• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure*

    2021-11-23 07:31:16NaLi李娜JinTang湯進(jìn)LeiSu蘇磊YaJiaoKe柯亞嬌WeiZhang張偉ZongKaiXie謝宗凱RuiSun孫瑞XiangQunZhang張向群WeiHe何為andZhaoHuaCheng成昭華
    Chinese Physics B 2021年11期
    關(guān)鍵詞:張偉李娜

    Na Li(李娜) Jin Tang(湯進(jìn)) Lei Su(蘇磊) Ya-Jiao Ke(柯亞嬌)Wei Zhang(張偉) Zong-Kai Xie(謝宗凱) Rui Sun(孫瑞)Xiang-Qun Zhang(張向群) Wei He(何為) and Zhao-Hua Cheng(成昭華)

    1State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: ultrafast magnetization dynamics,antiferromagnetics,magnetic oxides,magnetization dynamics

    1. Introduction

    In antiferromagnetic (AFM) materials, the neighboring magnetic moments point in opposite directions, resulting in null macroscopic magnetization and the absence of stray fields. These features make antiferromagnets invisible to common probes and quite robust over external magnetic perturbation.[1,2]In addition,due to strong AFM exchange interaction, antiferromagnets show typical terahertz (THz) resonance frequencies, which make them promising for future high-frequency spintronic applications and now attract significant attention.[3,4]However,the almost zero net magnetic moment makes it extremely challenging to effectively manipulate and probe the antiferromagnetic order.[2]Thus, the efficient detection of AFM spin dynamics with frequency up to the terahertz range has been interested and gazed widely.

    The rare-earth orthoferritesRFeO3(Rstands for a rareearth element),[5]with canted spin and a weak net magnetic moment originating from antiferromagnetic exchange interaction and Dzyaloshinsky-Moriya interaction, are natural candidates for observing antiferromagnetic spin dynamics.[6]For typical orthoferrites, such as HoFeO3and TmFeO3, the AFM spin dynamics has been widely investigated via the optical methods for its sensitivity and short stimulus.[7-11]However,some limitations are indeed non-negligible and to be addressed. Using the all-optical method, the spin dynamics ofRFeO3can only be probed near the spin reorientation phase transition temperature region. In addition,the dynamic amplitude via the nonthermal stimulus dramatically decreases with temperature due to phonon scattering.[12,13]Moreover, there are also some rare-earth orthoferrites(R=Y,Eu,Gd,Tb)remained unexplored via all-optical technique due to their single magnetic phase. The GdFeO3(GFO) is a typical canted antiferromagnet without the spin reorientation phase transition,whose AFM spin dynamics triggered by optical method remains elusive. It has only been detected via second harmonic generation at extremely low temperature 1.5 K,[14]whereas the roomtemperature spin dynamics via optical excitation is to be explored. Recently,in the case of the interfacial exchange coupling with an Fe layer,the AFM spin dynamics in ErFeO3can be probed via an all-optical method away from the spin reorientation temperature range.[15]Inspired by this,it is with tremendous possibility of extending on GFO-type materials,where there is potential for greatly expanding the operating temperature and efficiency.

    In this work, we investigate the room-temperature AFM spin dynamics of GdFeO3via an all-optical method in exchange-coupled Fe/GdFeO3(100) heterostructure. Both quasiferromagnetic and impurity modes, as well as phonon mode, are observed in low magnetic field in Fe/GFO while absent in pure GFO. Although the excitation efficiency of AFM dynamics is hardly affected by the magnetic moment arrangement (antiparallel or parallel) between interfacial layers, it can be modified by the fluence of pump laser presenting as the change of the AFM resonance amplitude, which results from optical modification of the interfacial exchange coupling interaction. Considering the great importance of the AFM resonance excitation for energy-efficient opto-spintronic devices,the efficient interaction stimulation via exchange coupling may drastically expand the advanced AFM dynamics detection of tremendous materials in near future.

    2. Experimental methods

    The GFO single crystal was grown using the floating zone method with crystallinity and crystallographic orientation confirmed by powder x-ray diffractometer and Laue xray diffraction as reported previously.[16]The sample was cut perpendicularly to theaaxis and then polished, so a flat GFO (100) substrate was obtained. To fabricate the Fe/GFO(100) heterostructure, the GFO (100) substrate with thickness of 2 mm was put into the ultrahigh vacuum chamber(~5×10?10mbar) to warm up to about 500 K, which is far smaller than the growth temperature (1200 K) of the single crystal to remove the surface gas contaminants. Then,the GFO(100)substrate underwent natural cooling,and was kept at room temperature during the subsequent film growth. A 35-nm-thick Fe film was deposited by electron beam evaporator onto the GFO substrate, and with a 2.5-nm-thick Cu film as the capping layer forex situmeasurements. The deposition rate of Fe and Cu were kept at 0.15 nm/min and 0.10 nm/min,respectively. During the deposition, half the GFO substrate was shadowed for convenience to monitor the change of magnetic properties. Furthermore, the magnetic hysteresis loops of GFO (100) and Fe/GFO (100) heterostructure were determined by longitudinal magneto-optical Kerr effect (MOKE)at room temperature.

    The AFM spin dynamics in Fe/GFO(100)was achieved using the all-optical magneto-optical Kerr effect (TRMOKE)technique at room temperature. A Ti:sapphire oscillator generates a train of laser pluses at repetition rate of 5.2 MHz,duration of 55 fs and with a wavelength of 780 nm, which was used as the pump laser with linearly polarization perpendicular to the projection direction.Moreover,the 780 nm femtosecond laser was doubled by a BBO crystal as the probe light,which was linearly polarized along the projection direction. Both the pump and probe beams were incident vertically onto the sample with spot diameters of about 10μm and 5μm,respectively.Here, the pump fluence varied from 0.5 to 4.0 mJ/cm2while the probe fluence was kept at 0.1 mJ/cm2.

    3. Results and discussion

    The GdFeO3(GFO) is a canted antiferromagnet possessing a weak net moment along thecaxis below 641 K without spin reorientation.[17]Figure 1(a) shows the normalized longitudinal Kerr signals along thecaxis for pure GFO (100)and Fe/GFO (100) heterostructure. The magnetic hysteresis loop of heterostructure presents two-step magnetization reversal process with a larger switching field reaching 160 Oe and a lower one about 50 Oe. It is noteworthy that the penetration depth of light with a wavelength of 632 nm is about 15 nm,[18]and consequently the MOKE can probe both the magnetic moment of Fe and the net magnetic moment of substrate simultaneously. Compared with the signal of pure substrate GFO(100),the coercivity of net moment of GFO almost keeps unchanged,revealing the influence of the net moment of Fe film and the treatments of substrate on the magnetic property of GFO is quite small.

    Fig. 1. (a) Normalized Kerr loops for the pure GFO (100) substrate and Fe/GFO(100)heterostructure with external magnetic field of 2.5 kOe applied along the c axis. The inset shows the parallel or anti-parallel spin configuration in the FM-AFM interface.(b)The minor loops along the c axis in Fe/GFO(100)heterostructure with maximum field of 250 Oe after the net moment of GFO fixed under an initial field of+2.5 kOe and ?2.5 kOe,respectively.

    Figure 1(b) presents the distinctly shifted minor loops known as exchange bias effect,with a maximum applied field of 250 Oe along thecaxis in Fe/GFO(100)after the net moment of GFO fixed under an initial field of+2.5 and?2.5 kOe,respectively.When the GFO net moment fixed along the[001]axis under a positive field (+2.5 kOe), the minor loop exhibits a positive shift, and vice versa. That is to say, the net moment of GFO can reverse the Fe moment by inverting its own direction. Moreover, the positive (negative) shift of minor hysteresis loop under positive(negative)initial magnetic field indicates the positive exchange bias, similar to the FM/AFM system.[19-21]Hence, the positive bias effect indicates the robust AFM interfacial exchange coupling between the net moment of GFO orthoferrite and the neighboring soft Fe layer,which is the keystone for further study of AFM spin dynamic via stimulation of Fe layer. In addition, the magnetization orientation of Fe layer and pinning layer(GFO layer)under various external magnetic fields is depicted schematically in Fig.1(a),which provides the possibility to investigate the spin configuration related terahertz dynamics of GFO in heterostructure.

    Fig. 2. (a) The schematic diagram of optical stimulus of AFM dynamics in Fe/GFO (100) heterostructure via optical modification of the interfacial exchange coupling at room temperature. (b)Room-temperature TRMOKE signals of Fe/GFO(100)heterostructure and pure GFO(100)substrate with a laser fluence of 3 mJ/cm2 and a 2.5 kOe field applied along the c axis. The inset is the experimental configuration for TRMOKE measurement. (c)Frequency component obtained by the FFT method. (d)The magnetic field dependent resonance amplitude for impurity mode, phonon mode and Q-FM mode in Fe/GFO (100), respectively. The inset shows the typical TRMOKE signals for different magnetization configurations at the interface of Fe and GFO.

    Figure 2(b) shows the typical dynamic signals of heterostructure and pure GFO substrate in a magnetic field of 2.5 kOe along thecaxis of GFO at room temperature. As is expected, no obvious dynamic signal is observed in the pure GFO substrate because the all-optical method cannot effectively stimulate AFM resonance far away from the phase transition region.[9,12,22]Nevertheless, for Fe/GFO (100) heterostructure, a quite complex and fast response in 0-50 ps time range is observed and followed by a slow spin precession till 700 ps reasonably assigned to the precession of the Fe film. Naturally, the multiple high-frequency modes are obtained from the fast Fourier transform (FFT) power spectra with a low frequency of 8 GHz and three high resonance modes at 0.08 THz, 0.23 THz, and 0.38 THz presented in Fig. 2(c). In addition, the signal in the 0-50 ps time range is fitted by damped function with three frequency modesfivia the following equation:

    whereAi,?iandτi(i=1,2,3)represent oscillatory amplitude,initial phase of magnetic precession, and relaxation time, respectively. The last two terms are related to the background signal with the amplitudeBandC, and recovery time constantτ0. Similarly, the dynamic parameters of the Fe layer can be extracted by fitting the data[23]in a subsequent range but beyond the scope of our discussion here. Through the fitting curve in Fig. 2(b), we obtain three resonance modes at 0.078 THz, 0.23 THz, 0.39 THz, which are consistent with the FFT peaks. The two-sublattice model of the magnetic structure of the orthoferrites predicts the quasi-ferromagnetic(Q-FM) mode at 100-300 GHz.[24,25]Thus, we ascribe the 0.23 THz mode to photo-induced Q-FM mode of GFO, governed by the exchange interactions of Fe3+-Fe3+ions.[14]Moreover,the highest-frequency mode at 0.39 THz is assigned to the impurity mode because of its typical characteristic of possessing an initial phase almostπdifferent from the Q-FM mode.[26,27]This mode stems from the occupation of the6A1ground state of the Fe3+ions in rare-earth positions.[6,26]In addition,we attribute the resonance of 0.08 THz to the phonon mode for its imperviousness to the magnetic field.The phonon mode derived from the lattice oscillation[14,28]was also reported in ErFeO3with the same frequency.[15]Therefore, the room-temperature AFM spin dynamics of GFO is successfully excited via the all-optical method in the exchange coupled Fe/GFO(100)system. As mentioned above,by adjusting the applied field,we can investigate the interfacial spin configuration related dynamics.Distinctly,the phases of the two signals are nearly 180°different for the parallel and antiparallel spin configurations(see the inset of Fig.2(d)). From Fig.2(d),the amplitude of each resonance mode is nearly invariant with the magnetic field,meaning that the excitation efficiency is hardly modulated by changing the in-plane magnetic moment configuration. It is quite sturdy for AFM order and intrinsic exchange interaction subject to the magnetic field. Furthermore,the relatively weak external fieldHcannot align the AFM spin configuration at the FM/AFM interface, with the internal exchange interaction remaining constant.

    Fig.3. The TRMOKE signals at different fluences of the pump laser(a)and their corresponding FFT spectra(b). The fluence of pump laser dependent precession frequency(c)and resonance amplitude(d)of impurity mode,phonon mode and Q-FM mode for Fe/GFO(100),respectively. The magnetic field(2.5 kOe)was applied along the c axis. The solid lines are of guide for the eyes.

    To investigate the optical modification of excitation efficiency of AFM spin dynamics we adjust the pump laser fluence to excite the Fe/GFO(100)heterostructure with the typical signals shown in Figs. 3(a) and 3(b). Figure 3(c) reveals the resonance frequency of the phonon mode keeps constant,suggesting that the laser intensity cannot affect the lattice vibration rate.However,regarding the impurity mode and Q-FM mode,we observe a slight shift of the resonance frequency by varying laser fluence. According to the Sigma model,[29]the resonant frequency for Q-FM mode is determined by the uniaxial magnetic anisotropy, as well as the interfacial exchange coupling interaction for the interfacial AFM spins at room temperature in our system. Thus, the optical absorption of the system impacts the moment of the Fe layer, then modifies the interfacial exchange coupling with the GFO layer,and even the thermal effect, which are possibly responsible for the frequency shift of the Q-FM mode. Meanwhile, the impurity mode also comes from magnetic source, related to the Fe3+ions in rare-earth positions. Thus, the shift of its frequency may have the same origins. Furthermore, the laser fluence can significantly modify the dynamic amplitude of all modes in heterostructure with different tendencies, which indicates the tunable excitation efficiency as shown in Fig.3(d).Here, the direct interaction between laser and the GFO substrate can be ignored because of the low optical absorption of the orthoferrite,[30,31]namely,the pump laser can solely modulate the Fe layer. Consequently,we can conclude that optical modulation of AFM excitation amplitude is possible due to optical modification of interfacial exchange coupling interaction.The simple diagram of the excitation is depicted in Fig.2(a).The laser induces the instantaneous nonequilibrium state of the Fe layer, then the interfacial exchange coupling is perturbed,as a result the precession of the net moment of GFO occurs.

    The oscillation amplitude of the phonon mode exhibits nearly a linear relation with fluence, like that in FeBO3[28]interpreted with an intense lattice vibration for intense optical absorption. Similarly, the excitation amplitude of impurity mode related to the Fe3+ions in rare-earth is linearly increased with largened influence, which may result from the perturbated AFM state near the interface by coupling with more unbalanced Fe layer. The oscillation amplitude of QFM mode increases linearly with influence from 0.5 mJ/cm2to 1.5 mJ/cm2, which can be ascribed to optical modification of the interfacial exchange interaction as well,according to early reports[6,31]Interestingly,continually intensifying the pump laser, the Q-FM resonance amplitude becomes weak.The impact of the high fluence on Fe film is comparatively large such as heat transport effect or the destruction of the magnetic anisotropy[32]resulting in the magnetic disorder or charge redistribution.[33-35]Therefore, weakening of the amplitude may come from the moment destruction or the charge redistribution by the intensive laser,leading to the saltation of the exchange coupling. However,the microscopic mechanism for optical modification of interfacial exchange coupling and the impact on magnetic order needs more experimental and theoretical studies. Besides,optically modifying the dynamics of the Fe layer may also need further research.

    4. Conclusion

    In summary,we have investigated the AFM spin dynamics of GdFeO3via an all-optical pump-probe method at room temperature by modification of interfacial exchange coupling in Fe/GdFeO3(100). Multimode AFM dynamic behavior of GdFeO3including quasiferromagnetic, impurity and phonon mode is observed in low magnetic field. In addition,the AFM dynamic properties are less affected by the relative moment arrangement(antiparallel or parallel)of Fe and GdFeO3. The excitation efficiency of AFM resonance can be tuned tremendously by the pump influence via optical modification of the interfacial exchange coupling. The feasible triggering of multimode spin dynamics and easy tuning of excitation efficiency of orthoferrite via all-optical technique shed new lights on ultrafast magnetization manipulation of AFM for fast optospintronic devices.

    猜你喜歡
    張偉李娜
    李娜作品
    大眾文藝(2022年22期)2022-12-01 11:52:58
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?
    Application research of bamboo materials in interior design
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    Analysis of the Effects of Introversion and Extroversion Personality Traits on Students’ English Reading And Writing Abilities with its Relevant Teaching Advice
    李娜作品
    藝術(shù)家(2017年2期)2017-11-26 21:26:20
    數(shù)學(xué)潛能知識(shí)月月賽
    欧美bdsm另类| 一夜夜www| 别揉我奶头~嗯~啊~动态视频| 精品99又大又爽又粗少妇毛片 | 亚洲五月婷婷丁香| 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 久久精品人妻少妇| 久久香蕉国产精品| 亚洲人成伊人成综合网2020| 中文资源天堂在线| 国产av在哪里看| 长腿黑丝高跟| bbb黄色大片| 看免费av毛片| 久久精品人妻少妇| 亚洲无线在线观看| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 88av欧美| 亚洲成人久久爱视频| 怎么达到女性高潮| 久久精品人妻少妇| 一个人免费在线观看的高清视频| 久99久视频精品免费| 中文字幕久久专区| 日韩精品青青久久久久久| 久久精品影院6| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 动漫黄色视频在线观看| АⅤ资源中文在线天堂| bbb黄色大片| 国产精品野战在线观看| 波多野结衣高清无吗| 色综合站精品国产| 国产精品亚洲av一区麻豆| 日韩欧美在线乱码| 欧美在线黄色| 亚洲五月天丁香| 欧美中文综合在线视频| 老司机在亚洲福利影院| 国产蜜桃级精品一区二区三区| 日韩av在线大香蕉| 人妻久久中文字幕网| 成人高潮视频无遮挡免费网站| 国产成人系列免费观看| 啪啪无遮挡十八禁网站| 国产 一区 欧美 日韩| 在线观看66精品国产| 国产午夜精品久久久久久一区二区三区 | 欧美高清成人免费视频www| 日韩大尺度精品在线看网址| 真人做人爱边吃奶动态| 国产午夜精品论理片| 小说图片视频综合网站| 久久久久久九九精品二区国产| 国产成人系列免费观看| 色吧在线观看| 淫秽高清视频在线观看| 夜夜爽天天搞| 日韩有码中文字幕| 熟女少妇亚洲综合色aaa.| 男女那种视频在线观看| 国产成+人综合+亚洲专区| 一区二区三区激情视频| 男人舔女人下体高潮全视频| 一个人观看的视频www高清免费观看| 国产精品久久电影中文字幕| 国产伦在线观看视频一区| 亚洲自拍偷在线| 我要搜黄色片| 精品久久久久久成人av| 亚洲一区二区三区色噜噜| 国产高清视频在线观看网站| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 免费av毛片视频| a在线观看视频网站| 男女那种视频在线观看| 日本五十路高清| 香蕉丝袜av| 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 日本五十路高清| 国产av不卡久久| 超碰av人人做人人爽久久 | 精品久久久久久久人妻蜜臀av| 国产99白浆流出| 哪里可以看免费的av片| 国产成人欧美在线观看| 在线天堂最新版资源| 亚洲精品色激情综合| 中文字幕人妻丝袜一区二区| 欧美日韩福利视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| av国产免费在线观看| 免费搜索国产男女视频| 国产探花在线观看一区二区| 国产av在哪里看| 免费观看人在逋| 亚洲欧美精品综合久久99| 精品福利观看| 一二三四社区在线视频社区8| 国产淫片久久久久久久久 | 夜夜躁狠狠躁天天躁| 欧美性感艳星| 很黄的视频免费| 国产精品野战在线观看| 日韩人妻高清精品专区| 亚洲精品国产精品久久久不卡| 99在线视频只有这里精品首页| 国产成人av激情在线播放| 九九在线视频观看精品| 国产精品久久久人人做人人爽| 亚洲黑人精品在线| 亚洲久久久久久中文字幕| 香蕉久久夜色| 午夜福利高清视频| 天堂√8在线中文| 亚洲五月婷婷丁香| 一本精品99久久精品77| 欧美最新免费一区二区三区 | 亚洲无线观看免费| 色哟哟哟哟哟哟| 国产不卡一卡二| 极品教师在线免费播放| 国产成人影院久久av| 美女高潮的动态| 国产激情欧美一区二区| 久久国产精品影院| 欧美bdsm另类| 欧美一区二区亚洲| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式 | 欧美黄色片欧美黄色片| 欧美成人性av电影在线观看| 午夜激情福利司机影院| 级片在线观看| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 国产熟女xx| 亚洲国产精品999在线| 天天添夜夜摸| 日日干狠狠操夜夜爽| 色视频www国产| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 亚洲18禁久久av| 一本久久中文字幕| 在线播放国产精品三级| 少妇熟女aⅴ在线视频| 身体一侧抽搐| 久久精品国产亚洲av香蕉五月| 国产精品精品国产色婷婷| 国产精华一区二区三区| 亚洲成a人片在线一区二区| 日日夜夜操网爽| 99久久久亚洲精品蜜臀av| 亚洲熟妇中文字幕五十中出| 69人妻影院| 3wmmmm亚洲av在线观看| 免费大片18禁| x7x7x7水蜜桃| 天堂av国产一区二区熟女人妻| 久久国产精品影院| av国产免费在线观看| 国产精品女同一区二区软件 | 国产成人系列免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美黄色淫秽网站| 亚洲av成人精品一区久久| 搡老熟女国产l中国老女人| 悠悠久久av| 老汉色av国产亚洲站长工具| 亚洲五月天丁香| 国产精品久久电影中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 搡老妇女老女人老熟妇| 久99久视频精品免费| 99久久成人亚洲精品观看| 欧美精品啪啪一区二区三区| 97人妻精品一区二区三区麻豆| 国内毛片毛片毛片毛片毛片| 国产亚洲av嫩草精品影院| 国产精品久久久久久久久免 | 亚洲欧美日韩高清在线视频| 天天一区二区日本电影三级| 亚洲成人久久性| 婷婷六月久久综合丁香| 女人十人毛片免费观看3o分钟| 亚洲精品456在线播放app | 最近在线观看免费完整版| 国产久久久一区二区三区| 波野结衣二区三区在线 | 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清| 色视频www国产| 韩国av一区二区三区四区| 又粗又爽又猛毛片免费看| 露出奶头的视频| aaaaa片日本免费| 搞女人的毛片| 免费在线观看影片大全网站| 99在线人妻在线中文字幕| 男人的好看免费观看在线视频| 欧美国产日韩亚洲一区| 一个人看的www免费观看视频| 国产私拍福利视频在线观看| 日韩亚洲欧美综合| 免费在线观看日本一区| 中文亚洲av片在线观看爽| 宅男免费午夜| 久久性视频一级片| 亚洲在线观看片| 欧美日韩黄片免| 亚洲18禁久久av| 亚洲国产色片| 脱女人内裤的视频| 小说图片视频综合网站| 一级a爱片免费观看的视频| 乱人视频在线观看| 国产麻豆成人av免费视频| 久久久精品大字幕| 又粗又爽又猛毛片免费看| 欧美激情在线99| 黄色丝袜av网址大全| 在线a可以看的网站| 久久婷婷人人爽人人干人人爱| 黄片大片在线免费观看| 国产精品电影一区二区三区| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 成人av在线播放网站| 在线国产一区二区在线| 午夜影院日韩av| 18美女黄网站色大片免费观看| 黑人欧美特级aaaaaa片| 国产高潮美女av| 国产私拍福利视频在线观看| 日韩亚洲欧美综合| 亚洲avbb在线观看| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久久久99蜜臀| 亚洲七黄色美女视频| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 在线视频色国产色| 免费观看的影片在线观看| 亚洲在线观看片| 亚洲真实伦在线观看| 亚洲av一区综合| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影| 亚洲激情在线av| 国产欧美日韩一区二区精品| 欧美日本视频| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 欧美中文综合在线视频| 久久精品91蜜桃| 深夜精品福利| 99久久综合精品五月天人人| 亚洲中文字幕日韩| 久久香蕉国产精品| 99久久精品国产亚洲精品| 久久久久免费精品人妻一区二区| 日韩成人在线观看一区二区三区| 国产高清有码在线观看视频| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 美女高潮喷水抽搐中文字幕| 精品一区二区三区视频在线 | 亚洲内射少妇av| 久99久视频精品免费| 真人做人爱边吃奶动态| 午夜福利在线在线| 日本 欧美在线| 99久久成人亚洲精品观看| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 人妻久久中文字幕网| 欧美最新免费一区二区三区 | 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 久久久久性生活片| 欧美日韩综合久久久久久 | 看免费av毛片| 国产真实伦视频高清在线观看 | 亚洲美女黄片视频| 90打野战视频偷拍视频| 在线免费观看不下载黄p国产 | 熟女人妻精品中文字幕| 亚洲人成网站在线播| 一区二区三区高清视频在线| 亚洲av一区综合| 黑人欧美特级aaaaaa片| 国产男靠女视频免费网站| 欧美在线一区亚洲| 一本精品99久久精品77| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 久久草成人影院| 欧美日韩精品网址| 88av欧美| 国产精品亚洲av一区麻豆| 在线天堂最新版资源| 久久久久久大精品| 亚洲精品456在线播放app | 亚洲一区高清亚洲精品| www日本在线高清视频| 国产一区在线观看成人免费| 国产麻豆成人av免费视频| 色综合婷婷激情| www日本黄色视频网| 亚洲狠狠婷婷综合久久图片| 中文字幕av成人在线电影| 宅男免费午夜| 三级毛片av免费| 国产色婷婷99| 亚洲av成人不卡在线观看播放网| 天美传媒精品一区二区| 国产aⅴ精品一区二区三区波| 久久精品人妻少妇| 日本 欧美在线| 国产高清videossex| 亚洲精品亚洲一区二区| 51午夜福利影视在线观看| 亚洲天堂国产精品一区在线| 欧美绝顶高潮抽搐喷水| 香蕉久久夜色| 日本 av在线| 久久亚洲真实| 一级毛片高清免费大全| avwww免费| 国产麻豆成人av免费视频| 国产乱人伦免费视频| 国产精品三级大全| 91麻豆av在线| 一区二区三区激情视频| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 成人高潮视频无遮挡免费网站| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 国产99白浆流出| 中文字幕熟女人妻在线| 国产av一区在线观看免费| 精品电影一区二区在线| 超碰av人人做人人爽久久 | 18+在线观看网站| 精品国产美女av久久久久小说| 色视频www国产| 又紧又爽又黄一区二区| 综合色av麻豆| 欧美成人免费av一区二区三区| 人人妻人人澡欧美一区二区| 日韩欧美免费精品| 看免费av毛片| 99久久精品热视频| 亚洲人成伊人成综合网2020| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 成人性生交大片免费视频hd| 免费无遮挡裸体视频| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 成年人黄色毛片网站| 少妇的逼水好多| 长腿黑丝高跟| 婷婷丁香在线五月| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 国产单亲对白刺激| 亚洲精品在线观看二区| 久久久国产精品麻豆| 黄色丝袜av网址大全| 精华霜和精华液先用哪个| 国产精品美女特级片免费视频播放器| 色老头精品视频在线观看| 床上黄色一级片| 国产单亲对白刺激| 大型黄色视频在线免费观看| 男人的好看免费观看在线视频| 欧美激情久久久久久爽电影| 嫩草影院精品99| 精品久久久久久久久久免费视频| 国产乱人视频| 久久天躁狠狠躁夜夜2o2o| 真实男女啪啪啪动态图| 日韩 欧美 亚洲 中文字幕| 在线免费观看不下载黄p国产 | 亚洲一区高清亚洲精品| 欧美三级亚洲精品| 免费搜索国产男女视频| 夜夜躁狠狠躁天天躁| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 亚洲自拍偷在线| 国产中年淑女户外野战色| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 一本综合久久免费| 俄罗斯特黄特色一大片| 欧美大码av| 日韩欧美精品v在线| 1024手机看黄色片| 国产毛片a区久久久久| 丰满乱子伦码专区| 性欧美人与动物交配| 三级国产精品欧美在线观看| 久久亚洲真实| 岛国在线观看网站| 天天添夜夜摸| 最新美女视频免费是黄的| 日韩精品青青久久久久久| 午夜精品在线福利| 亚洲精品在线美女| 欧美成人性av电影在线观看| 国产伦精品一区二区三区四那| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 亚洲精品一区av在线观看| 欧美日韩一级在线毛片| 亚洲电影在线观看av| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产综合懂色| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 女人十人毛片免费观看3o分钟| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 亚洲精品在线美女| 久9热在线精品视频| 国产老妇女一区| 制服丝袜大香蕉在线| 免费在线观看日本一区| 亚洲av成人av| 午夜久久久久精精品| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看| 精品久久久久久久毛片微露脸| 精品一区二区三区av网在线观看| 日本五十路高清| 午夜精品在线福利| 国产高潮美女av| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 51午夜福利影视在线观看| 亚洲国产日韩欧美精品在线观看 | 九色国产91popny在线| 亚洲成人中文字幕在线播放| 亚洲欧美激情综合另类| 一区二区三区高清视频在线| 日韩亚洲欧美综合| 免费av不卡在线播放| 亚洲欧美一区二区三区黑人| 在线播放无遮挡| 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清| 色吧在线观看| 国产av一区在线观看免费| 黄色女人牲交| 欧洲精品卡2卡3卡4卡5卡区| 97人妻精品一区二区三区麻豆| 最新在线观看一区二区三区| 波多野结衣高清无吗| 无人区码免费观看不卡| 99久久久亚洲精品蜜臀av| 中文资源天堂在线| 亚洲av一区综合| 又紧又爽又黄一区二区| 无人区码免费观看不卡| 久久精品夜夜夜夜夜久久蜜豆| 淫妇啪啪啪对白视频| 国产精品自产拍在线观看55亚洲| 波野结衣二区三区在线 | 又紧又爽又黄一区二区| 三级毛片av免费| avwww免费| 国产探花在线观看一区二区| 日本a在线网址| 亚洲中文字幕日韩| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品999在线| 国产aⅴ精品一区二区三区波| 90打野战视频偷拍视频| 国产精品1区2区在线观看.| 精品熟女少妇八av免费久了| 国产不卡一卡二| 国产色婷婷99| 日日干狠狠操夜夜爽| 国产99白浆流出| 日本黄色片子视频| 黄片小视频在线播放| 9191精品国产免费久久| 亚洲五月天丁香| 日韩人妻高清精品专区| 国产成人啪精品午夜网站| 亚洲精品粉嫩美女一区| 婷婷亚洲欧美| 可以在线观看的亚洲视频| eeuss影院久久| 看免费av毛片| 99国产精品一区二区蜜桃av| 91久久精品电影网| 精品99又大又爽又粗少妇毛片 | 亚洲激情在线av| 欧美高清成人免费视频www| 亚洲五月天丁香| 好男人电影高清在线观看| 亚洲国产中文字幕在线视频| 久久久久久国产a免费观看| 老熟妇乱子伦视频在线观看| 在线观看免费午夜福利视频| 日本 av在线| 天堂av国产一区二区熟女人妻| 日韩av在线大香蕉| 日韩人妻高清精品专区| 国产精品永久免费网站| 淫秽高清视频在线观看| 欧美日韩综合久久久久久 | 18禁在线播放成人免费| 夜夜看夜夜爽夜夜摸| 欧美黄色淫秽网站| www.999成人在线观看| 亚洲最大成人中文| 精品熟女少妇八av免费久了| 搡女人真爽免费视频火全软件 | 亚洲av成人av| 日韩精品中文字幕看吧| 一级作爱视频免费观看| 国产高清激情床上av| 波多野结衣巨乳人妻| 欧美xxxx黑人xx丫x性爽| 午夜免费成人在线视频| 久久国产精品人妻蜜桃| 超碰av人人做人人爽久久 | 18美女黄网站色大片免费观看| 日韩欧美国产一区二区入口| av黄色大香蕉| 18禁在线播放成人免费| 欧美日韩黄片免| 老司机福利观看| 女生性感内裤真人,穿戴方法视频| 精品福利观看| 日本撒尿小便嘘嘘汇集6| 黄片小视频在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产欧美日韩一区二区精品| 亚洲片人在线观看| 在线播放无遮挡| 国产亚洲精品久久久com| 亚洲乱码一区二区免费版| 夜夜躁狠狠躁天天躁| 女人十人毛片免费观看3o分钟| 在线观看av片永久免费下载| 国产高清videossex| 免费大片18禁| 12—13女人毛片做爰片一| 亚洲不卡免费看| av在线天堂中文字幕| 亚洲一区二区三区色噜噜| 老司机福利观看| 成人特级av手机在线观看| 日本成人三级电影网站| 欧美中文日本在线观看视频| 九色成人免费人妻av| 免费av不卡在线播放| 美女高潮的动态| 久久精品影院6| 亚洲精品一卡2卡三卡4卡5卡| e午夜精品久久久久久久| 亚洲熟妇中文字幕五十中出| 国内精品一区二区在线观看| 亚洲人与动物交配视频| 黄片小视频在线播放| 亚洲国产精品合色在线| 中文字幕精品亚洲无线码一区| 在线免费观看的www视频| www日本在线高清视频| 三级毛片av免费| 欧美黄色片欧美黄色片| 激情在线观看视频在线高清| 午夜激情欧美在线| 88av欧美| 老司机在亚洲福利影院| e午夜精品久久久久久久| 亚洲av免费在线观看| 在线观看舔阴道视频| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 亚洲av一区综合| 一本久久中文字幕| 2021天堂中文幕一二区在线观| 亚洲天堂国产精品一区在线| av在线天堂中文字幕| 麻豆成人av在线观看| 女警被强在线播放| 国产成人系列免费观看| 观看免费一级毛片| 香蕉丝袜av|