• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?

    2021-09-28 02:17:28WeiZhang張偉MingYuanLi李明遠(yuǎn)QiLiangWu吳啟亮andAnXi襲安
    Chinese Physics B 2021年9期
    關(guān)鍵詞:張偉

    Wei Zhang(張偉),Ming-Yuan Li(李明遠(yuǎn)),Qi-Liang Wu(吳啟亮),and An Xi(襲安)

    1Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,Beijing University of Technology,Beijing 100124,China

    2College of Mechanical Engineering,Beijing University of Technology,Beijing 100124,China

    3School of Artificial Intelligence,Tiangong University,Tianjin 300387,China

    4The Fifth Electronic Research Institute of MIIT,Guangzhou 510610,China

    Keywords:iced cable,wind excitation,galloping,chaotic motion

    1.Introduction

    The nonlinear statics,dynamics,and stability of cables have received considerable attention due to their extensive applications in the engineering field.High-voltage transmission lines are a flexible cable structure widely used in transmission engineering due to their ability to conduct power over long distances.Cable dynamics have a rich history,which has been summarized in the review articles by Irvine and Caughey,[1]Starossek,[2]and Rega and Ibrahim.[3–5]Among all the different types of cable structures,the suspended cable is a fundamental type used in theoretical studies,and exhibits various dynamic phenomena as a prototype model in applied mechanics.

    The nonlinear dynamic responses of elastic suspended cables due to finite vibration amplitudes have received considerable research attention,as suspended cables exhibit a variety of phenomena due to their high flexibility and low damping characteristics.Perkins[6]derived a continuum model that describes the nonlinear,three-dimensional response of an elastic cable to tangential oscillations of one support.A twodegree-of-freedom approximation was used to examine the coupled in-plane and out-of-plane response.Additionally,a four-degree-of-freedom model was developed from the continuum equations by Benedettini et al.,[7]and is able to capture the main phenomena that are likely to occur in the nonplanar finite dynamics of an elastic suspended cable subjected to external force and support motion.Gattulli et al.[8]used analytical and finite element models to study the modal interactions in both planar and spatial responses to harmonic in-plane and out-of-plane loads.Luongo et al.[9,10]derived a nonlinear model of a twisted cable and studied the effect of the twist angle on the nonlinear galloping of suspended cables.Luongo et al.[11]also established a nonlinear two-degree-of-freedom model to describe a flexible elastic suspended cable undergoing galloping oscillations.Kim and Perkins[12]investigated the resonant responses of suspended elastic cables driven by a steady current.Srinil and Rega[13]presented a model formulation capable of reflecting the large-amplitude free vibrations of a suspended cable in three dimensions.Based on a multidegree-of-freedom model,numerical procedures were implemented to solve both spatial and temporal problems.Zhao and Wang[14]investigated the nonlinear responses of suspended homogeneous elastic cables with low initial sag-to-span ratio in the case of 3:1 internal resonance by considering the vertical load.Casciati and Ubertini[15]considered the nonlinear vibration of shallow cables equipped with a semi-active control device.Abdel-Rohman and Spencer[16]studied the along-wind and across-wind responses of suspended cables.Zheng et al.[17]investigated the super-harmonic and internal resonance characteristics of a viscously damped cable with nearly commensurable natural frequencies via a novel method.Chang et al.[18]studied the nonlinear interaction of the first two inplane modes of a suspended cable with a moving fluid along the plane of the cable.Ouni and Kahla[19]investigated the nonlinear dynamics of a cable under first-and second-order parametric excitations.Zhao et al.[20,21]investigated the approximate series solutions of nonlinear free vibrations of suspended cables via the Lindstedt–Poincar′e method and the homotopy analysis method.

    Owing to the combination of quadratic and cubic nonlinearities,suspended cables exhibit various planar and nonplanar internal resonance conditions.Srinil et al.[22]and Srinil and Rega[23]conducted an analytical investigation of resonant multimodal dynamics resulting from 2:1 internal resonance in the finite-amplitude free vibrations of horizontal/inclined cables.Nayfeh et al.[24]investigated the nonlinear,nonplanar responses of suspended cables subjected to external excitation.Lacarbonara and Rega[25]investigated 1:1,2:1,3:1,and internal resonances in undamped,unforced,one-dimensional systems with arbitrary linear,quadratic,and cubic nonlinearities for a class of shallow symmetric structural systems.Kamel and Hamed[26]studied the nonlinear behavior of an elastic cable subjected to harmonic excitation.Rega et al.[27]studied an experimental model of an elastic cable carrying eight concentrated masses and hanging from in-phase or out-of-phase vertically-moving supports.Zhang and Tang[28]investigated the chaotic dynamics and global bifurcations[29–31]of a suspended elastic cable under combined parametric and external excitations.Considering 1:1 internal resonance,Abe[32]investigated the accuracy of nonlinear vibration analyses of suspended cables that possess quadratic nonlinearity and cubic nonlinearity,respectively.By the Galerkin method,Huang et al.[33]derived the governing equations describing the motion of a coupled suspended cable-stayed beam structure,and studied its 1:2 internal resonance.Taking into account the bending stiffness,Kang et al.[34,35]systematically investigated the linear and nonlinear dynamics of a suspended cable.

    Considering the effect of the geometric nonlinearity of the cable on the coupled behavior between the modes of the beam and cable,Wei et al.[36]developed and investigated a model of the cable-stayed beam system.Wu and Qi studied the dynamic responses of an iced suspended cable were investigated[37]by the finite element method.Jing et al.[38]proposed a numerical model of a wind-loaded two-dimensional(2D)cable,and analyzed the vibration responses induced by rain-wind.The bases of the flow behavior and phenomena existing during 2D airflow were explained by Gorski et al.[39]to analyze the motions of an ice-accreted bridge cable.Via the use of the optimal equivalent control algorithm,Zhao et al.[40]studied a method of controlling the vibration responses of a stay cable.Chang et al.[41]reported experimental results of the mechanism and mitigation of the vibrations of stay cables under rainwind load.Electromagnetic inertial mass dampers were considered by Li et al.[42]to experimentally and analytically study the vibration mitigation of stay cables.

    In recent years,some investigations of suspended cable models and research methods have been updated.Using the method of multiple scales,Huang et al.[43]developed a new nonlinear partial differential equation to investigate a suspended cable-stayed beam structure by considering the finite deformations of the structure and the initial configuration of the main cable.Ahmad et al.[44]established an analytical model of a hybrid system composed of two parallel taut cables interconnected by a transverse linear flexible cross-tie.Ishihara and Oka[45]studied the aerodynamic coefficients of a single bundled iced suspension cable and four bundled iced suspension cables for comparison with the results of a wind tunnel test.Akkaya and Horssen[46]described a model of the rain-wind-induced oscillations of an inclined cable.Based on the mode superposition method with enhanced shape functions,Javanbakht et al.[47]proposed a control-oriented numerical model to evaluate the dynamic response of a stay cable.Li et al.[48]established a generalized gust loading model for predicting the buffeting response,which is applicable to both small-aspect-ratio and long-span,line-like bridges.Guo et al.[49]proposed an elastic cable-rigid body coupled model to investigate the dynamic interaction between the torsional dynamics of the boundary tower and the nonlinear transversal vibrations of the cables.According to catenary theory,Mansour et al.[50]studied the free undamped vibration of a suspension cable with arbitrary sag and inclination.Zhao et al.[51,52]investigated the influence of the temperature on the vibration characteristics of suspension cables related to the excitation amplitude and sag-to-span ratio,and the results revealed that temperature variation gave rise to qualitative and/or quantitative changes of the nonlinear vibration properties.

    The present study focuses on the complex nonlinear vibrations of a three-degree-of-freedom iced cable.The influences of the support displacement and wind excitation on the nonlinear dynamic responses of the system are analyzed.Considering the galloping of the suspended structure under transverse wind,a nonlinear dynamic model of the three-degree-offreedom iced cable is established.The nonlinear partial differential equations of motion for the iced cable are established via Hamilton’s principle.Additionally,the dimensionless differential equations of motion are obtained and reduced into a set of nonlinear ordinary differential equations by the Galerkin method.[53,54]With the assistance of the method of multiple scales,the averaged equations of the system in the presence of principal parametric resonance?1/2 subharmonic resonance and 2:1 internal resonance are obtained.According to the averaged equations,the numerical results including bifurcation diagrams,waveforms,phase plots,and frequency spectrum are obtained to investigate the intrinsically nonlinear behaviors of the iced cable.It is demonstrated that the iced cable exhibits alternating periodic and chaotic motions according to the influences of the nonlinear factors.

    2.Theory and formulation

    Fig.1.Model of iced cable.

    Considering the interception of a small section of the iced cable for centralized mass,the center of mass of the line lies on the origin O.In the Cartesian coordinate(oxy)system,the vertical coordinate of the center of mass is y.For a wind speed Vm,the relative velocity is Vr=Vw?

    then the angle of attackαwill be

    Because the cross-section of the iced cable is a non-circular irregular shape,the gust of the suspension produces not only a resistance Fdin the Vrdirection,but also a lift FLand a torsional force Fwthat are perpendicular to it.According to the aerodynamic principle,the following equations can be obtained:

    The tangential force and normal force of the cable are respectively

    Because the model considers low-frequency vibration,the value ofαis very small;thus,the following approximate expressions can be held:

    By substituting Eqs.(2),(3),and(5)into Eq.(4),the effects of the wind along the cable in the tangential,normal,and rotational directions of the component can be calculated,respectively,as

    where d is the maximum dimension of the aerial surface of the cable,and CL,CD,and CMare respectively the lift,drag,and torsional coefficients,which are the functions of the crosssectional shape and the angle of attack.

    According to Hamilton’s principle,

    whereΠT,ΠS,andΠWare the kinetic energy,strain energy,and external force work,respectively.The equations of motion can be obtained by applying Hamilton’s principle as follows:

    The boundary conditions of the cable are given as

    The tension and curvature expressions are respectively

    where

    Equation(11)shows that when the sag-to-span ratioD/H≤1/8,P0≥ρgL.By taking the Taylor expansion of Eq.(10),the following equation is obtained:

    The dimensionless curvature is k=KL=ρgL/P0,and can be regarded as a small perturbation parameter.By expanding Eq.(8)and omitting k2and higher-order terms,the dynamic equations of small sag are obtained as follows:

    To obtain the dimensionless governing equation of motion,the transformations of the variables and parameters are introduced as

    Substitution of these parameters into Eq.(13)yields the following equations:

    Because the vibration in the tangential direction of the suspension cable does not play a major role,the vibration in the L1direction is ignored,which yields

    therefore,

    where

    Substitution of Eq.(17)into Eq.(15)yields the following equations:

    The boundary conditions are given as

    The Galerkin method is used to separate the variables,and the partial differential equations are then transformed into ordinary differential equations:

    The in-plane vibration mode is as follows:

    with

    whereωis determined by the following characteristic equation:

    The out-of-plane vibration mode is as follows:

    The torsional mode is

    By applying the Galerkin procedure to the dimensionless governing differential equation of motion,i.e.,by substituting Eqs.(22)–(27)into Eq.(20),the three-degree-of-freedom ordinary differential equations of the cable motion are obtained as follows:

    Equation(28c)is a linear differential equation,and equations(28a)and(28b)are uncoupled.Therefore,the solution of Eq.(28c)can be substituted into the other two equations,thereby reducing the three-degree-of-freedom governing equation into a two-degree-of-freedom governing equation.According to the theory of forced vibration,the solution of Eq.(28c)yields

    where

    Substitution of Eqs.(29)and(30)into Eqs.(28a)and(28b)yields the following equations:

    By substituting the one-term expansion

    into Eq.(31)and equating the coefficient of the harmonics to zero,an algebraic equation relating the frequencyωwith the amplitudes A1and A2can be obtained.

    3.Analysis of amplitude–frequency property

    The introduction of a small perturbation parameterεinto Eq.(31)yields the following equations:

    By the method of multiple scales,the following equations are obtained:

    where T0=t and T1=εt.

    The differential operator is

    where Dk=?/?Tkand k=0,1,...

    Considering the case of principal parametric resonance,i.e.,1/2 subharmonic resonance and 2:1 internal resonance,the following expressions are obtained:

    whereσ1andσ2are two detuning parameters,andΩ1=2.0.

    By substituting Eqs.(33)–(35)into Eq.(32),the following equations are obtained:The polar form solution of Eq.(36)is

    Substitute Eq.(39)into Eq.(38)and let the secular term be zero,then the following equations will be yielded:

    The averaged equation in the polar form of the iced suspended cable is derived as

    Let A2and A3be denoted in the following forms:

    and substitute Eq.(42)into Eq.(41)and separate the real part and imaginary part,then the averaged equation in polar form will be obtained below.

    By equating the coefficients of sine and cosine in Eq.(43)to zero,the relationship between the amplitude–frequency characteristics is obtained as follows:

    To study the complex dynamics of the iced cable,the amplitude–frequency characteristics curves of system(31)are analyzed.However,the analytical solutions of system(31)are very difficult to obtain;therefore,the following two special cases are considered:

    (i)the two modes are weakly coupled;

    (ii)the two modes are strongly coupled.

    For case(i),assume a3=1 in Eq.(44a)and a2=1 in Eq.(44b),then the amplitude–frequency relationship of the weakly coupled system will be expressed as

    Figures 2 and 3 respectively present the amplitudes a2and a3versus detuning parameterσ1and B2under different values of damping coefficientμ1.The results demonstrate that the increase of the damping coefficientμ1will lead to the decrease in the amplitudes a2and a3.Moreover,figures 2 and 3 present the hardening properties of the stiffness and jump phenomenon of the amplitude based on the amplitude–frequency curve.

    Fig.2.Weak coupling amplitude–frequency(a)A1 and(b)A2 versusσ1 under different damping coefficients.

    Fig.3.Weak coupling amplitude–frequency(a)A1 and(b)A2 versus B2 under different damping coefficients.

    For case(ii),assume a3=2 in Eq.(44a)and a2=2 in Eq.(44b),then the strongly coupled system will be obtained as follows:

    Fig.4.Strong coupling amplitude-frequency(a)A1 and(b)A2 versusσ1 under different damping coefficients.

    Figures 4 and 5 respectively present the amplitudes a2and a3versus detuning parametersσ1and B2under different values of damping coefficientμ1.Like case(i),with the increase of the damping coefficientμ1,the amplitudes a2and a3decrease.In addition,with the constant change of parameters,the amplitude of the system will present a jump phenomenon.It can be seen that the amplitudes in case(ii)are larger than those in case(i),which is due to the differences between the two cases.

    Fig.5.Strong coupling amplitude–frequency(a)A1 and(b)A2 versus B2 under different damping coefficients.

    4.Numerical simulations of periodic and chaotic motions

    Numerical simulations are performed to determine the periodic motion and chaotic motion of the iced suspended cable.The numerical integration of Eq.(31)is performed by using the Runge–Kutta algorithm with variable precision∈[0.0001,0.01].[38]More specifically,the transient effects are avoided by dropping the first 60% of the simulating time:2000 s.The excitation V is a main controlling parameter in the research of the nonlinear dynamic behaviors of cables,and is selected as the controlling parameter to discover the complicated nonlinear dynamics.The parameters are set to be as follows:E=0.9×1011Pa,G=0.4×1011Pa,g=9.8 N/kg,L=400 m,ρ=0.92 kg/m,ρair=1.2 kg/m3,R=10×10?3m,and um=1 m.

    In this section,the emphasis is placed on the influence of external excitation on the motion of a three-degree-of-freedom iced suspended cable structure.The horizontal wind speed V is taken as the control parameter.The amplitude of the wind speed pulse is constant,and the amplitude umof the bearing motion is assumed to be a constant value.The dependence of the three-degree-of-freedom iced cable on the horizontal wind speed V is investigated.Considering the parametric and external excitation on the iced cable,there exist abundant dynamic behaviors.The dynamic motions of the iced cable under different wind speeds are calculated based on the torsional vibration of the three-degree-of-freedom system which occurs in a single cycle.Table 1 exhibits the typical examples of the motion forms of the iced cable under different wind speeds.The bifurcation diagrams of the two degrees of freedom v2and v3versus wind speed V are presented in Figs.6(a)and 6(b),respectively and figure 6(c)shows the largest Lyapunov exponent of v2.When V∈[0.78,0.88],V∈[1.36,1.75],and V>1.9,the system exhibits the typical characteristics of chaotic motion.

    Table 1.Typical examples of motion forms of iced cable under different wind speeds.

    Fig.6.Bifurcation diagram of v2 and v3 under different values of wind speed V1.

    Fig.7.Periodic motion of iced cable obtained when V=0.83 m/s.

    Fig.8.Multi-periodic motion of iced cable obtained when V=0.94 m/s.

    Fig.9.Chaotic motion of iced cable obtained when V=1.17 m/s.

    In each of Figs.7–9,panels(a)and(c)respectively show the phase portraits on the planes(v2,˙v2)and(v3,˙v3),panels(b)and(d)respectively represent the waveforms on the planes(t,v2)and(t,v3),and panels(e)and(f)respectively display the three-dimensional phase portrait in space(v2,˙v2,v3)and the frequency spectrum on plane(frequency,v2).It should be noted that the frequency spectrum can be used to distinguish between periodic motion and chaotic motion.The results reveal that there exist one-periodic motion(Fig.7),multiperiodic motion(Fig.8),and chaotic motion(Fig.9)when the system is under the action of different resonance mechanisms,including in-plane parametric resonance and out-of-plane superharmonic resonance.Moreover,the displacement of the vibration is found to be enhanced with the increase of the wind speed.

    5.Conclusions

    In this paper,the theory of nonlinear dynamics is used to investigate the wind-excited vibration response of an iced suspended cable.The effects of the system under both external and parametric excitation are investigated.Using Hamilton’s principle,a dynamic model of a three-degree-of-freedom iced suspended cable is first established.Then,the approximate equation in the case of small sag is derived,as shown in the dimensionless equation.The amplitude–frequency characteristics are obtained using the harmonic balance method.The perturbation equation is analyzed using the method of multiple scales,and the averaged equation is derived and used to capture the behaviors of the system under the action of inplane parametric resonance and out-of-plane superharmonic resonance.Based on the numerical simulation,the nonlinear vibration responses of the iced cable under parametric excitation and external excitation caused by horizontal wind are determined.The numerical results reveal that the iced suspended cable presents a periodic motion,multi-periodic motion,and chaotic motion under in-plane parametric resonance and out-of-plane main resonance.It is found that with the increase of the wind speed,the behavior of the system changes from a one-periodic motion into a multi-periodic motion,and finally into a chaotic motion.Compared with the results of a two-degree-of-freedom iced suspended cable,the effect of torsional vibration on the system cannot be neglected.Furthermore,theoretical analysis reveals that the vibration of the iced cable can be effectively controlled,which could be a useful technique to ensure the safety of the cable structure.

    猜你喜歡
    張偉
    文化名家
    ——張偉
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    Solvability for Fractional p-Laplacian Differential Equation with Integral Boundary Conditions at Resonance on Infinite Interval
    Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface?
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    藝術(shù)廣角
    數(shù)學(xué)潛能知識月月賽
    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*
    真的記住了
    故事會(2014年10期)2014-05-14 15:24:18
    免费看美女性在线毛片视频| 亚洲午夜理论影院| 男插女下体视频免费在线播放| 高清日韩中文字幕在线| 女人被狂操c到高潮| 天美传媒精品一区二区| 久久这里只有精品中国| 男人舔女人下体高潮全视频| 亚洲中文字幕日韩| 亚洲va日本ⅴa欧美va伊人久久| 最近视频中文字幕2019在线8| 深夜精品福利| eeuss影院久久| 亚洲真实伦在线观看| 日韩欧美国产一区二区入口| 老汉色∧v一级毛片| 久久精品国产综合久久久| 国产精品永久免费网站| tocl精华| 舔av片在线| 色吧在线观看| 男女下面进入的视频免费午夜| 日韩欧美国产一区二区入口| 国内精品美女久久久久久| h日本视频在线播放| 国产精品乱码一区二三区的特点| 国产 一区 欧美 日韩| 99riav亚洲国产免费| 成人av一区二区三区在线看| 中文字幕高清在线视频| 国产在视频线在精品| 99久久精品国产亚洲精品| 毛片女人毛片| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩乱码在线| 十八禁人妻一区二区| 日韩有码中文字幕| www.熟女人妻精品国产| 黄色日韩在线| 不卡一级毛片| 91久久精品电影网| 亚洲av日韩精品久久久久久密| 岛国在线免费视频观看| 可以在线观看的亚洲视频| 中文在线观看免费www的网站| 99久久精品一区二区三区| 日本黄色片子视频| 免费人成在线观看视频色| 欧美乱色亚洲激情| 午夜福利高清视频| 91麻豆精品激情在线观看国产| АⅤ资源中文在线天堂| 狠狠狠狠99中文字幕| 真人一进一出gif抽搐免费| 欧美日韩一级在线毛片| svipshipincom国产片| 国产精品永久免费网站| 成人亚洲精品av一区二区| 久99久视频精品免费| 免费大片18禁| 欧美午夜高清在线| 美女大奶头视频| 久久久久亚洲av毛片大全| 人妻夜夜爽99麻豆av| 精品国产超薄肉色丝袜足j| 国产精品国产高清国产av| 色综合婷婷激情| 尤物成人国产欧美一区二区三区| 女人被狂操c到高潮| 色视频www国产| 麻豆成人午夜福利视频| 毛片女人毛片| 国产亚洲欧美在线一区二区| 免费电影在线观看免费观看| 精品国产三级普通话版| av天堂在线播放| 成人国产一区最新在线观看| 国产极品精品免费视频能看的| 在线天堂最新版资源| 91九色精品人成在线观看| 看片在线看免费视频| www.熟女人妻精品国产| 日本三级黄在线观看| 亚洲人成网站在线播| 欧美丝袜亚洲另类 | 噜噜噜噜噜久久久久久91| 亚洲av免费在线观看| 一a级毛片在线观看| av中文乱码字幕在线| 大型黄色视频在线免费观看| 国产极品精品免费视频能看的| 亚洲专区国产一区二区| 亚洲最大成人中文| 9191精品国产免费久久| 欧美最黄视频在线播放免费| 国产探花在线观看一区二区| 欧美一级a爱片免费观看看| 九九热线精品视视频播放| eeuss影院久久| 久久久久亚洲av毛片大全| 亚洲av成人不卡在线观看播放网| 亚洲国产高清在线一区二区三| 国产成人a区在线观看| 欧美一级毛片孕妇| 午夜激情欧美在线| 一级黄片播放器| 免费在线观看成人毛片| 1024手机看黄色片| av女优亚洲男人天堂| 国产亚洲av嫩草精品影院| 男插女下体视频免费在线播放| 久久精品91无色码中文字幕| 欧美成人一区二区免费高清观看| 69av精品久久久久久| 性色av乱码一区二区三区2| 国产高清有码在线观看视频| 狠狠狠狠99中文字幕| 亚洲黑人精品在线| 嫩草影院入口| 天天躁日日操中文字幕| 精品久久久久久久末码| 日韩高清综合在线| 在线观看午夜福利视频| 男女之事视频高清在线观看| 午夜福利免费观看在线| 国产精品爽爽va在线观看网站| 琪琪午夜伦伦电影理论片6080| 中文字幕熟女人妻在线| 极品教师在线免费播放| 高清日韩中文字幕在线| www.999成人在线观看| 亚洲av免费在线观看| 变态另类丝袜制服| 成人特级av手机在线观看| 色综合站精品国产| or卡值多少钱| a级毛片a级免费在线| 国产黄色小视频在线观看| 日本a在线网址| 五月玫瑰六月丁香| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产精品久久久不卡| 久久久久久国产a免费观看| 90打野战视频偷拍视频| 亚洲av成人av| 免费av毛片视频| 亚洲精品色激情综合| 精品乱码久久久久久99久播| 久久精品影院6| 成年女人永久免费观看视频| 麻豆国产97在线/欧美| 噜噜噜噜噜久久久久久91| 久久精品国产自在天天线| 好看av亚洲va欧美ⅴa在| 高清在线国产一区| 国产色婷婷99| 国产av麻豆久久久久久久| 国产伦精品一区二区三区四那| 中文在线观看免费www的网站| 亚洲天堂国产精品一区在线| 又黄又粗又硬又大视频| 国产成+人综合+亚洲专区| av专区在线播放| 又紧又爽又黄一区二区| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美网| 特级一级黄色大片| 国产黄片美女视频| 国产99白浆流出| 日韩精品青青久久久久久| 亚洲美女黄片视频| 男人舔女人下体高潮全视频| 国产主播在线观看一区二区| 久久精品国产亚洲av香蕉五月| www日本黄色视频网| 三级国产精品欧美在线观看| 欧美一区二区精品小视频在线| 午夜福利高清视频| 午夜福利在线在线| 国产成人系列免费观看| 亚洲中文字幕一区二区三区有码在线看| 成人特级黄色片久久久久久久| 国产极品精品免费视频能看的| 在线观看av片永久免费下载| 国产视频一区二区在线看| 人妻夜夜爽99麻豆av| 午夜免费成人在线视频| 小说图片视频综合网站| 欧美3d第一页| 精品国内亚洲2022精品成人| 中文资源天堂在线| 亚洲成人免费电影在线观看| 老熟妇仑乱视频hdxx| 免费av毛片视频| 欧美黑人巨大hd| 首页视频小说图片口味搜索| 久久久久免费精品人妻一区二区| 国产99白浆流出| 国产伦精品一区二区三区视频9 | 国内毛片毛片毛片毛片毛片| 成人av在线播放网站| 免费观看精品视频网站| 精品国产超薄肉色丝袜足j| 男女做爰动态图高潮gif福利片| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩精品亚洲av| 亚洲无线在线观看| 欧美日韩乱码在线| 免费观看人在逋| 日韩欧美在线乱码| 国产亚洲精品综合一区在线观看| 色播亚洲综合网| 欧美一区二区亚洲| 狂野欧美白嫩少妇大欣赏| 高潮久久久久久久久久久不卡| 久久精品亚洲精品国产色婷小说| 又黄又爽又免费观看的视频| xxxwww97欧美| 亚洲人成网站在线播| 精品日产1卡2卡| 国产aⅴ精品一区二区三区波| 一区二区三区国产精品乱码| 在线十欧美十亚洲十日本专区| 全区人妻精品视频| 日本五十路高清| www.色视频.com| 最近视频中文字幕2019在线8| 久久久久久久精品吃奶| 精品欧美国产一区二区三| 毛片女人毛片| 国产成人欧美在线观看| 国产成人欧美在线观看| 一级毛片女人18水好多| 欧美绝顶高潮抽搐喷水| 999久久久精品免费观看国产| 精品久久久久久,| 国产欧美日韩一区二区三| 国产精品爽爽va在线观看网站| 久久亚洲真实| 一级作爱视频免费观看| 国产成人啪精品午夜网站| 日日夜夜操网爽| 亚洲无线观看免费| 波野结衣二区三区在线 | 国产精品久久久久久久久免 | 久久性视频一级片| 99热6这里只有精品| 成人亚洲精品av一区二区| 国产97色在线日韩免费| av片东京热男人的天堂| 欧美大码av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老汉色∧v一级毛片| 男女下面进入的视频免费午夜| 波多野结衣高清作品| 性色av乱码一区二区三区2| 免费看十八禁软件| 在线免费观看不下载黄p国产 | 天堂网av新在线| 国内久久婷婷六月综合欲色啪| 色综合婷婷激情| 国产黄片美女视频| 老熟妇仑乱视频hdxx| 99国产极品粉嫩在线观看| 久久精品国产亚洲av香蕉五月| 国产精品一区二区三区四区久久| 欧美又色又爽又黄视频| 他把我摸到了高潮在线观看| 一个人免费在线观看的高清视频| 在线观看美女被高潮喷水网站 | 久久香蕉精品热| 精品电影一区二区在线| 色噜噜av男人的天堂激情| 99久久综合精品五月天人人| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 亚洲人成网站高清观看| 一个人看视频在线观看www免费 | 变态另类丝袜制服| 狠狠狠狠99中文字幕| 国产成人aa在线观看| 久久久久精品国产欧美久久久| 成人永久免费在线观看视频| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 嫩草影院精品99| 国产精品嫩草影院av在线观看 | 老司机午夜福利在线观看视频| 亚洲人成网站高清观看| 少妇熟女aⅴ在线视频| 久久香蕉精品热| 色综合婷婷激情| 我的老师免费观看完整版| 欧美bdsm另类| 深爱激情五月婷婷| av女优亚洲男人天堂| 亚洲精品乱码久久久v下载方式 | 亚洲中文字幕日韩| www日本黄色视频网| 嫩草影院精品99| 99在线视频只有这里精品首页| 亚洲不卡免费看| 两性午夜刺激爽爽歪歪视频在线观看| 国产高潮美女av| 久久久久久久久久黄片| 欧美日韩乱码在线| 国产中年淑女户外野战色| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av| 午夜影院日韩av| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 99热这里只有精品一区| 亚洲av中文字字幕乱码综合| 日本黄大片高清| 国内揄拍国产精品人妻在线| 国产黄色小视频在线观看| 亚洲人成伊人成综合网2020| 亚洲人成网站高清观看| 中文资源天堂在线| 免费观看精品视频网站| 欧美不卡视频在线免费观看| 亚洲精品亚洲一区二区| 黄片小视频在线播放| www.www免费av| 亚洲人成网站在线播| 97超级碰碰碰精品色视频在线观看| av黄色大香蕉| 香蕉久久夜色| 神马国产精品三级电影在线观看| 天堂√8在线中文| 国产精华一区二区三区| 99久久成人亚洲精品观看| 无限看片的www在线观看| 日韩精品青青久久久久久| 国内精品一区二区在线观看| 757午夜福利合集在线观看| 亚洲成人精品中文字幕电影| 色综合站精品国产| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人| 色哟哟哟哟哟哟| 国产国拍精品亚洲av在线观看 | 精品一区二区三区视频在线 | 国产伦一二天堂av在线观看| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 中出人妻视频一区二区| 国产精品久久久久久久电影 | 亚洲国产日韩欧美精品在线观看 | 人妻丰满熟妇av一区二区三区| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 欧美极品一区二区三区四区| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 精品日产1卡2卡| 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久亚洲中文字幕 | 日本 av在线| 最近在线观看免费完整版| 特级一级黄色大片| 老汉色av国产亚洲站长工具| 老司机午夜福利在线观看视频| 国产一级毛片七仙女欲春2| 少妇裸体淫交视频免费看高清| 久久久久精品国产欧美久久久| 亚洲精品日韩av片在线观看 | 老司机在亚洲福利影院| 综合色av麻豆| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 久久久国产成人精品二区| 午夜福利在线在线| 在线观看免费午夜福利视频| 国产在线精品亚洲第一网站| 成人永久免费在线观看视频| 国产欧美日韩一区二区三| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 日本免费a在线| 99热这里只有是精品50| 欧美av亚洲av综合av国产av| 男人和女人高潮做爰伦理| 99国产精品一区二区三区| 长腿黑丝高跟| 精品久久久久久成人av| 91字幕亚洲| 一边摸一边抽搐一进一小说| 欧美+日韩+精品| 精品乱码久久久久久99久播| 中出人妻视频一区二区| 中文字幕av成人在线电影| 日韩高清综合在线| 一个人看视频在线观看www免费 | 亚洲av成人精品一区久久| 中文字幕人成人乱码亚洲影| 国产中年淑女户外野战色| 欧美三级亚洲精品| 最近最新中文字幕大全免费视频| 麻豆一二三区av精品| 免费av毛片视频| 久久草成人影院| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频| 日韩国内少妇激情av| 天堂动漫精品| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 99精品久久久久人妻精品| 国产精品98久久久久久宅男小说| 我要搜黄色片| 可以在线观看毛片的网站| 久久精品国产清高在天天线| 成年免费大片在线观看| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 国产三级黄色录像| 亚洲av成人精品一区久久| 亚洲片人在线观看| av片东京热男人的天堂| 啦啦啦免费观看视频1| 日韩欧美精品免费久久 | 全区人妻精品视频| 欧美成人性av电影在线观看| 99久久99久久久精品蜜桃| 国产高清视频在线观看网站| 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| 久99久视频精品免费| 欧美三级亚洲精品| 午夜福利在线观看吧| www日本在线高清视频| 淫秽高清视频在线观看| 国产成人av激情在线播放| 国产精品av视频在线免费观看| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 欧美色视频一区免费| 女同久久另类99精品国产91| 少妇裸体淫交视频免费看高清| 日韩大尺度精品在线看网址| 免费av毛片视频| 婷婷丁香在线五月| 97碰自拍视频| tocl精华| 中文资源天堂在线| 色吧在线观看| 久久伊人香网站| 日韩成人在线观看一区二区三区| bbb黄色大片| 精品国产超薄肉色丝袜足j| 深爱激情五月婷婷| 18+在线观看网站| 国产成人福利小说| 人妻久久中文字幕网| 精品人妻1区二区| 99热6这里只有精品| 一进一出抽搐gif免费好疼| 午夜免费激情av| 亚洲电影在线观看av| 久久久久国内视频| 在线观看66精品国产| 狠狠狠狠99中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 国产成年人精品一区二区| 最近最新中文字幕大全电影3| 色吧在线观看| 最新美女视频免费是黄的| 搡女人真爽免费视频火全软件 | 免费观看精品视频网站| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 亚洲精品456在线播放app | 99热这里只有是精品50| 91麻豆精品激情在线观看国产| 亚洲国产中文字幕在线视频| 在线视频色国产色| xxxwww97欧美| 最好的美女福利视频网| 亚洲人与动物交配视频| 日韩免费av在线播放| 久9热在线精品视频| 999久久久精品免费观看国产| 天天躁日日操中文字幕| 亚洲最大成人中文| 制服丝袜大香蕉在线| 欧美高清成人免费视频www| 99精品欧美一区二区三区四区| 欧美大码av| 99热只有精品国产| 欧美成人免费av一区二区三区| 一级a爱片免费观看的视频| 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 国产美女午夜福利| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产| 午夜久久久久精精品| 久久精品国产亚洲av香蕉五月| svipshipincom国产片| 国产一区二区在线观看日韩 | 日本熟妇午夜| 18禁美女被吸乳视频| 亚洲欧美日韩东京热| 亚洲七黄色美女视频| 久久久久国产精品人妻aⅴ院| 制服丝袜大香蕉在线| 国产精品亚洲美女久久久| 观看美女的网站| www.www免费av| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| tocl精华| 国产爱豆传媒在线观看| 在线观看免费午夜福利视频| 亚洲专区中文字幕在线| 国内精品久久久久久久电影| 在线a可以看的网站| 性色avwww在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 免费看十八禁软件| 国产精品久久久久久久电影 | 免费av观看视频| 香蕉丝袜av| 激情在线观看视频在线高清| 成人午夜高清在线视频| 人人妻人人看人人澡| 色综合站精品国产| 欧美日韩国产亚洲二区| 亚洲七黄色美女视频| 亚洲国产精品合色在线| 欧美黑人巨大hd| 国产精品久久久久久久电影 | 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片| 黄色日韩在线| 亚洲精品影视一区二区三区av| 小说图片视频综合网站| 精品欧美国产一区二区三| 日韩人妻高清精品专区| e午夜精品久久久久久久| 美女免费视频网站| 99热这里只有精品一区| 91麻豆精品激情在线观看国产| 欧美一级a爱片免费观看看| 国产一区二区在线av高清观看| 国产伦精品一区二区三区四那| 乱人视频在线观看| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 国产一级毛片七仙女欲春2| 亚洲人成电影免费在线| 嫩草影视91久久| 色视频www国产| avwww免费| 日本一本二区三区精品| 国产精品三级大全| 欧美+日韩+精品| 欧美黑人巨大hd| 国产99白浆流出| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 亚洲人成网站在线播| 日韩欧美三级三区| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 免费av不卡在线播放| 亚洲av免费高清在线观看| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 亚洲国产精品sss在线观看| 精品人妻一区二区三区麻豆 | 成年女人永久免费观看视频| 一本综合久久免费| av视频在线观看入口| 久久香蕉精品热| 日韩有码中文字幕| 日本与韩国留学比较| 老司机午夜福利在线观看视频| 久久久成人免费电影| 淫妇啪啪啪对白视频| a级毛片a级免费在线| 久久久久国产精品人妻aⅴ院| 男插女下体视频免费在线播放| 亚洲专区中文字幕在线| av片东京热男人的天堂| 久久亚洲精品不卡| 男女那种视频在线观看| 国产精品精品国产色婷婷| 757午夜福利合集在线观看| 亚洲五月婷婷丁香| 欧美又色又爽又黄视频| 成人亚洲精品av一区二区| 岛国视频午夜一区免费看| 国产亚洲精品综合一区在线观看| 日本a在线网址| 亚洲国产高清在线一区二区三| 国内精品久久久久久久电影| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清在线视频| 最近视频中文字幕2019在线8| 欧美日韩精品网址| 男人的好看免费观看在线视频|