.

    4 Another possible approach

    In this section,we present another possible approach to attack Conjecture 1 and related results. The authors learnt from H. Martini the following problem posed by P. Soltan.

    Problem 1 Suppose that T=-B∈Knnand K=conv((T×{1})∪(B×{0})). Is it true that c(K)=c(T)+c(B)=2c(T)?

    then K∈K33is a cube and c(K)=c(T)+c(B). Senlin Wu and Ying Zhou showed that (cf. [11]):

    (?。ヽ(K)≤c(T)+c(B);

    (ⅱ)if T is a translate of B,then c(K)=c(T)+c(B)=2c(T);

    (ⅲ)if T+c?relintB holds for some point c∈Rn-1,then c(K)=1+c(B);

    In particular,they solved Conjecture 1 for three-dimensional convex bodies constructed by (5).

    成年女人毛片免费观看观看9| 可以免费在线观看a视频的电影网站| 色综合婷婷激情| 国产精品免费一区二区三区在线| 亚洲电影在线观看av| 日韩大尺度精品在线看网址| 99久久精品国产亚洲精品| 国产成人精品久久二区二区91| 国产主播在线观看一区二区| 精品国产亚洲在线| 午夜日韩欧美国产| x7x7x7水蜜桃| 欧美zozozo另类| 啦啦啦 在线观看视频| 波多野结衣高清作品| 91麻豆精品激情在线观看国产| 国产高清视频在线播放一区| 白带黄色成豆腐渣| 国产亚洲精品av在线| 亚洲欧美日韩高清在线视频| 午夜久久久在线观看| 欧美色欧美亚洲另类二区| 亚洲色图 男人天堂 中文字幕| 国产精品爽爽va在线观看网站 | 国产一级毛片七仙女欲春2 | 免费av毛片视频| 黑人巨大精品欧美一区二区mp4| 久久伊人香网站| 成人亚洲精品一区在线观看| 国产视频一区二区在线看| 久久午夜综合久久蜜桃| 日韩有码中文字幕| 久热这里只有精品99| 免费在线观看视频国产中文字幕亚洲| 国产亚洲av嫩草精品影院| 丰满的人妻完整版| 国产亚洲精品久久久久久毛片| 黄色毛片三级朝国网站| 一进一出抽搐动态| 俄罗斯特黄特色一大片| 美女大奶头视频| 国产精品99久久99久久久不卡| 国产久久久一区二区三区| 亚洲国产欧美一区二区综合| 99热只有精品国产| 999精品在线视频| 国产伦在线观看视频一区| 亚洲精品国产一区二区精华液| 别揉我奶头~嗯~啊~动态视频| 长腿黑丝高跟| 日韩欧美 国产精品| 欧美最黄视频在线播放免费| 一本久久中文字幕| 欧美性猛交黑人性爽| 美女免费视频网站| 一级黄色大片毛片| 国产99久久九九免费精品| 99久久综合精品五月天人人| 亚洲黑人精品在线| 叶爱在线成人免费视频播放| 免费在线观看完整版高清| 亚洲精品在线美女| 亚洲午夜理论影院| 国产激情久久老熟女| 桃红色精品国产亚洲av| 欧美性猛交黑人性爽| 97人妻精品一区二区三区麻豆 | 999精品在线视频| 国产伦在线观看视频一区| 婷婷丁香在线五月| 国产精品 国内视频| 亚洲精品色激情综合| 国产av在哪里看| 亚洲一区中文字幕在线| 中文字幕久久专区| 99热6这里只有精品| 一级片免费观看大全| 成人免费观看视频高清| 国产不卡一卡二| 一进一出抽搐gif免费好疼| 白带黄色成豆腐渣| 亚洲国产日韩欧美精品在线观看 | 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久5区| 国产精品影院久久| 久久久久久久久中文| 久久久久国产一级毛片高清牌| 18禁裸乳无遮挡免费网站照片 | 亚洲性夜色夜夜综合| 男女做爰动态图高潮gif福利片| 老司机在亚洲福利影院| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美98| 老鸭窝网址在线观看| 国产精品二区激情视频| 日本五十路高清| 精品不卡国产一区二区三区| 国产亚洲精品一区二区www| 国产v大片淫在线免费观看| 精品免费久久久久久久清纯| 在线天堂中文资源库| 亚洲片人在线观看| 成人av一区二区三区在线看| 成人精品一区二区免费| 欧美中文综合在线视频| 久久九九热精品免费| 日本免费a在线| 国产一区二区在线av高清观看| 久久香蕉精品热| 高潮久久久久久久久久久不卡| xxxwww97欧美| 久久九九热精品免费| 男女之事视频高清在线观看| 成年人黄色毛片网站| 可以免费在线观看a视频的电影网站| 国产在线精品亚洲第一网站| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| 啦啦啦韩国在线观看视频| 老司机深夜福利视频在线观看| 在线观看www视频免费| 欧美日本亚洲视频在线播放| 亚洲成人国产一区在线观看| 亚洲精品色激情综合| 国产一区二区三区在线臀色熟女| 亚洲av熟女| 日本撒尿小便嘘嘘汇集6| 黄色a级毛片大全视频| 手机成人av网站| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久精品电影 | 亚洲第一电影网av| 波多野结衣巨乳人妻| 国产精品免费视频内射| 此物有八面人人有两片| 91麻豆精品激情在线观看国产| 精品免费久久久久久久清纯| 制服诱惑二区| 日本在线视频免费播放| 中文资源天堂在线| 久久精品91蜜桃| 亚洲国产看品久久| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 99热这里只有精品一区 | 免费在线观看完整版高清| 极品教师在线免费播放| 精品久久久久久久末码| 免费在线观看黄色视频的| www.熟女人妻精品国产| 精品国产国语对白av| 黄色成人免费大全| 欧美av亚洲av综合av国产av| 亚洲av成人av| 丝袜人妻中文字幕| 久久久久国产一级毛片高清牌| 在线国产一区二区在线| 麻豆成人av在线观看| 人人妻人人澡欧美一区二区| 琪琪午夜伦伦电影理论片6080| 国产精华一区二区三区| 亚洲成国产人片在线观看| 国产精品野战在线观看| 中文亚洲av片在线观看爽| 国产真人三级小视频在线观看| 亚洲人成77777在线视频| 制服诱惑二区| 高清在线国产一区| 成人永久免费在线观看视频| 99久久久亚洲精品蜜臀av| 国产av一区二区精品久久| 露出奶头的视频| 最近在线观看免费完整版| 精品日产1卡2卡| 50天的宝宝边吃奶边哭怎么回事| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| 亚洲熟妇中文字幕五十中出| 母亲3免费完整高清在线观看| 国产视频内射| 欧美大码av| 欧美日韩精品网址| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 18禁裸乳无遮挡免费网站照片 | 欧美激情久久久久久爽电影| 好男人电影高清在线观看| 亚洲成av片中文字幕在线观看| 亚洲av第一区精品v没综合| 99久久精品国产亚洲精品| 国产亚洲精品av在线| 亚洲精品在线美女| 日韩 欧美 亚洲 中文字幕| 男女床上黄色一级片免费看| av视频在线观看入口| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 国产亚洲av高清不卡| 美女午夜性视频免费| 久久久久久大精品| 男人的好看免费观看在线视频 | 亚洲第一电影网av| 婷婷精品国产亚洲av| 色在线成人网| 淫秽高清视频在线观看| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 久久久久久久久中文| 国产av一区二区精品久久| 午夜老司机福利片| 在线观看www视频免费| 黄频高清免费视频| 亚洲av片天天在线观看| 亚洲国产欧洲综合997久久, | 国产一卡二卡三卡精品| 久久草成人影院| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 成人精品一区二区免费| www.999成人在线观看| 少妇的丰满在线观看| 亚洲中文字幕一区二区三区有码在线看 | 午夜激情av网站| 久久久久久大精品| 国产99久久九九免费精品| av在线播放免费不卡| 三级毛片av免费| 午夜两性在线视频| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 亚洲成人国产一区在线观看| 法律面前人人平等表现在哪些方面| 此物有八面人人有两片| 国产成人影院久久av| 女人爽到高潮嗷嗷叫在线视频| 久久中文看片网| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 成人手机av| 色老头精品视频在线观看| 久久久久久久午夜电影| 免费在线观看日本一区| 亚洲第一青青草原| 午夜成年电影在线免费观看| 亚洲国产精品999在线| 好男人在线观看高清免费视频 | 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 两人在一起打扑克的视频| 欧美三级亚洲精品| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 正在播放国产对白刺激| 国产高清激情床上av| 国产视频内射| 国产精品久久久久久亚洲av鲁大| tocl精华| 黄网站色视频无遮挡免费观看| 成人午夜高清在线视频 | 一个人观看的视频www高清免费观看 | 1024视频免费在线观看| 女性被躁到高潮视频| 亚洲人成77777在线视频| 精品一区二区三区av网在线观看| 免费电影在线观看免费观看| 中出人妻视频一区二区| 午夜福利18| 可以在线观看的亚洲视频| 亚洲五月色婷婷综合| 18禁美女被吸乳视频| 国产成人精品久久二区二区免费| 美女高潮到喷水免费观看| 国产高清videossex| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 久久九九热精品免费| 欧美精品亚洲一区二区| 亚洲国产精品成人综合色| 亚洲一区二区三区不卡视频| 淫秽高清视频在线观看| 中文字幕高清在线视频| 国产午夜精品久久久久久| 国产又黄又爽又无遮挡在线| 少妇被粗大的猛进出69影院| 国产精品久久电影中文字幕| 国产不卡一卡二| 久久久久久亚洲精品国产蜜桃av| 最好的美女福利视频网| 国产视频内射| 免费看a级黄色片| 免费在线观看黄色视频的| 在线观看www视频免费| 亚洲五月天丁香| 天天一区二区日本电影三级| 日本免费a在线| 91在线观看av| av在线天堂中文字幕| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 在线免费观看的www视频| 国产成人啪精品午夜网站| 美女免费视频网站| 色综合欧美亚洲国产小说| 亚洲av成人不卡在线观看播放网| 午夜激情福利司机影院| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 欧美日韩黄片免| 十八禁人妻一区二区| 亚洲av五月六月丁香网| 老鸭窝网址在线观看| 亚洲一区中文字幕在线| 一个人观看的视频www高清免费观看 | 欧美成狂野欧美在线观看| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 国产乱人伦免费视频| 日本a在线网址| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 色播亚洲综合网| 欧美 亚洲 国产 日韩一| 久久中文字幕一级| 99国产精品一区二区三区| 亚洲九九香蕉| 亚洲专区字幕在线| 欧美成人性av电影在线观看| 久久久久国产精品人妻aⅴ院| 制服丝袜大香蕉在线| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看的高清视频| 中文资源天堂在线| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| a级毛片在线看网站| 亚洲av五月六月丁香网| 久久精品成人免费网站| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 久久精品91蜜桃| 午夜免费激情av| 久久精品亚洲精品国产色婷小说| 日本免费a在线| 国产精品亚洲美女久久久| 国产精品av久久久久免费| 人人妻人人看人人澡| 国产精品日韩av在线免费观看| 国产精品野战在线观看| 嫩草影院精品99| 亚洲av成人一区二区三| 国产精品av久久久久免费| 国产熟女xx| 久久中文字幕一级| 亚洲国产精品合色在线| 色精品久久人妻99蜜桃| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 久久久国产成人免费| 一区二区三区高清视频在线| 99热6这里只有精品| av天堂在线播放| 欧美色欧美亚洲另类二区| av天堂在线播放| 桃色一区二区三区在线观看| 国产一区在线观看成人免费| 欧美中文综合在线视频| 亚洲第一青青草原| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 亚洲人成网站高清观看| 国产午夜精品久久久久久| 国产1区2区3区精品| 变态另类丝袜制服| 91在线观看av| 亚洲av熟女| 欧美日韩精品网址| 桃红色精品国产亚洲av| 老熟妇仑乱视频hdxx| 无人区码免费观看不卡| 午夜福利18| 欧美一级毛片孕妇| 少妇被粗大的猛进出69影院| 亚洲在线自拍视频| 亚洲无线在线观看| 欧美 亚洲 国产 日韩一| 欧美日韩乱码在线| 欧美精品亚洲一区二区| 国产色视频综合| 悠悠久久av| 国产精品美女特级片免费视频播放器 | 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 精品高清国产在线一区| 亚洲性夜色夜夜综合| 欧美 亚洲 国产 日韩一| cao死你这个sao货| 亚洲电影在线观看av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 宅男免费午夜| 国产激情偷乱视频一区二区| 午夜福利免费观看在线| 在线十欧美十亚洲十日本专区| 欧美zozozo另类| 在线观看66精品国产| 午夜福利视频1000在线观看| 欧美亚洲日本最大视频资源| 99热6这里只有精品| 波多野结衣av一区二区av| 色av中文字幕| 日韩欧美一区二区三区在线观看| 每晚都被弄得嗷嗷叫到高潮| 三级毛片av免费| 国产野战对白在线观看| 99热这里只有精品一区 | 999久久久精品免费观看国产| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| 999久久久精品免费观看国产| 国产精品美女特级片免费视频播放器 | 国产成人精品久久二区二区免费| 日本a在线网址| 在线观看66精品国产| 精品欧美国产一区二区三| 97碰自拍视频| 亚洲av电影不卡..在线观看| 国产91精品成人一区二区三区| 国产成人av激情在线播放| av有码第一页| 国产精品乱码一区二三区的特点| 又大又爽又粗| 日韩欧美 国产精品| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 母亲3免费完整高清在线观看| 久久久久久免费高清国产稀缺| 三级毛片av免费| 18禁黄网站禁片免费观看直播| 天堂影院成人在线观看| 亚洲中文av在线| 美国免费a级毛片| 国产精品久久久久久人妻精品电影| 国产亚洲av高清不卡| 在线观看日韩欧美| 精品久久久久久,| 欧美国产日韩亚洲一区| 国产午夜精品久久久久久| 久久精品亚洲精品国产色婷小说| 在线观看午夜福利视频| 好男人电影高清在线观看| 欧美一级毛片孕妇| 99精品欧美一区二区三区四区| 亚洲av成人一区二区三| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 久久草成人影院| 宅男免费午夜| 亚洲午夜理论影院| 久久精品91无色码中文字幕| 亚洲全国av大片| 99久久综合精品五月天人人| 深夜精品福利| 一本综合久久免费| 18禁裸乳无遮挡免费网站照片 | 欧美乱妇无乱码| 国产精品影院久久| 亚洲第一电影网av| 午夜福利免费观看在线| 婷婷精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 2021天堂中文幕一二区在线观 | 亚洲精品国产精品久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品美女特级片免费视频播放器 | 日本熟妇午夜| 国产色视频综合| 免费看a级黄色片| 久久久久精品国产欧美久久久| 国产午夜精品久久久久久| 天天一区二区日本电影三级| 制服诱惑二区| 国产在线观看jvid| 欧美一级a爱片免费观看看 | 精品久久蜜臀av无| 天堂动漫精品| 在线十欧美十亚洲十日本专区| 成人手机av| 亚洲自拍偷在线| 一本精品99久久精品77| 黄色视频,在线免费观看| 一级黄色大片毛片| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 精品国产国语对白av| 1024视频免费在线观看| 神马国产精品三级电影在线观看 | 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 久久亚洲精品不卡| 一级毛片高清免费大全| 亚洲国产欧美一区二区综合| 久久精品人妻少妇| 国产精品永久免费网站| 精品久久久久久久毛片微露脸| 亚洲专区国产一区二区| 免费在线观看成人毛片| 国产私拍福利视频在线观看| 国产亚洲精品综合一区在线观看 | 国产又黄又爽又无遮挡在线| 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| 99久久精品国产亚洲精品| 18禁国产床啪视频网站| 欧美日本视频| 91国产中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av高清一级| 免费在线观看影片大全网站| 色av中文字幕| 琪琪午夜伦伦电影理论片6080| 午夜激情av网站| 中文字幕精品亚洲无线码一区 | 午夜福利成人在线免费观看| 99在线人妻在线中文字幕| 国产精品国产高清国产av| 在线观看免费午夜福利视频| 欧美黑人精品巨大| 99久久99久久久精品蜜桃| a在线观看视频网站| 午夜福利18| 我的亚洲天堂| 69av精品久久久久久| 91字幕亚洲| www.熟女人妻精品国产| 极品教师在线免费播放| 不卡一级毛片| 亚洲av电影不卡..在线观看| 色综合站精品国产| 一级a爱视频在线免费观看| 99热6这里只有精品| 亚洲激情在线av| 亚洲专区字幕在线| 久久香蕉激情| 亚洲片人在线观看| 91在线观看av| 久久午夜亚洲精品久久| 男女下面进入的视频免费午夜 | 一二三四社区在线视频社区8| 欧美激情久久久久久爽电影| 国产成人av教育| 国产私拍福利视频在线观看| 欧美 亚洲 国产 日韩一| 99精品久久久久人妻精品| 久久婷婷人人爽人人干人人爱| 国产亚洲精品综合一区在线观看 | 成人永久免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区| 亚洲av片天天在线观看| 91国产中文字幕| 日韩 欧美 亚洲 中文字幕| 波多野结衣巨乳人妻| 高清毛片免费观看视频网站| 美女免费视频网站| 成人精品一区二区免费| 男人的好看免费观看在线视频 | 母亲3免费完整高清在线观看| 人人妻,人人澡人人爽秒播| 久久久久久久久免费视频了| cao死你这个sao货| 亚洲真实伦在线观看| 亚洲欧美日韩高清在线视频| 夜夜爽天天搞| 国产三级在线视频| 国产激情欧美一区二区| 1024视频免费在线观看| 亚洲国产精品999在线| 久久国产亚洲av麻豆专区| 午夜免费激情av| 久久狼人影院| 精品国内亚洲2022精品成人| 午夜福利在线观看吧| 亚洲国产精品sss在线观看| 国产激情偷乱视频一区二区| 桃红色精品国产亚洲av| 亚洲国产看品久久| 欧美日本视频| 99精品久久久久人妻精品| 国产一卡二卡三卡精品| 欧美激情久久久久久爽电影|