楊封科,何寶林,董博,王立明
不同降雨年型黑膜壟作對土壤水肥環(huán)境及馬鈴薯產(chǎn)量和效益的影響
楊封科1, 2*,何寶林1,董博1, 2,王立明1
1甘肅省農(nóng)業(yè)科學(xué)院旱地農(nóng)業(yè)研究所,蘭州 730070;2甘肅省旱作區(qū)水資源高效利用重點實驗室,蘭州 730070
【目的】探索降水年型與壟型互作對黑膜壟作土壤水肥環(huán)境及馬鈴薯產(chǎn)量和效益的影響,解析水肥互作促進作物增產(chǎn)、高效用水機制,為深挖覆膜壟作技術(shù)增產(chǎn)潛力提供理論依據(jù)。【方法】2016—2018年布置大田試驗,以當(dāng)?shù)赝茝V應(yīng)用的白膜覆蓋雙壟集雨耕作(WRF,壟高16 cm,壟寬60cm,溝寬40 cm)為對照,基于壟上微溝集雨耕作技術(shù),設(shè)置由黑膜覆蓋低壟(壟高16 cm,壟寬 60cm)、中壟(壟高24 cm,壟寬 60 cm)、高壟(壟高32 cm, 壟寬60 cm)+壟上微集水溝(寬20 cm,深10 cm)+壟間小集水溝(溝寬 40cm)組成的3種黑色地膜覆蓋壟上微溝集雨土壤水肥調(diào)控耕作處理(BLRF,BMRF 和BHRF),測定了馬鈴薯播種、出苗、現(xiàn)蕾、開花、結(jié)薯、成熟6個生育關(guān)鍵時期0—200 cm土層土壤含水量和研究期末0—30 cm土層土壤有機碳及氮磷鉀養(yǎng)分含量,計算土壤貯水量、水分利用效率,分析土壤水、肥與馬鈴薯產(chǎn)量的相關(guān)關(guān)系?!窘Y(jié)果】不同降水年型,黑、白地膜覆蓋壟作都顯著增加了馬鈴薯生長發(fā)育期對40—120 cm土層土壤水分的消耗。BHRF,BMRF和BLRF處理馬鈴薯6個生育關(guān)鍵時期0—200 cm土層土壤含水量和貯水量(SWS)都顯著高于WRF處理(<0.05)。較高的降水量以及黑膜覆蓋集蓄增加的土壤水對120—200 cm土層的土壤水具有明顯的補充作用。在干旱年(2016)和平水年(2017),BLRF和BMRF處理的集水和保水效應(yīng)較好,BHRF處理次之,都顯著優(yōu)于WRF處理;在豐水年(2018)三者無顯著差異,也都顯著優(yōu)于WRF處理。研究期末(2018)黑膜壟作0—30 cm土層的全氮全鉀(TN 和TK)及速效氮磷鉀(AN,AP和AK)含量均顯著高于白膜壟作(<0.05),分別增加了4.5%—5.6%、3.6%—5.9%、8.4%—18.4%、15.3%—22.3% 和7.1%—13.3%。歸因于顯著增加了大薯結(jié)薯個數(shù)和結(jié)薯重,黑膜壟作馬鈴薯產(chǎn)量、WUE、純收益和產(chǎn)投比均顯著高于白膜壟作,3年平均分別提高了16.9%—19.0%、15.5%—19.2%、23.3%—27.3% 和12.1%—18.2%。這4個效益參數(shù)在干旱年和平水年以BLRF和BMRF處理較好、BHRF處理次之,豐水年三者都優(yōu)于WRF處理,且無顯著差異。相關(guān)分析表明,3年馬鈴薯平均產(chǎn)量與研究期末平均土壤氮磷鉀養(yǎng)分含量呈顯著正相關(guān)關(guān)系,與作物平均耗水量(ET)呈顯著負(fù)相關(guān)關(guān)系(<0.05)。通徑分析表明,土壤AP、AK、AN含量,馬鈴薯生育期平均耗水量(ET)和平均降水量(GPR)解釋了99.4%的產(chǎn)量變化?!窘Y(jié)論】黑膜覆蓋壟溝與壟上微溝的疊加集水效應(yīng)顯著改善土壤水分狀況;水分條件的改善促進了馬鈴薯旺盛生長,使更多的根莖(莖葉、根等)類有機物歸還土壤,其腐解釋放的養(yǎng)分與施肥結(jié)合提高了土壤養(yǎng)分含量。良好的土壤水肥條件有效改善了土壤水肥互作關(guān)系,增加了作物水肥供應(yīng)而顯著提高馬鈴薯產(chǎn)量、WUE、純收入和產(chǎn)投比。BLRF和BMRF處理在干旱年和平水年表現(xiàn)較好,BLRF、BMRF和BHRF處理在豐水年表現(xiàn)較好,BLRF和BMRF處理在各種年型都有良好的表現(xiàn)。因此,黑膜覆蓋低、中壟壟上微溝集雨耕作(BLRF和BMRF)是繼白膜覆蓋雙壟集雨耕作(WRF)之后最適用于半干旱區(qū)的馬鈴薯高產(chǎn)高效栽培模式。
黑膜壟上微溝耕作;水肥平衡;互作效應(yīng);產(chǎn)量;WUE;經(jīng)濟效益
【研究意義】水肥俱缺是我國半干旱區(qū)農(nóng)業(yè)生產(chǎn)的兩大桎枯[1-4]。集蓄和高效利用自然降水與中低產(chǎn)田改良、地力培肥有機結(jié)合是旱地農(nóng)業(yè)發(fā)展的重大科學(xué)命題[5]。歸因于高效的水土保持作用,覆蓋栽培技術(shù)在歐洲、非洲、亞洲、中美洲、北美洲等地已廣泛應(yīng)用于旱地農(nóng)業(yè)生產(chǎn)[1,3,6]。其中,白色聚乙烯膜覆蓋壟溝集雨耕作技術(shù)(full film mulched ridge-furrow tillage)在中國半干旱地區(qū)作物可持續(xù)高產(chǎn)栽培中發(fā)揮了顯著地增產(chǎn)增效作用[7-8]。然而,有報道表明白色地膜覆蓋溝壟種植是以高耗水、高養(yǎng)分吸收量為代價,會導(dǎo)致作物后期生長階段因脫水、脫肥、早衰而減產(chǎn)[9-10],甚至絕收[11-14]。因而,選擇和應(yīng)用替代覆蓋材料,克服或消除白色地膜覆蓋的負(fù)面效應(yīng)是生產(chǎn)上亟待解決的關(guān)鍵問題?!厩叭搜芯窟M展】黑色地膜具有較低的透光性和熱輻射通透性,與白色地膜比,可降低土壤溫度和土壤養(yǎng)分的礦化速率,減少土壤水分無效蒸發(fā)和土壤養(yǎng)分礦化損失,水、肥保持效果好[15],其與溝壟種植有機結(jié)合初步顯現(xiàn)出比白色膜覆蓋較強的節(jié)水、節(jié)肥和增產(chǎn)效應(yīng)[16-17],可使玉米[6, 18]、馬鈴薯[19-23]獲得更高的產(chǎn)量。但也有相反和無差異的報道[6,14]。以往的研究多集中于該技術(shù)應(yīng)用于玉米、小麥等作物[1-3,6,9,24]的增產(chǎn)及提高水分利用效率等方面的研究,缺乏針對土壤水肥環(huán)境及其互作、促進作物可持續(xù)增產(chǎn)增效的量化研究,而相對于白膜覆蓋壟作優(yōu)劣性的研究也少見報道[25],對在多變虧水環(huán)境下如何進一步挖掘黑膜覆蓋壟作增產(chǎn)機理還缺乏深入研究。【本研究切入點】探索黑膜覆蓋與壟溝集雨耕作有機整合后集成并放大的調(diào)溫、集水、保水、保肥的綜合效應(yīng),及其促進水肥資源高效利用、馬鈴薯可持續(xù)增產(chǎn)增效的機制?!緮M解決的關(guān)鍵問題】本研究以3年大田定位試驗為基礎(chǔ),設(shè)置黑膜覆蓋低、中、高壟耕作水肥環(huán)境調(diào)控處理,探索黑膜覆蓋不同壟型壟作對土壤水肥環(huán)境及馬鈴薯產(chǎn)量和效益影響機制,解析其水肥互作、促進作物增產(chǎn)、高效用水機制,為進一步挖掘黑膜覆蓋壟作增產(chǎn)潛力提供理論依據(jù)。
試驗于2016—2018年在甘肅省農(nóng)業(yè)科學(xué)院莊浪試驗站南坪試驗基地(106°05′28″ E,35°10′30″ N)進行。該區(qū)海拔1 765 m,屬黃土丘陵溝壑地貌。多年平均氣溫7.9℃,無霜期145 d,≥0℃的積溫3 280.6℃,≥10℃的活動積溫2 640.4℃,年均降雨量510.4 mm,平均蒸發(fā)量為1 289.1 mm,平均干燥度1.55,是典型的干旱半干旱氣候類型。試區(qū)土壤為典型的黃綿土,土層深厚,土壤質(zhì)地較均勻,0—200 cm土層平均容重為 1.30g·cm-3。
試驗區(qū)2000—2018年平均降水量為423.9 mm,平均氣溫8.7℃。其中馬鈴薯生育期4月下旬至10月上旬平均降水量為397.9 mm,平均氣溫為16.4℃(圖1)。2016—2018年總降水和馬鈴薯生育期降水量分別為391.1、455.7、654.6 mm和341.3、405.0、560.8mm,分別代表干旱、平水和豐水年(圖2)。試驗起始試驗地0—200 cm土層,步長為20 cm的基礎(chǔ)土壤含水量為:15.1%(0—20 cm),15.5%(20—40 cm),14.9%(40—60 cm),14.0%(60—80 cm),13.7%(80—100 cm),13.5 %(100—120 cm),12.9%(120—140 cm),13.8%(140—160 cm),14.2%(160—180 cm)和14.6%(180—200 cm)。試驗地0—20 cm土層基礎(chǔ)理化性狀為:pH 8.5,土壤有機碳(soil organic carbon,SOC)9.33g·kg-1,全氮(total nitrogen,TN)0.86g·kg-1,全磷(total phosphorus,TP)0.70g·kg-1,全鉀(total potassium,TP)19.5g·kg-1,堿解氮(alkali-hydrolyzable nitrogen,AN)96.5 mg·kg-1,速效磷(available phosphorus,AP)15.0 mg·kg-1,速效鉀(available potassium,AK)176.6 mg·kg-1,容重(soil bulk density,BD )1.30 g·cm-3。
試驗共4個處理,即以壟上微溝集雨耕作技術(shù)為基礎(chǔ),設(shè)黑膜低壟壟上微溝(black plastic film mulched low ridge-furrow tillage with micro-rainwater catchment ditches on ridges,BLRF)、黑膜中壟壟上微溝(black plastic film mulched middle ridge-furrow tillage withmicro-rainwater catchment ditches on ridges,BMRF)和黑膜高壟壟上微溝(black plastic film mulched high ridge-furrow tillage with micro-rainwater catchment ditches on ridges,BHRF)3種壟型土壤水肥調(diào)控耕作處理(簡稱黑膜壟作),以當(dāng)?shù)卮竺娣e推廣的白膜雙壟集雨耕作(local custom white plastic film mulched ridge-furrow tillage,WRF)為對照。
橫坐標(biāo)中數(shù)字表示月份,E、M、L 分別表示上旬、中旬和下旬
The number in x-axis represents the month, with E, M and L represent the early, middle and late ten-days of the month, respectively
圖1 馬鈴薯生育期多年(2000—2018)平均降水量和氣溫
Fig.1 Average precipitation and air temperature at potato growth season during 2000-2018
BLRF,BMRF和BHRF模式下,每年3月上旬土壤解凍始,于土壤旋耕后,采用圖3-e所示的機械進行起壟作業(yè),用厚度為0.013 mm,120 cm×80 cm的黑色地膜全地面覆蓋,接縫在小壟溝中間。然后在小壟溝內(nèi)每隔33 cm打一個直徑0.5 cm的滲水孔。馬鈴薯播于大壟微集水溝側(cè)面上(圖3)。
試驗以隴薯7號為材料,各處理馬鈴薯種植密度、施肥量相同。采用寬(60 cm)窄(40 cm)行播種,穴距33 cm,密度50 000穴/hm2。施農(nóng)家肥4.5 t·hm-2,施純N 180 kg·hm-2、P2O590 kg·hm-2、K2O 90 kg·hm-2。氮肥為尿素(含N 46%),磷肥為普鈣(含P 14%),鉀肥為硫酸鉀(含K2O33%)。農(nóng)家肥、磷鉀肥一次性底施。氮肥50%做基肥,50%于馬鈴薯現(xiàn)蕾期用簡易施肥器在兩株之間打孔施入,深度15 cm。采用隨機區(qū)組設(shè)計排列,重復(fù)3次,小區(qū)面積35 m2。試驗于4月中下旬采用簡易馬鈴薯穴播器播種,播深15 cm,當(dāng)年9月底或10月初收獲。
1.3.1 土壤水分測定 于馬鈴薯播種期、出苗期、現(xiàn)蕾期、開花期、結(jié)薯期和成熟期,分別在馬鈴薯種植壟上和小壟溝內(nèi),按步長20 cm用直徑5.5 cm的土鉆取樣,用烘干法測定0—200 cm土壤水分。取其平均計算土壤含水量、土壤貯水量、作物耗水量、水分利用效率等。
土壤含水量(ω)=(土壤鮮質(zhì)量-土壤干質(zhì)量)/土壤干質(zhì)量×100%;
土壤貯水量(W)=h×ρ×ω×10。
式中,W為土壤貯水量(mm);h為土層深度(cm);
ρ為土壤容重(g·cm-3),本試驗各土層ρ平均為1.30 g·cm-3,ω為土壤含水量。
農(nóng)田耗水量(ET)=+ P;
W1-W2。
式中,ET為馬鈴薯生育期農(nóng)田總耗水量(mm),為生育期土壤貯水量變化量(mm);P為作物生育期有效降雨量(mm);W1、W2分別為播前和收獲時的土壤貯水量(mm)。
水分利用效率(WUE)=Y/ET。
式中,WUE為水分利用效率(kg·hm-2·mm-1),Y為塊莖產(chǎn)量(kg·hm-2),ET為馬鈴薯生育期總耗水量(mm)。
1.3.2 土壤養(yǎng)分含量測定 2016年馬鈴薯播種前和2018年研究期末,按“S”形取樣法測定0—30 cm土層的土壤有機碳(SOC)和氮磷鉀(NPK)養(yǎng)分含量。播前整個地塊取20個樣點,研究期末每小區(qū)取5個樣點,分別取馬鈴薯種植行和小壟溝表層30 cm土樣,然后分別混合成一個1 kg土樣,測定土壤養(yǎng)分含量,分別代表基礎(chǔ)肥力值和肥力變化值。土壤有機質(zhì)用重絡(luò)酸鉀—硫酸氧化法測定,堿解氮用堿解擴散法測定,速效磷用碳酸氫鈉浸提—鉬銻抗比色法測定(Olsen法),速效鉀用中性乙酸氨浸提、原子吸收光度計法測定。
1.3.3 收獲與計產(chǎn) 每年試驗收獲前,每個小區(qū)隨機取20株計算株高、結(jié)薯數(shù)量和結(jié)薯鮮重,并統(tǒng)計大薯(>150 g)、中薯(75—150 g)、小薯(<75g)個數(shù)及重量。按小區(qū)單獨收獲計鮮重,單位面積鮮薯產(chǎn)量(kg·hm-2)=小區(qū)鮮薯產(chǎn)量(kg)/小區(qū)面積(m2)×10000。
1.3.4 經(jīng)濟效益計算
總收入(元/hm2)=塊莖產(chǎn)量×市場價格;
產(chǎn)量純收益(元/hm2)=總收入-總投入;
產(chǎn)投比=總收入/總投入。
式中,總投入包括肥料、種子、農(nóng)藥、地膜、人工和機械作業(yè)投入。
采用Microsoft Excel 2013對數(shù)據(jù)進行處理,用SPSS19(IBM Institute Inc.,USA)統(tǒng)計分析軟件對數(shù)據(jù)進行T檢驗、單因素方差分析(ANOVA)、相關(guān)分析、通徑分析和差異顯著性檢驗(LSD法,a =0.05)。用SigmaPlot 14.0(Systat Software Inc.)作圖。
黑、白地膜覆蓋壟作對0—200 cm土層土壤含水量的影響趨勢相同。不論覆蓋材質(zhì)和壟型,地膜覆蓋壟作0—200 cm土層土壤含水量都隨年降水量的增加而增加。不論降水年型、覆蓋材料和壟型,覆蓋壟作土壤含水量在0—40 cm土層呈增加趨勢,40—60 cm土層呈急劇下降趨勢,60—100 cm土層出現(xiàn)低值槽、100—140 cm土層(干旱年和平水年)和100—160 cm土層(豐水年)呈緩慢增加趨勢,160 cm以后則呈波動緩增下降趨勢,總體上都保持了季節(jié)末土壤水分的平衡或略有增加(圖4)。
黑、白膜覆蓋壟作對0—200 cm土層土壤含水量的影響不同。不論降水年型與壟型,黑膜覆蓋壟作0—200 cm土層土壤含水量均高于白膜覆蓋壟作。T檢驗表明,在不同降水年型,黑膜高、中、低壟耕作(BHRF,BMRF和BLRF)都比白膜雙壟耕作(WRF)顯著提高0—200 cm各土層土壤含水量(<0.05),三者之間無顯著差異。從圖4可以看出,黑白膜壟作對0—200 cm各土層土壤含水量的影響,干旱年和豐水年比平水年劇烈。馬鈴薯種植增加了對40—120 cm土層土壤水分的消耗。但與白膜覆蓋壟作相比,黑膜覆蓋壟作對120 cm以上深層的土壤水具有明顯補充作用。這種作用在平水年和豐水年更強,以黑膜中、高壟較好。這對于120—200 cm土層土壤水分在作物種植季節(jié)末的恢復(fù)與提高具有積極作用,表明覆蓋壟作是旱地集水保墑的有效耕作措施之一。
不同降水年型,黑膜覆蓋壟作對土壤含水量的影響表現(xiàn)不同。在干旱年一致表現(xiàn)為BLRF和 BMRF處理優(yōu)于BHRF處理;在平水年播種至開花期表現(xiàn)為BLRF 和BMRF處理優(yōu)于BHRF處理,開花期以后三者間無顯著差異;在豐水年開花期前表現(xiàn)較復(fù)雜,開花期三者間無顯著差異,但全生育期均以BHRF處理較好,BMRF和BLRF處理次之(圖5)??傮w上,干旱年和平水年以BLRF和BMRF處理集水效果較好,豐水年三者集水效果都好且無顯著差異。從圖5可以看出,不論降水年型和耕作方式,現(xiàn)蕾至結(jié)薯期都是土壤含水量的低值峰期(即馬鈴薯需水關(guān)鍵期)。盡管馬鈴薯生長發(fā)育在干旱年和平水年比豐水年明顯增加了對馬鈴薯需水關(guān)鍵期0—200 cm土層土壤水的耗散,但黑膜覆蓋各壟作模式都比白膜壟作顯著提高了全生育期土壤供水能力。
不同材質(zhì)覆蓋壟作馬鈴薯全生育期0—200 cm土層土壤貯水量也呈現(xiàn)出與土壤含水量相似的變化趨勢,主要受降雨年型和壟型的共同影響,總體上都隨降雨量的增加而增加,黑膜覆蓋壟作大于白膜覆蓋壟作,干旱年和豐水年變化較為劇烈,平水年較溫和。黑膜覆蓋壟作較白膜覆蓋壟作顯著提高了馬鈴薯播種、出苗、現(xiàn)蕾、開花、結(jié)薯、成熟6個生育關(guān)鍵期(即全生育期)0—200 cm土層土壤貯水量(<0.05),但在不同降水年型馬鈴薯生育關(guān)鍵期表現(xiàn)不同。干旱年BLRF和BMRF處理比BHRF處理更能有效增加馬鈴薯生長發(fā)育需水關(guān)鍵期(現(xiàn)蕾至結(jié)薯期)的土壤貯水量;平水年馬鈴薯6個生育關(guān)鍵時期土壤貯水量都高于干旱年,除播種、出苗和成熟期外,BLRF、BMRF和BHRF處理都較為均衡地提高了土壤貯水量;豐水年馬鈴薯6個生育關(guān)鍵時期土壤貯水量波動較大,播種至現(xiàn)蕾呈下降趨勢,之后至成熟期呈增加趨勢,BHRF和BMRF處理較BLRF處理都顯著增加了各生育關(guān)鍵時期土壤貯水量,尤其顯著提高了結(jié)薯至成熟期的土壤貯水量(圖6)。
黑膜壟作明顯改善了土壤養(yǎng)分狀況。研究期末2018年測定的土壤養(yǎng)分指標(biāo),除土壤有機碳(SOC)和全磷(TP)含量增加不顯著外,土壤全氮、全鉀和速效氮磷鉀(TN,TK,AN,AP,AK)含量均顯著高于白膜壟作(<0.05),分別增加了0.04—0.05 g·kg-1、0.8—1.3 g·kg-1、8.5—18.7 mg·kg-1,4.2—6.1 mg·kg-1和16.7—31.4 mg·kg-1,相當(dāng)于提高了4.5%—5.6%、3.6%—5.9%、8.4%—18.4%、15.3%—22.3%和7.1%—13.3%(表1)。與試驗地基礎(chǔ)養(yǎng)分含量比,黑、白覆蓋壟作都明顯地提高了土壤養(yǎng)分的含量,也表現(xiàn)為黑膜壟作優(yōu)于白膜壟作。
與WRF處理相比,黑膜壟作顯著增加了馬鈴薯大、中薯(>150 g和75—150 g)結(jié)薯個數(shù)和大薯單薯重,因而顯著提高了產(chǎn)量(<0.05)。其中,對大薯結(jié)薯個數(shù)及其重量的影響最大,對中薯相關(guān)性狀的影響次之。統(tǒng)計分析表明,與WRF處理比,黑膜壟作大、中薯3年平均分別增加了0.1—0.3個和0.1—0.2個,增加了5.3%—15.8%、10.0%—20.0%;大、中薯重分別增加了0.12—0.16 kg和0.1—0.2 kg,增加了25.0%—33.3%和4.5%—9.0%(表2)。
SW:播種期;SD:出苗期; BD:現(xiàn)蕾期;FL:開花期;TB:結(jié)薯期;MT成熟期。同列不同字母表示差異顯著(P<0.05)。下同
表1 黑膜壟作馬鈴薯0—30 cm土層土壤養(yǎng)分含量(2018)
同列不同字母表示差異顯著(<0.05)。下同
Different letters in the same column mean significant difference at 0.05 level.The same as below
黑膜壟作馬鈴薯3年平均單產(chǎn)較白膜壟作提高了6 504.7.4—7 310.9 kg·hm-2,增產(chǎn)16.9%—19.0%;耗水量(ET)減少了2.5—4.3 mm;水分利用效率(WUE)提高了15.1—18.7 kg·mm-1·hm-2,增加了15.5%—19.2%(表3)。但黑膜壟作的增產(chǎn)增效作用因降雨年型而不同。馬鈴薯產(chǎn)量、WUE均隨降雨量的增加而增加,但相對增長率卻是豐水年(2018)>干旱年(2016)>平水年(2017)。對應(yīng)的ET則表現(xiàn)干旱年和豐水年降低,平水年略微增加,可能與降水年際間變化有關(guān)。與WRF處理相比,不同降水年型下,BHRF,BMRF和BLRF處理的產(chǎn)量和WUE都顯著增加(<0.05),但三者之間無顯著差異。對提高產(chǎn)量和WUE的相對增效效率而言,干旱年和平水年BLRF和BMRF處理比較高效,BHRF處理次之,都優(yōu)于WRF處理;豐水年三者都高效并顯著優(yōu)于WRF處理。同時,單位面積產(chǎn)出效益和產(chǎn)投比也表現(xiàn)出與產(chǎn)量和WUE一樣的變化趨勢。黑膜壟作單位面積收益和產(chǎn)投比3年平均分別達(dá)到36 290.3—37 477.0元/hm2和3.7—3.9,比WRF處理提高了6 855.2—8 042.0元/hm2和0.4—0.6,增加了23.3%—27.3%、12.1%—18.2%。
表2 黑膜壟作對馬鈴薯結(jié)薯特性的影響(2016—2018)
總體上,不同材質(zhì)覆蓋壟作馬鈴薯單產(chǎn)、WUE、純收益和產(chǎn)投比都隨降水量增加而增加。干旱年和平水年一致表現(xiàn)為BLRF>BMRF>BHRF>W(wǎng)RF,豐水年BLRF、BMRF和BHRF三者之間無顯著差異。相對增量表現(xiàn)為干旱年和平水年BLRF和BMRF處理高度接近,都高于BHRF處理,豐水年三者之間無顯著差異,總趨勢是豐水年>干旱年≈平水年(表3)。
利用研究期末測定的土壤養(yǎng)分指標(biāo)值,3年馬鈴薯平均耗水量、平均生育期降水量和平均產(chǎn)量進行相關(guān)分析表明,馬鈴薯產(chǎn)量與TN,TP,TK,AN,AP和AK呈顯著正相關(guān)關(guān)系(<0.01)。2分別為0.623**、0.723**、0.748**、0.807**、0.828**和0.804**;與ET呈顯著負(fù)相關(guān)關(guān)系,2為-0.606*(<0.05)。通徑分析表明,AP、ET、馬鈴薯生育期降水量(GPR)、AK和AN解釋了99.4%的產(chǎn)量變化(表4),提高土壤有效養(yǎng)分含量,特別是磷素含量為主的水肥高效管理是馬鈴薯增產(chǎn)的主要措施。
表3 黑膜壟作對馬鈴薯產(chǎn)量、水分利用效率、耗水量、效益和產(chǎn)投比的影響
表4 馬鈴薯產(chǎn)量與土壤有效磷、鉀、氮(AP,AK,AN)、蒸散值(ET)和生育期降水量(GPR)之間的相關(guān)關(guān)系
2=0.994,=0.0000,模型顯著性;r,各參數(shù)與產(chǎn)量的相關(guān)系數(shù);AP(x1),速效磷;ET(x2),馬鈴薯蒸散值;PGR(x3),馬鈴薯生育期降水量;AK(x4),速效鉀;AN(x5),速效氮。*,**分別表示在a=0.5和a=0.01水平上相關(guān)性顯著
2=0.994,=0.0000, model significance;, correlation coefficient (r) of each selected parameters to potato yield; AP (x1), available phosphorus; ET(x2), evapotranspiration; PGR (x3), precipitation in potato growing season; AK (x4), available potassium; AN (x5), available nitrogen.*,**mean significance at a=0.05 and a=0.001 levels, respectively
黑膜壟作(BHRF,BMRF和BLRF)雖然增加了馬鈴薯生長發(fā)育對40—120 cm土層土壤水的耗散,但馬鈴薯全生育期0—200 cm土層土壤含水量和貯水量均高于白膜壟作(WRF)(圖3),且土壤120—200 cm土層土壤含水量不同降雨年型都呈增長趨勢,并隨著降雨增加而增加,表明黑膜壟作集蓄的雨水有效地補充了作物耗散的土壤水分,保持了土壤水分的平衡,因而不會出現(xiàn)如文獻(xiàn)[9-10]所述的脫水現(xiàn)象。同時,黑膜壟作集成了地膜覆蓋與溝壟耕作的優(yōu)點,一方面覆膜大小壟及壟上微溝增加集雨面積而有效提高了水分的入滲率,形成了集雨的疊加效益[26-30];另一方面黑膜降、調(diào)溫作用有效降低了白色地膜覆蓋導(dǎo)致的土壤升溫快、持久,造成的土壤水分過度無效蒸發(fā)損失,提高了降水保蓄率,增加土壤貯水量[31]。因而,黑膜壟作比白膜壟作具有較強的土壤水補益作用,特別是有效提高了季節(jié)末土壤120—200 cm土層土壤水分含量(圖4),這對于保蓄土壤水分為年際間均衡利用具有重要意義。
覆蓋材質(zhì)、壟型和降水年型很大程度上決定著土壤水的保蓄效率。本研究表明,黑膜覆蓋壟上微溝耕作集水效率優(yōu)于白膜覆蓋雙壟耕作,干旱年和平水年BLRF和BMRF處理優(yōu)于BHRF處理,豐水年BHRF、BMRF和BLRF處理都具有較好的集水效率且無顯著差異(圖5—6)。可能的原因有:一是降雨的多寡與季節(jié)分布決定了可集雨量和集蓄的雨量,是首要因子(圖2);二是黑色地膜較好的調(diào)溫性能,避免了白膜覆蓋維持長久高溫導(dǎo)致的土壤水分過度蒸發(fā)損失[15];三是不同壟高所形成的集水面大小及其集水效率差異所致[32-34]。
黑膜覆蓋壟作明顯提高了土壤養(yǎng)分含量和有效性。本研究結(jié)果表明,與土壤基礎(chǔ)養(yǎng)分含量相比,黑、白膜壟作都有效地提高了測定的土壤養(yǎng)分含量,且黑膜壟作要優(yōu)于白膜壟作(表1)。土壤養(yǎng)分含量的增加主要歸因于:一是黑膜壟作由于較好地改善了土壤水環(huán)境,促進馬鈴薯旺盛生長,增加了歸還土壤的有機質(zhì)(如散落莖葉、根莖和根系分泌物)(表3),增加的有機物腐解釋放的養(yǎng)分抵消了土壤養(yǎng)分因礦化和作物吸收利用造成的損失,而增加了土壤有機碳及氮磷鉀養(yǎng)分的含量[6,35-37];二是土壤水環(huán)境改善加速養(yǎng)分礦化,增加了土壤有效養(yǎng)分含量[38];三是與馬鈴薯喜鉀及養(yǎng)分吸收特性密切相關(guān)[38];四是覆膜起壟增加并改變了土壤水分梯度,水分向上層移動驅(qū)動養(yǎng)分表層聚集,起壟本身也促使養(yǎng)分表層聚集,即層化現(xiàn)象[39]。另外,田間取樣深度和測定誤差也會造成土壤養(yǎng)分含量的差異。
高效利用土壤水肥條件,建立水肥之間正向互作機制是旱地作物獲得高產(chǎn)的主要途徑[8]。提高土壤肥力,改善土壤結(jié)構(gòu)和通透性,將提高水分滲透能力、土壤蓄水能力、土壤持墑能力和土壤供水能力,增加了作物水供應(yīng)[8,36,39,41];水環(huán)境的改善與肥力因素互作又提高了土壤養(yǎng)分有效性,增加了作物土壤養(yǎng)分吸收和利用效率[6,37,40],這是旱地作物高產(chǎn)高效的基礎(chǔ)。本研究進一步強化佐證了這一理論。覆膜壟作減少了土壤蒸發(fā),提高了土壤水分有效性[6,41-42];促進了作物前期旺盛生長[24]和后期補償生長[38],產(chǎn)生了明顯的水肥互作疊加效應(yīng),顯著提高作物產(chǎn)量和水分利用效率的作用[25, 43- 44],增產(chǎn)作用在干旱年份更突出[30, 45-46],這也是本研究馬鈴薯均衡增產(chǎn)的主要原因。本研究發(fā)現(xiàn),不同降水年型,黑膜壟作都因顯著地提高了馬鈴薯大薯結(jié)薯個數(shù)及其重量,進而顯著提高馬鈴薯產(chǎn)量和水分利用效率(表2)。這主要歸因于覆蓋溝壟耕作改善了水肥條件,形成了水肥互作正效應(yīng),降低了土壤蒸發(fā),提高了作物蒸騰,增加了單位面積產(chǎn)出和水分利用效率(表3)。
馬鈴薯黑覆蓋壟作顯著提高了0—200 cm土層土壤含水量和貯水量,增加的土壤水分對120—200 cm土層土壤深層水具有明顯的補充作用,雨季集蓄的水分旱季用,當(dāng)年集蓄的水分來年用,減輕或解決了當(dāng)季季節(jié)干旱和年際連旱問題。同時,黑膜壟作顯著提高了0—30 cm耕層土壤全氮、全鉀和速效氮磷鉀養(yǎng)分含量,有效提高或保持了土壤肥力。
黑膜壟作集成并放大了地膜覆蓋、壟溝耕作的集保水、保肥效應(yīng),顯著增加了馬鈴薯大、中薯結(jié)薯個數(shù)和結(jié)薯重,進而顯著提高馬鈴薯產(chǎn)量、水分利用效率、單位面積收益和產(chǎn)投比。盡管黑膜低、中、高壟耕作增產(chǎn)增效效益不同年型表現(xiàn)略有差異,總體上認(rèn)為黑膜中、低壟(BMRF和BLRF)耕作是干旱區(qū)馬鈴薯高產(chǎn)高效栽培的普遍適用土壤水肥關(guān)系高效調(diào)節(jié)耕作模式。
[1] ZHANG P, WEI T, CAI T, ALI S, HAN Q F, REN X L, JIA Z K.Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China.Frontiers in Plant Science, 2017, 8: 512.
[2] ZHANG Y L, WANG F X, SHOCK C C, YANG K J, KANG S Z, QIN J T, LI S E.In?uence of di?erent plastic ?lm mulches and wetted soil percentages on potato grown under drip irrigation.Agricultural Water Management, 2017, 180: 160-171.
[3] REN X L, ZHANG P, CHEN X L, GUO J J, JIA Z K.E?ect of di?erent mulches under rainfall concentration system on corn production in the semi-arid areas of the Loess Plateau.Scientific Reports, 2016, 6(1): 1-10.
[4] 姚玉璧, 張秀云, 王潤元, 鄧振墉, 盧漢威.西北溫涼半濕潤區(qū)氣候變化對馬鈴薯生長發(fā)育的影響--以甘肅眠縣為例.生態(tài)學(xué)報, 2010, 30(1): 100-108.
YAO Y B, ZHANG X Y, WANG R Y, DENG Z Y, LU H W.Impacts of climatic change on potato growth in the semi-humid region over extra-tropical and cool Northwest of China: A case study in Minxian county of Gansu province.Acta Ecologica Sinica, 2010, 30(1): 100-108.(in Chinese)
[5] 韓凡香, 常磊, 柴守璽, 楊長剛, 程宏波, 楊德龍, 李輝, 李博文, 李守蕾, 宋亞麗, 蘭雪梅.半干旱雨養(yǎng)區(qū)秸稈帶狀覆蓋種植對土壤水分及馬鈴薯產(chǎn)量的影響.中國生態(tài)農(nóng)業(yè)學(xué)報, 2016, 24(7): 874-882.
HAN F X, CHANG L, CHAI S X, YANG C G, CHENG H B, YANG D L, LI H, LI B W, LI S L, SONG Y L, LAN X M.Effect of straw strip covering on ridges on soil water content and potato yield under rain-fed semiarid conditions.Chinese Journal of Eco-Agriculture, 2016, 24(7): 874-882.(in Chinese)
[6] MO F, WANG J Y, ZHOU H, LUO C L, ZHANG X F, LI X Y, LI F M, XIONG L B, Kavagi L, Nguluu S N, XIONG Y C.Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (L.): An adaptive management in east African Plateau.Agricultural and Forest Meteorology, 2017, 236: 100-112.
[7] LI X Y, GONG J D, GAO Q Z, LI F R.Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions.Agricultural Water Management, 2001, 50(3): 173-183.
[8] GANY T, SIDDIQUE K H M, TURNER N C, LI X G, NIU J Y, YANG C, LIU L P, CHAI Q.Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments.Advances in Agronomy, 2013, 118: 429-476.
[9] 李富翠, 趙護兵, 王朝輝, 李小涵, 劉慧, 李可懿, 周玲.旱地夏閑期秸稈覆蓋和種植綠肥對冬小麥水分利用及養(yǎng)分吸收的影響.干旱地區(qū)農(nóng)業(yè)研究, 2012, 30(1): 119-125.
LI F C, ZHAO H B, WANG Z H, LI X H, LIU H, LI K Y, ZHOU L.Effects of straw mulching and planting green manure on water use and nutrients uptake of winter wheat on dryland.Agricultural Research in the Arid Areas, 2012, 30(1):119-125.(in Chinese)
[10] LIU X H, REN Y J, GAO C, YAN Z X, LI Q Q.Compensation effect of winter wheat grain yield reduction under straw mulching in wide-precision planting in the North China Plain.Scientific Reports, 2017, 7(1): 1-9.
[11] BU L D, ZHU L, LIU J L, LUO S S, CHEN X P, LI S Q.Source–sink capacity responsible for higher maize yield with removal of plastic ?lm.Agronomy Journal, 2013, 105(3): 591-598.
[12] STEINMETZ Z, WOLLMANN C, SCHAEFER M, BUCHMANN C, DAVID J, TR?GER J, MU?OZ K, FR?R O, SCHAUMANN G E.Plastic mulching in agriculture.Trading short-term agronomic bene?ts for long-term soil degradation? Science of the Total Environment, 2016, 550: 690-705.
[13] LI F M, GUO A H, WEI H.E?ects of clear plastic ?lm mulch on yield of spring wheat.Field Crop Research, 1999, 63(1): 79-86.
[14] ZAONGO C G L, WENDT C W, LASCANO R J, JUO A S R.Interactions of water, mulch and nitrogen on sorghum in Niger.Plant and Soil, 1997, 197(1): 119-126.
[15] MORENO M M, MORENO A.E?ect of di?erent biodegradable and polyethylene mulches on soil properties and production in a tomato crop.Scientia Horticulture, 2008, 116(3): 256-263.
[16] QIN X L, LI Y Z, HAN Y L, HU Y C, LI Y J, WEN X X, LIAO Y C, SIDDIQUE H M K.Ridge-furrow mulching with black plastic ?lm improves maize yield more than white plastic ?lm in dry areas with adequate accumulated temperature.Agricultural and Forest Meteorology, 2018, 262: 206-214.
[17] 王紅麗, 張緒成, 于顯楓, 馬一凡, 侯慧芝.黑色地膜覆蓋的土壤水熱效應(yīng)及其對馬鈴薯產(chǎn)量的影響.生態(tài)學(xué)報, 2016, 36(16): 5215-5226.
WANG H L, ZHANG X C, YU X F, MA Y F, HOU H Z.Effects of using black plastic film as mulch on soil temperature and moisture and potato yield.Acta Ecologica Sinica, 2016, 36(16): 5215-5226.(in Chinese)
[18] ELDOMA I M, LI M, ZHANG F, LI F M.Alternate or equal ridge–furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China? Field Crop Research, 2016, 191:131-138.
[19] 范士杰, 王蒂, 張俊蓮, 白江平, 宋吉軒, 馬智黠.不同栽培方式對馬鈴薯土壤水分狀況和產(chǎn)量的影響.草業(yè)學(xué)報, 2012, 21(2): 271-279.
FAN S J, WANG D, ZHANG J L, BAI J P, SUN J X, MA Z X.Effects of tillage strategies on the topsoil water content and the yield of potatoActa Prataculturae Sinica, 2012, 21(2): 271-279.(in Chinese)
[20] 秦舒浩, 張俊蓮, 王蒂, 蒲玉林, 杜全仲.覆膜與溝壟種植模式對旱作馬鈴薯產(chǎn)量形成及水分運移的影響.應(yīng)用生態(tài)學(xué)報, 2011, 22(2): 389-394.
QIN S H, ZHANG J L, WANG D, PU Y L, DU Q Z.Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato.Chinese Journal of Applied Ecology, 2011, 22(2): 389-394.(in Chinese)
[21] 高世銘, 張緒成, 王亞宏.旱地不同覆蓋溝壟種植方式對馬鈴薯土壤水分和產(chǎn)量的影響.水土保持學(xué)報, 2010, 24(1): 249-251.
GAO S M, ZHANG X C, WANG Y H.Influence of different mulching and furrow-ridge planting methods on soil moisture and yield of potato on dryland.Journal of Soil and Water Conservation, 2010, 24(1): 249-251.(in Chinese)
[22] CHANDRA S, SINGH R D, BHATNAGAR V K, BISHT J K.Effect of mulch and irrigation on tuber size, canopy temperature, water use and yield of potato ().Indian Journal of Agronomy, 2002, 47(3): 443-448.
[23] 侯慧芝, 張緒成, 湯瑛芳, 王紅麗, 于顯楓, 方彥杰, 馬一凡.半干旱區(qū)全膜覆蓋壟溝種植馬鈴薯/蠶豆間作的產(chǎn)量和水分效應(yīng).草業(yè)學(xué)報, 2016, 25(6): 71-80.
HOU H Z, ZHANG X C, TANG Y F, WANG H L, YU X F, FANG Y J, MA Y F.Effects of potato fababean intercropping on crop productivity and soil water under a plastic mulch ridge-furrow planting system in a semiarid area.Acta Pratacultura Sinica, 2016, 25(6): 71-80.(in Chinese)
[24] 李鳳民, 劉小蘭, 王俊.底墑與磷肥互作對春小麥產(chǎn)量形成的影響.生態(tài)學(xué)報, 2001, 21(11): 1941-1946.
LI F M, LIU X L, WANG J.Effects of pre-sowing irrigation and P fertilization on spring wheat yield information.Acta Ecologica Sinica, 2001, 21(11): 1941-1946.(in Chinese)
[25] 謝軍紅, 李玲玲, 張仁陟, 柴強.覆膜、溝壟作對旱作農(nóng)田玉米產(chǎn)量和水分利用的疊加效應(yīng).作物學(xué)報, 2018, 44(2): 268-277.
XIE J H, LI L L, ZHANG R Z, CHAI Q.Superimposition effect of film-mulching and furrow ridging culture on maize grain yield and WUE in Loess Plateau.Acta Agronomica Sinica, 2018, 44(2): 268-277.(in Chinese)
[26] CHEN Y L, LIU T, TIAN X H, WANG X F, LI M, WANG S X, WANG Z H.Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau.Field Crops Research, 2015, 172: 53-58.
[27] 王琦, 張恩和, 李鳳民, 王曉凌.半干旱地區(qū)溝壟微型集雨種植馬鈴薯最優(yōu)溝壟比確定.農(nóng)業(yè)工程學(xué)報, 2005, 21(2): 38-41.
WANG Q, ZHANG E H, LI F M, WANG X L.Optimum ratio of ridge to furrow for planting potato in micro-water harvesting system in semiarid areas.Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(2): 38-41.(in Chinese)
[28] 王曉凌, 陳明燦, 易現(xiàn)峰, 付國占.壟溝覆膜集雨系統(tǒng)壟寬和密度效應(yīng)對玉米產(chǎn)量的影響.農(nóng)業(yè)工程學(xué)報, 2009, 25(8): 40-47.
WANG X L, CHEN M C, YI X F, FU G Z.Effects of ridge width and planting density on corn yields in rainwater-harvesting system with plastic film mulching on ridge.Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 40-47.(in Chinese)
[29] ZHOU L M, LI F M, JIN S L, SUN Y J.How two ridges and the furrow mulched with plastic film affects soil water temperature and yield of maize on the semiarid Loess Plateau of China.Field Crops Research, 2009, 113(1): 41-47.
[30] 廖允成, 溫曉霞, 韓思明.黃土高原旱地小麥覆蓋保水技術(shù)效果研究.中國農(nóng)業(yè)科學(xué), 2003, 36(5): 548-552.
LIAO Y C, WEN X X, HAN S M.Effect of mulching of water conservation for dry land winter wheat in the loess tableland.Scientia Agricultura Sinica, 2003, 36(5): 548-552.(in Chinese)
[31] QIN S H, ZHANG J L, DAI H L, WANG D, LI D M.Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area.Agricultural Water Management, 2014, 131: 87-94.
[32] HU Q, PAN F F, PAN X B, ZHANG D, YANG N, PAN Z H, ZHAO P Y, TUO D B.Effects of a ridge-furrow micro-field rainwater- harvesting system on potato yield in a semi-arid region.Field Crops Research, 2014, 166: 92-101.
[33] ZHAO H, WANG R Y, MA B L, XIONG Y C, QIANG S C, WANG C L, LIU C A, LI F M.Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem.Field Crops Research, 2014,161: 137-148.
[34] TIAN Y, SU D R, LI F M, LI X L.Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas.Field Crops Research, 2003, 84(3): 385-391.
[35] ZHANG X D, KAMRAN M, LI F J, XUE X K, JIA Z K, HAN Q F.Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China.Agricultural Water Management, 2020, 227: 105852.
[36] WANG X B, DAI K, ZHANG D C, ZHANG X M, WANG Y, ZHAO Q S, CAI D X, HOOGMOED W B, OENEMA O.Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China.Field Crop Research, 2011, 120(1): 47-57.
[37] QIN S J, JIAO K B, LYU D, SHI L, LIU L Z.Effects of maize residue and cellulose-decomposing bacteria inocula on soil microbial community, functional diversity, organic fractions, and growth of Malus hupehensis Rehd.Archives of Agronomy and Soil Science, 2015, 61(2): 173-184.
[38] QIN S H, CAO L, ZHANG J L, WANG D, WANG D.Soil nutrient availability and microbial properties of a potato field under ridge-furrow and plastic mulch.Arid Land Research and Management, 2016, 30(2): 181-192
[39] OBOUR A K, MIKHA M M, HOLMAN J D, STAHLMAN P W.Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization.Geoderma, 2017, 308: 46-53.
[40] FAN T, STEWART B A, WANG Y, LUO J J, ZHOU G Y.Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China.Agriculture, Ecosystems and Environment, 2005, 106(4): 313-329.
[41] MBAVA N, MUTEMA M, ZENGENI R, SHIMELIS H, CHAPLOT V.Factor affecting crop water use efficiency: A worldwide meta-analysis.Agricultural Water Management2020, 228: 105878.
[42] 王紅麗, 張緒成, 宋尚有.半干旱區(qū)旱地不同覆蓋種植方式玉米田的土壤水分和產(chǎn)量效應(yīng).植物生態(tài)學(xué)報, 2011, 35(8): 825-833.
WANG H L, ZHANG X C, SONG S Y.Effects of mulching methods on soil water dynamics and corn yield of rain-fed cropland in the semiarid area of China.Chinese Journal of Plant Ecology, 2011, 35(8): 825-833.(in Chinese)
[43] 李鋒瑞, 趙松嶺, 李鳳民, 高崇岳.隴東黃土旱塬作物組合系統(tǒng)農(nóng)田耗水規(guī)律研究.生態(tài)學(xué)報, 1995, 15(4): 420-426.
LI F R, ZHAO S L, LI F M, GAO C Y.Study on the water consumption law of complex crop system in the tablelands of the eastern Gansu loess plateau.Acta Ecologica Sinica, 1995, 15(4): 420-426.(in Chinese)
[44] WEN X X, ZHANG D Q, LIAO Y C, JIA Z K, JI S Q.Effects of water-collecting and -retaining techniques on photosynthetic rates, yield, and water use efficiency of millet grown in a semiarid region.Journal Integrative Agriculture, 2012,11(7):1119-1128.
[45] QIN X L, LI Y Z, HAN Y L, HU Y C, LI Y J, WEN X X, LIAO Y C, SIDDIQUE K H M.Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature.Agricultural and Forest Meteorology, 2018, 262: 206-214.
[46] ZHANG F, LI M, ZHANG W J, LI F M, QIN J G.Ridge–furrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system.Agricultural and Forest Meteorology, 2017, 244: 33-41.
Effects of black film mulched ridge-furrow tillage on soil water- fertilizer environment and potato yield and benefit under different rainfall year in semiarid region
YANG FengKe1,2*, HE BaoLin1, DONG Bo1,2, WANG Liming1
1Dryland Farming Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070;2Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070
【Objective】To explore the effects of annual precipitation regime and ridge shapes interaction on soil water and fertilizer environment and potato yield and efficiency of black film mulched ridge-furrow tillage, to analyze and explain the mechanism of water and fertilizer interaction to promote crop production and efficient water use, so as to provide theoretical basis for deeply exploring the yield increase potential of the film mulched ridge-furrow tillage technique.【Method】Based on the technology of black plastic film mulched ridge-furrow tillage with micro-rainwater catchment ditches on the ridges, we developed three types of soil water-fertilizer regulating tillage systems that consists of low ridge (high 16 cm)-furrow (wide 40 cm), middle ridge (high 24 cm)- furrow (wide 40 cm) and high ridge (high 32 cm)-furrow (wide 40 cm) tillage, all with a 10 cm high and 20 cm wide rainwater catchment ditch on ridges, named as BLRF, BMRF and BHRF, respectively, and used as main treatments.Then, using the local custom white film mulched ridge(high 16 cm, wide 60 cm)-furrow (wide 40 cm) tillage (WRF) as control, a 3-year consecutive field experiments of four treatments had been conducted from 2016 to 2018.Soil water content of 0-200 cm soil layer in the potato key growth period of sowing, seedling, budding, flowering, tuberization and maturing as well as the content of soil organic carbon (SOC), nitrogen, phosphorus and potassium and their available component (TN, TP, TK and AN, AP, AK) of 0-30 cm soil layer at the end of the experiment period were determined, soil water storage and water utilization efficiency were calculated, the correlation between soil water, fertilizer and potato yield were analyzed.【Result】Regardless of the precipitation years, both BLRF, BMRF, BHRF and WRF tillage had caused crop increase consumption of soil water in 40-120 cm soil layer.The soil water content and water storage (SWS) in 0-200 cm soil layers in the potato six key growth stages for BHRF, BMRF and BLRF were significantly (<0.05) higher than those for WRF.Sufficient precipitation and the increased soil water harvested via black film mulched ridge-furrow tillage with micro-rainwater catchment ditches on ridges significantly complement the soil water in 120-200cm soil layer and effectively maintained soil water balance interseason.Take rainfall patterns into account, the effects of soil water conservation for BLRF and BMRF are better than that for BHRF in dry and normal year, and that for the three tillage models were significant efficient in wet year, all were significantly better than that of WRF.Meanwhile, the content of examined soil nutrient parameters in 0-30 cm soil layer under BHRF, BMRF and BLRF at the end of the experiment period were uniformly significantly higher than that of WRF (<0.05),with the average content of TN,TK,AN, AP and AK were increased by 4.5%-5.6%, 3.6%-5.9%, 8.4%-18.4%, 15.3%-22.3% and 7.1%-13.3% except that of SOC and TP, respectively.In addition, the potato yield, water use efficiency (WUE), net income and output/input ratio for BLRF, BMRF and BHRF were all significantly higher than those for WRF, mainly contributed to the increased the number and weight of large potatoes caused by the improved soil water and nutrient condition.On 3 year average, the yield , WUE, net income and output/input ration of potato were increased by 16.9%-19.0%、15.5%-19.2%、23.3%-27.3% and 12.1%-18.2%, respectively.The four benefit parameters were more sounded under BLRF and BMRF in dry and normal year and highly significant under all the three tillage patterns in wet year.We observed that the 3-year average potato yield positively significant correlation to the contents of TN, TP, TK AN, AP, AK and highly negative correlation to the 3-year average water consumption (ET).Path analysis indicated that AP, ET, potato growth period precipitation (GPR), TK and TN had explained 99.4% of the yield variation.【Conclusion】The superimposed water collection effect of black film mulched ridge furrow tillage with micro-rainwater catchment ditches on the ridges significantly improves the soil moisture condition, which, in turn, great promoting the vigorous growth of potato and led more organic matter (stems, roots, etc.) return to the soil,then the nutrients from the decomposition of the organic matter and the applied fertilizer improves the soil nutrient content.Good soil water and fertilizer conditions effectively improve the mutual relationship between soil water and fertilizer, increased the supply of water and fertilizer, and significantly improved the potato yield, WUE, net income and input/output ratio.BLRF and BMRF performed well in dry and normal years, BLRF, BMRF and BHRF performed well in wet years, while BLRF and BMRF performed well in all precipitation years.Therefore, BLRF and BMRF are the two most efficient cultivation model after WRF for dry potato high yield production in semi-arid regions of China.
black film mulched ridge-furrow tillage with micro-rainwater catchment ditched on ridges; water-fertilizer balance; interaction effect; yield; WUE; net income
2020-12-30;
2021-09-07
國家自然科學(xué)基金(31560137,31860131)、甘肅省科技重點研發(fā)計劃(18YF1NA095-2)
楊封科,E-mail:yang_fk@163.com
(責(zé)任編輯 楊鑫浩)