• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduced-Order Observer-Based Leader-Following Formation Control for Discrete-Time Linear Multi-Agent Systems

    2021-10-25 01:41:32ZhongxinLiuYangboLiFuyongWangandZengqiangChen
    IEEE/CAA Journal of Automatica Sinica 2021年10期

    Zhongxin Liu,,Yangbo Li,Fuyong Wang,and Zengqiang Chen

    Abstract—Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer,in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree.By utilizing the relative outputs of neighboring agents,a reduced-order observer is designed for each following agent.A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation.A sufficient condition is given to ensure that the discrete-time linear multiagent system can achieve the expected leader-following formation.Finally,numerical examples are provided so as to demonstrate the effectiveness of the obtained results.

    I.INTRODUCTION

    FOR the last few years,a great deal of researchers have studied distributed coordination of groups of agents for their broad applications in many domains.As an important fundamental problem in cooperative control,the purpose of consensus control is to design appropriate control protocols such that all agents can reach the agreement value of their common states asymptotically or in finite time.Much effort has been taken to solve all sorts of distributed coordination control problems in the early literature,such with formation control [1]–[3],containment control [4]–[7],output regulation[8],the adaptive consensus problem [9]–[10],the state constraint consensus problem [11]–[12] etc.

    In the existing literature,Lyapunov-based methods and stochastic matrices were commonly used in solving first-order[13]–[16] and second-order [17]–[22] consensus problems.In addition,the consensus problem of linear multi-agent systems has also been investigated in many literature [23]–[27].Compared to systems with continuous-time dynamics,discrete-time systems are much more suitable for realization using computer.Moreover,many practical systems cannot be characterized by continuous dynamics.Some interesting issues on consensus stability of discrete-time multi-agent systems have been investigated in [28]–[32].

    Most literature mentioned above assume that agents could measure the state information of their neighbours through communication channels unerringly.However,for many practical systems,the agents can only measure the output information of their neighbors due to an unreliable communication environment or other reason,full state information is thus not always available.For such consensus problems,a common method is to propose suitable observers so as to estimate these unmeasurable variables.In [17],owing to the unpredictable speed of the leader,an estimation law was adopted using first-order followers to estimate the leader's state.An observer-based consensus strategy for a second-order system lacking a velocity measurement was proposed in [18].Based on the relative outputs of the neighbours,observer-type consensus protocols were presented in [23],which can solve consensus problem for linear networked systems.In many practical systems,switching is a common phenomenon.For example,those systems with abrupt parameter variations can be modelled as switched systems.The leader-following consensus problem of linear systems with state-observer under one group of directed switching topologies was investigated in [24],and the conclusion of [24] was then extended in [30] to discretetime systems.In [31],two consensus problems for discrete-time multi-agent systems with switching network topology were studied,and the consensus problem for discrete-time linear multi-agent systems under directed switching networks was investigated in [32].In [33],the authors investigated the consensus problem with linear multi-agent systems by adopting a new reduced-order observer.Based on [33],the leaderfollowing multi-agent consensus problem was investigated in[34] by designing a reduced-order observer for each following agent.For a system with discrete-time linear dynamics,a distributed reduced-order observer-based consensus control law was given in [35].

    With the development of consensus theory,its application by researchers trying to solve formation control issues has increased.By converting formation control problems for networked systems into consensus-like problems,the tools in consensus theory can be used in dealing with subsequent problems.It has been proposed in [36] that many existing leaderfollowing,virtual leader,and behavioural formation control methods can be integrated in the general framework of consensus protocol establishment.Some necessary and sufficient graphical conditions for formation control of unicycles were obtained in [37].In [38],a behavior-based method was proposed to realize complex formation for multirobots.A new formation control approach based on the distances among the networked robots modeled as single integrators was provided in [39].For general linear multi-agent systems with switching directed topologies,the time-varying formation control was investigated in [40] and the time-varying output formation control was studied in [41].By using an adaptive based method,a distributed time-varying formation control strategy for multi-agent systems with high-order linear dynamics was investigated in [42].For leader-to-formation stability of multi-agent systems,an adaptive optimal control approach was proposed in [43].Considering the same communication problems as above-mentioned,many issues of observer-based formation control problems have been studied recently.A learning-based model predictive control (LBMPC)algorithm was presented in [3] for formation flight control of multiple vehicles systems.In [2],by introducing linear extended state observer,a formation control strategy was provided for the case where the velocity of the neighboring agent is unmeasurable.The leader-following formation problem for a multi-robot system was studied in [1],in which the leader agent is unknown to the followers.

    So far,the bulk of existing literature on observer-based formation control has been largely focused on continuoustime systems.Motivated by the above works,especially by[33] and [34],we consider the leader-following formation control problem for discrete-time linear multi-agent systems through using a reduced-order observer-based strategy.The main contributions of this work are summarized as follows:1)Under directed switching topology,the leader-following formation control problem for discrete-time linear multi-agent systems is first considered in this work;2) A novel reducedorder observer is designed for each following agent based on the relative output information,which can estimate the state effectively;3) Based on the Lyapunov method and the modified discrete-time algebraic Riccati equation,a multi-step control algorithm is established for achieving the expected leader-following formation.

    A.Notation

    Rm×n(or Cm×n) denotes the set ofm×nreal (or complex)matrices.ATrepresents the transpose of matrixA.Inis then×nidentity matrix,and 1n=[1,1,...,1]T.For a symmetric matrixP,whenP>0(<0,≥0,≤0),we say it is positive definite (negative definite,positive semi-definite,or negative semi-definite).‖·‖ denotes the Euclidean norm.|·| denotes the module of a complex number or the absolute value of a real number.? denotes the Kronecker product.

    II.PRELIMINARIES AND PROBLEM FORMULATION

    Using graph theory,the interaction relationship amongNagents of a multi-agent system can be described by a directed graph G=(V,E,A).Here,V={ν1,ν2,...,νN} [den]otes the set of nodes and E ?V×V is the edge set.is the weighted adjacency matrix,which is defined such thatai j>0 if(vj,vi)∈E andai j=0 otherwise.It is assumed thataii=0,i∈Sr?{1,2,...,N}.The Laplacian matrix L is defined asandlij=?aij,i≠j.A directed tree of a directed graph that is formed by the graph edges that connect from the root node to every other node in the graph is called a directed spanning tree.According to the definition,we can easily obtain that the Laplacian matrix L satisfies L1N=0.Now some basic lemmas are introduced in the following.

    Lemma 1 [13]:The Laplacian matrix L is positive semidefinite and satisfies L1N=0.If a weighted digraphG contains a directed spanning tree,then the corresponding Laplacian matrix L has exactly one zero eigenvalue.

    Lemma 2 [44]:A symmetric matrixScan be partitioned into the following block form

    The following lemma is given to address the existence of solutions for the modified discrete-time algebraic Ricatti equation.

    Lemma 3 [45]–[46]:If(A,B) is stabilizable and(A,Q12) is detectable,there exists a scalar δc∈[0,1) such that the discrete-time modified algebraic Riccati equation (1) has a unique positive definite solutionPfor any δc<δ ≤1.Meanwhile,for any initial conditionP0≥0,P=limk→∞Pkholds ifPksatisfies

    Remark 1:It is not hard to see that the Riccati equation (1)is reduced to a Lyapunov equation if δ=0.If δ=1,the equation (1) is degenerated to the common discrete-time Riccati equation.

    Lemma 4 [47]:For the Laplacian matrix L,the followingN×Nnonsingular matrixUcan be found

    whereU1∈RN×(N?1),U2∈R(N?1)×Nand υT1N=1,υTL=0,such that

    whereDLis an upper-triangular matrix,and the diagonal elements λiof which satisfies R e(λi)>0,i=2,3,...,N.

    Consider a leader-following multi-agent system consisting of one leader andNfollowers.Let G′be a directed graph with theseN+1 nodes.G′is used to model the communicating topology of the multi-agent system,and G′containsν0(denoting the leader) and a subgraph G.It is supposed in this work that at least one following agent of G is connected to the leader ν0via a direct edge,and graph G′contains a directed spanning tree rooted at the leader.

    In discussing time-varying interaction topology,the set of graph{s for the exi}sting interaction topologies is given aswith index set P={1,2,...,m}.Let σ:[0,∞)→Pbe a switching signal used to describe the topology switching between subintervals.Lσdenotes the Laplacian of graphwith switching signal σ.The dynamics of the following agents are described by the following discrete-time linear systems

    wherexi∈Rn,ui∈Rpandyi∈Rqare the state,control input and measured output of agenti,respectively.A∈Rn×n,B∈Rn×pandC∈Rq×nare constant matrices.Based on the above dynamics equation and supposingCis full row rank,it would not be difficult to select a matrixT∈R(n?q)×nsuch thatis non-singular.

    The leader’s dynamics is described by

    wherex0∈Rnis the leader’s state,y0∈Rqis the output of leader andu0∈Rpis the input of leader.

    Remark 2:It is assumed in this work thatu0(k) is known by all followers,here we consider the case that the leader’s control input is nonzero.The coefficient matrices for the leader are supposed to be the same as those of the followers due to practical backgrounds including birds,insects,etc.

    Assumption 1:Each directed communi cation topologyG′has a directed spanning tree.

    Assumption 2:The matrix pair (A,B) is stabilizable,(A,C) is detectable.Cis a full row rank matrix,namelyrank(C)=q.

    Assumption 3:The followers can only receive the relative output measurements with their neighbors directly.

    The leader-following system (4) and (5) is said to achieve consensus,if

    The purpose of this paper is to design a distributed reducedorder observer-based control protocolui(k) using only the relative output feedback information for formation control problems of a leader-following discrete-time linear system.Specifying a formation by a vectorin whichhi∈Rnis the desired relative place of agentito the leader,then the leader-following system is said to achieve formationhif

    III.MAIN RESULTS

    A.Generalized Reduced-Order Observer

    In this subsection,a distributed reduced-order observer is introduced for each following agent in (4):

    Remark 3:For consensus control of linear multi-agent systems,the distributed continuous-time reduced observers were designed in [33] and [34].Motivated by the works [33]and [34],a novel distributed discrete-time reduced-order observer is designed based on the relative output information.Based on the Lyapunov method and the modified discretetime algebraic Riccati equation,a multi-step control algorithm is established for leader-following formation control of discrete-time linear multi-agent systems.

    Theorem 1:Consider a general discrete-time system model(4),and suppose that Assumptions 1–3 hold.If the following conditions (10) of coefficient matrices hold,andis Schur stable,the estimation errorei(k) converge to zero exponentially asymptotically,which means that the observer(8) can estimate the state ofTxieffectively.

    B.Discrete-Time Formation Control of Linear Systems

    In this subsection,a distributed control protocol is proposed,utilizing merely the relative output feedback information for leader-following formation control.Considering the formation definition (7),a new state vector can be designed as follow:

    Theorem 2:Consider the leader-following systems (4) and(5) with the control protocol (21) and the reduced-order observer (20),and suppose that Assumptions 1–3 hold.Then,the considered system can achieve formation control if condition (22) holds.The gain matrixMis chosen asand the constantc,matricesP1,Eare obtained via Algorithm 1.

    Thus,the system (30) is exponentially asymptotically stable,the formation problem is solved by the control protocol (21)and the reduced-order observer (20),i.e.,x0(k)?hi‖=0 ?i∈Sr.■

    Remark 5:It can be seen that if we choose the formation vectorh=0,the consensus problem of multi-agent system (4)and (5) can be solved if (7) holds.Thus,the consensus problem is a special case of the formation problem.The observer-based consensus problem of discrete-time linear systems has been studied in [10].The common Lyapunov function is available for all interaction topologies,and under certain conditions the switching topology can be extended to the jointly connected topology case that each of the subsystems is unstable.

    Remark 6:Compared with most of current works on consensus control with undirected switching topology,leaderfollowing formation control for discrete-time linear multiagent systems with directed switching topology is first considered in this work.Under directed topology,the Laplacian matrix associated with the communication graph is asymmetrical.The eigenvalues of the matrix have an imaginary part because the Laplacian matrix associated with communication topology is asymmetric.Comparing the controller and observer design with undirected switching topology then becomes difficult.Moreover,using switching communication,the description and certification of theoretical results becomes complicated and difficult for a system with directed topology.

    IV.SIMULATIONS

    A numerical simulation is provided in this section to illustrate the effectiveness of the theoretical results.Consider a group of agents consisting of four followers and one leader.Fig.1 shows the switching communication topology.The coefficient matrices of both leader and follower dynamics are given as

    Fig.1.Switching communication topology graph.

    The topologies are arbitrarily switched among the three graphs

    The observer coefficient matrixT=[0,0,1]T,and some coefficient matrices of control protocol (21) are given as follows:

    Through simple calculations,we can getThen,take δ=0.4 andc=0.3 which satisfies the above conditions.We can obtain

    In general,x0(0) is taken as [10,?5,15]Tandu0(k) is taken as [2,1]T.The initial states of the following agents are random generated with an item in each dimension in the interval[?30,30].Choosing a simple formation vectorh=[[2,?2,?2]T,[?2,2,2]T,[4,3,2]T,[?4,?3,?2]T]Tfor the leader-following system.Figs.2–3 shows the estimation errorei(k)and the state ψi1(k) of four followers.The position trajectories of leaders and followers under the protocol (21)are showed in Figs.4–7.It is shown that the multi-agent system can achieve the expected formation.Now,the feasibility and effectiveness of protocols (20) and (21) are now verified.

    Fig.2.Estimation error trajectories of four followers.

    Fig.3.State trajectories of the observers.

    V.CONCLUSIONS

    In this work,a novel reduced-order observer-based control law is presented for leader-following formation of discretetime linear multi-agent systems with directed switching topologies by utilizing the relative output information of neighboring agents.Using the model transformation method,the formation control problem is converted into an output feedback control problem with a reduced-order observer of the associated switching system.Based on the Lyapunov method and the modified discrete-time algebraic Riccati equation,a sufficient condition is obtained to ensure that the discrete-time linear multi-agent system can achieve the expected leaderfollowing formation.Future works will focus on parameter time-changing systems.

    Fig.4.Position trajectories:k=0.

    Fig.5.Position trajectories:k=15.

    Fig.6.Position trajectories:k=30.

    Fig.7.Position trajectories:k=45.

    91九色精品人成在线观看| 精品久久久久久成人av| av超薄肉色丝袜交足视频| 久久精品国产清高在天天线| 国产欧美日韩一区二区三区在线| 成人国语在线视频| www.www免费av| 久久人妻熟女aⅴ| 人人妻人人爽人人添夜夜欢视频| 国产三级在线视频| 男女午夜视频在线观看| 新久久久久国产一级毛片| 亚洲精品中文字幕在线视频| 少妇粗大呻吟视频| 欧美亚洲日本最大视频资源| 老司机靠b影院| 日韩免费av在线播放| 精品一区二区三区视频在线观看免费 | av天堂在线播放| 999精品在线视频| 欧美日韩av久久| 又黄又粗又硬又大视频| 99久久99久久久精品蜜桃| xxx96com| 国产日韩一区二区三区精品不卡| 大香蕉久久成人网| 啪啪无遮挡十八禁网站| 露出奶头的视频| 精品乱码久久久久久99久播| 亚洲第一av免费看| 亚洲美女黄片视频| 久久香蕉精品热| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人免费av一区二区三区| 午夜亚洲福利在线播放| 91精品三级在线观看| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩无卡精品| 黑人巨大精品欧美一区二区mp4| 欧美最黄视频在线播放免费 | 人妻久久中文字幕网| 日韩有码中文字幕| 在线观看午夜福利视频| 国产精品久久久久久人妻精品电影| 久久精品影院6| 欧美黑人精品巨大| 在线视频色国产色| 嫩草影视91久久| 不卡一级毛片| 麻豆成人av在线观看| 色婷婷久久久亚洲欧美| 亚洲午夜理论影院| 欧美久久黑人一区二区| 精品日产1卡2卡| 免费在线观看亚洲国产| 后天国语完整版免费观看| 国产精品久久久久久人妻精品电影| 亚洲成人国产一区在线观看| 黄色女人牲交| 国产xxxxx性猛交| av中文乱码字幕在线| 亚洲全国av大片| 国产无遮挡羞羞视频在线观看| 亚洲精品av麻豆狂野| 黄色怎么调成土黄色| 亚洲在线自拍视频| 熟女少妇亚洲综合色aaa.| 欧美成狂野欧美在线观看| 麻豆av在线久日| 午夜福利在线观看吧| av网站免费在线观看视频| 亚洲九九香蕉| 国产一区二区激情短视频| 长腿黑丝高跟| 免费在线观看完整版高清| av在线播放免费不卡| 亚洲av成人不卡在线观看播放网| 中文字幕精品免费在线观看视频| 99久久国产精品久久久| 亚洲九九香蕉| videosex国产| 国产亚洲欧美在线一区二区| 亚洲男人天堂网一区| 在线永久观看黄色视频| 在线观看一区二区三区激情| 新久久久久国产一级毛片| 日韩欧美国产一区二区入口| 黑人巨大精品欧美一区二区蜜桃| 女同久久另类99精品国产91| 午夜两性在线视频| 欧美精品亚洲一区二区| 午夜日韩欧美国产| 9191精品国产免费久久| 国产1区2区3区精品| 怎么达到女性高潮| 久久国产精品人妻蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区精品| 国产精品秋霞免费鲁丝片| www国产在线视频色| 级片在线观看| 精品午夜福利视频在线观看一区| 别揉我奶头~嗯~啊~动态视频| 久久人妻熟女aⅴ| 久久人妻熟女aⅴ| 精品免费久久久久久久清纯| 日日干狠狠操夜夜爽| 51午夜福利影视在线观看| 久久人妻福利社区极品人妻图片| 亚洲第一青青草原| 欧美老熟妇乱子伦牲交| 久久精品国产清高在天天线| 在线免费观看的www视频| 久久亚洲精品不卡| 国产精品国产av在线观看| 国产免费av片在线观看野外av| 国产在线观看jvid| 成人三级黄色视频| 搡老岳熟女国产| avwww免费| 久久精品国产清高在天天线| 欧美激情 高清一区二区三区| 亚洲精品久久成人aⅴ小说| av欧美777| 国产av一区二区精品久久| 国产在线观看jvid| 日韩欧美一区二区三区在线观看| 久久欧美精品欧美久久欧美| 国产精品 欧美亚洲| 黄色a级毛片大全视频| 脱女人内裤的视频| 国产精品乱码一区二三区的特点 | 夜夜夜夜夜久久久久| 中文字幕色久视频| av天堂久久9| 午夜免费鲁丝| 在线观看免费高清a一片| 欧美日韩瑟瑟在线播放| 侵犯人妻中文字幕一二三四区| 一二三四在线观看免费中文在| 高清欧美精品videossex| 亚洲专区字幕在线| 日韩免费av在线播放| 美女大奶头视频| 日韩精品免费视频一区二区三区| 亚洲成人精品中文字幕电影 | 久久精品影院6| 国产有黄有色有爽视频| 一级片免费观看大全| 高清毛片免费观看视频网站 | 欧美日韩亚洲国产一区二区在线观看| 人妻久久中文字幕网| www.熟女人妻精品国产| 欧美久久黑人一区二区| 91精品国产国语对白视频| 色综合婷婷激情| 欧美日韩av久久| 日韩精品青青久久久久久| 成人三级黄色视频| 亚洲视频免费观看视频| 亚洲精品美女久久久久99蜜臀| 岛国视频午夜一区免费看| 国产亚洲欧美在线一区二区| 中亚洲国语对白在线视频| 亚洲五月婷婷丁香| 美女 人体艺术 gogo| 精品欧美一区二区三区在线| 久久久久精品国产欧美久久久| 亚洲欧洲精品一区二区精品久久久| 国产aⅴ精品一区二区三区波| 国产精品电影一区二区三区| 午夜福利影视在线免费观看| 9热在线视频观看99| 欧美日韩黄片免| av中文乱码字幕在线| 国产免费av片在线观看野外av| 国产精品 欧美亚洲| 久久国产精品人妻蜜桃| 在线观看舔阴道视频| 国产精品国产高清国产av| 不卡一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲第一青青草原| 18美女黄网站色大片免费观看| 久久久精品国产亚洲av高清涩受| 国产成人欧美在线观看| 久久午夜综合久久蜜桃| 亚洲自偷自拍图片 自拍| 天堂俺去俺来也www色官网| 精品人妻1区二区| 国产主播在线观看一区二区| 色综合站精品国产| 最近最新中文字幕大全免费视频| 国产av精品麻豆| 男人操女人黄网站| www.精华液| 脱女人内裤的视频| 国产精品亚洲一级av第二区| 三上悠亚av全集在线观看| 精品国产一区二区三区四区第35| 午夜影院日韩av| 男女下面进入的视频免费午夜 | 亚洲aⅴ乱码一区二区在线播放 | 精品国产乱码久久久久久男人| 国产av精品麻豆| 超色免费av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲avbb在线观看| 中文字幕av电影在线播放| 亚洲av五月六月丁香网| 女性被躁到高潮视频| 久久精品亚洲熟妇少妇任你| 欧美人与性动交α欧美软件| 久久精品亚洲熟妇少妇任你| 国产高清视频在线播放一区| 成人三级黄色视频| 国产黄a三级三级三级人| 欧美成人性av电影在线观看| 欧美中文日本在线观看视频| 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av香蕉五月| 亚洲成人免费av在线播放| 国产不卡一卡二| 99riav亚洲国产免费| 欧美最黄视频在线播放免费 | 99国产精品免费福利视频| 别揉我奶头~嗯~啊~动态视频| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡 | 成年人免费黄色播放视频| 18禁美女被吸乳视频| av福利片在线| 黑人猛操日本美女一级片| 老司机深夜福利视频在线观看| 丰满饥渴人妻一区二区三| 最好的美女福利视频网| 欧美黄色片欧美黄色片| 大型av网站在线播放| 中文字幕人妻熟女乱码| 制服人妻中文乱码| 亚洲午夜精品一区,二区,三区| 精品一区二区三区视频在线观看免费 | 亚洲自偷自拍图片 自拍| 日韩成人在线观看一区二区三区| 亚洲熟妇中文字幕五十中出 | 高清av免费在线| 女人爽到高潮嗷嗷叫在线视频| 一级a爱视频在线免费观看| 国产三级在线视频| 成人免费观看视频高清| 在线观看日韩欧美| 中文字幕高清在线视频| 天天躁夜夜躁狠狠躁躁| 香蕉丝袜av| 国产97色在线日韩免费| 精品国产国语对白av| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三区在线| 婷婷六月久久综合丁香| 91av网站免费观看| 人人妻人人澡人人看| 久久青草综合色| 久久久久久免费高清国产稀缺| 亚洲国产看品久久| 露出奶头的视频| 两性夫妻黄色片| 丰满人妻熟妇乱又伦精品不卡| 可以在线观看毛片的网站| 国产精品亚洲一级av第二区| 99国产精品免费福利视频| 一个人观看的视频www高清免费观看 | 69av精品久久久久久| 一进一出抽搐动态| 国内久久婷婷六月综合欲色啪| 一本大道久久a久久精品| 神马国产精品三级电影在线观看 | 午夜福利,免费看| 免费av中文字幕在线| 91九色精品人成在线观看| 自线自在国产av| 国产午夜精品久久久久久| 91国产中文字幕| 久久人妻av系列| 国产精品免费视频内射| 午夜福利欧美成人| 18禁裸乳无遮挡免费网站照片 | 91九色精品人成在线观看| 999久久久精品免费观看国产| 亚洲国产精品sss在线观看 | 国产精品久久视频播放| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 老司机靠b影院| 黄片小视频在线播放| 国产成人影院久久av| √禁漫天堂资源中文www| 黑人操中国人逼视频| 欧美日韩亚洲高清精品| 日韩欧美三级三区| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 亚洲av电影在线进入| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 久久欧美精品欧美久久欧美| videosex国产| 一区二区三区精品91| 国产精品一区二区在线不卡| 精品福利观看| 午夜福利欧美成人| 亚洲av熟女| 91麻豆av在线| 国产精品国产高清国产av| 亚洲成人精品中文字幕电影 | 极品教师在线免费播放| 热99re8久久精品国产| 看片在线看免费视频| 欧美日韩亚洲高清精品| 国产精品爽爽va在线观看网站 | 欧美久久黑人一区二区| 亚洲欧美激情在线| 黄片小视频在线播放| 超色免费av| 国产精品一区二区在线不卡| 热re99久久精品国产66热6| 99在线人妻在线中文字幕| 国产色视频综合| 黄色a级毛片大全视频| 动漫黄色视频在线观看| 国产一区二区三区综合在线观看| 在线观看午夜福利视频| 久久影院123| 激情视频va一区二区三区| 99热只有精品国产| av福利片在线| 黑人操中国人逼视频| 精品久久久久久,| 亚洲精品中文字幕一二三四区| 久久这里只有精品19| 脱女人内裤的视频| 12—13女人毛片做爰片一| 天堂动漫精品| aaaaa片日本免费| 91九色精品人成在线观看| 精品久久久久久,| 亚洲国产精品一区二区三区在线| 亚洲人成伊人成综合网2020| 国产亚洲精品综合一区在线观看 | 欧美日韩黄片免| 亚洲久久久国产精品| 中文欧美无线码| 啦啦啦在线免费观看视频4| 大型黄色视频在线免费观看| 在线天堂中文资源库| 久99久视频精品免费| 色综合婷婷激情| 亚洲片人在线观看| 中文字幕人妻熟女乱码| 韩国av一区二区三区四区| 涩涩av久久男人的天堂| 国产伦人伦偷精品视频| 精品欧美一区二区三区在线| 欧美不卡视频在线免费观看 | 12—13女人毛片做爰片一| 黑丝袜美女国产一区| 成年女人毛片免费观看观看9| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美在线一区二区| 精品无人区乱码1区二区| 黑人操中国人逼视频| 在线视频色国产色| 色精品久久人妻99蜜桃| 精品第一国产精品| 亚洲 国产 在线| 亚洲人成77777在线视频| 中文字幕色久视频| 欧美精品亚洲一区二区| 日韩欧美一区二区三区在线观看| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 午夜激情av网站| 18禁国产床啪视频网站| 欧美乱妇无乱码| 啦啦啦在线免费观看视频4| 欧美一区二区精品小视频在线| 亚洲av成人av| 国产精品美女特级片免费视频播放器 | 啦啦啦在线免费观看视频4| 悠悠久久av| 精品国产乱码久久久久久男人| 性欧美人与动物交配| av免费在线观看网站| 亚洲精品粉嫩美女一区| 99riav亚洲国产免费| 一区二区三区国产精品乱码| 国产又色又爽无遮挡免费看| tocl精华| 91精品国产国语对白视频| 亚洲伊人色综图| 免费搜索国产男女视频| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 日韩欧美免费精品| 日本三级黄在线观看| 在线观看www视频免费| 色综合站精品国产| 色综合欧美亚洲国产小说| 亚洲一区二区三区色噜噜 | 日韩视频一区二区在线观看| 老司机福利观看| 国产99白浆流出| 日本免费a在线| svipshipincom国产片| 亚洲一区二区三区色噜噜 | 18美女黄网站色大片免费观看| 成人影院久久| 久久人人97超碰香蕉20202| 亚洲aⅴ乱码一区二区在线播放 | 亚洲免费av在线视频| 精品国产亚洲在线| 精品免费久久久久久久清纯| 高潮久久久久久久久久久不卡| 日韩精品青青久久久久久| 亚洲av熟女| 国产精品电影一区二区三区| 亚洲欧美日韩无卡精品| 亚洲人成电影观看| 咕卡用的链子| 亚洲精品一二三| 视频区图区小说| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 999久久久精品免费观看国产| 天堂动漫精品| 欧美丝袜亚洲另类 | 色婷婷久久久亚洲欧美| 免费av毛片视频| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 岛国在线观看网站| 一级毛片精品| 91麻豆精品激情在线观看国产 | 搡老熟女国产l中国老女人| 国产免费av片在线观看野外av| 男人的好看免费观看在线视频 | 91大片在线观看| 男人舔女人的私密视频| 交换朋友夫妻互换小说| av国产精品久久久久影院| 亚洲精品一二三| 可以免费在线观看a视频的电影网站| 国产精品99久久99久久久不卡| 国产一卡二卡三卡精品| 首页视频小说图片口味搜索| 999精品在线视频| 免费人成视频x8x8入口观看| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀| 国产成人欧美在线观看| 一进一出抽搐gif免费好疼 | 国产99久久九九免费精品| av欧美777| 精品国产一区二区久久| 成年版毛片免费区| 久久久久久大精品| 亚洲情色 制服丝袜| 男女午夜视频在线观看| 在线观看日韩欧美| 一级a爱视频在线免费观看| 国内毛片毛片毛片毛片毛片| 亚洲 欧美一区二区三区| 国产主播在线观看一区二区| 国产成人一区二区三区免费视频网站| 精品高清国产在线一区| 在线永久观看黄色视频| 极品人妻少妇av视频| 精品少妇一区二区三区视频日本电影| 国产亚洲欧美在线一区二区| 国产激情久久老熟女| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 亚洲色图综合在线观看| 亚洲精品久久成人aⅴ小说| 免费在线观看亚洲国产| 精品一区二区三区视频在线观看免费 | 在线永久观看黄色视频| 精品久久蜜臀av无| 亚洲欧美日韩无卡精品| 国产区一区二久久| 97碰自拍视频| 丝袜人妻中文字幕| 亚洲一区二区三区不卡视频| 国产欧美日韩精品亚洲av| 精品久久久久久成人av| 精品人妻1区二区| 制服诱惑二区| 午夜两性在线视频| 在线看a的网站| 一区二区三区国产精品乱码| 午夜免费观看网址| 久久草成人影院| 精品久久久久久,| 久久草成人影院| 天天影视国产精品| 女人被狂操c到高潮| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| 757午夜福利合集在线观看| 女性生殖器流出的白浆| 黄色丝袜av网址大全| 久久人人精品亚洲av| 日韩有码中文字幕| 亚洲熟女毛片儿| 日日干狠狠操夜夜爽| 成人精品一区二区免费| 国产精品二区激情视频| 黑人猛操日本美女一级片| 日本欧美视频一区| 国产成人av教育| 91成年电影在线观看| 女人精品久久久久毛片| 成人av一区二区三区在线看| 真人一进一出gif抽搐免费| 亚洲熟女毛片儿| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 国产精品野战在线观看 | 欧美成狂野欧美在线观看| 国产亚洲精品一区二区www| 黄色视频,在线免费观看| 一区二区三区国产精品乱码| 国产精品二区激情视频| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 免费在线观看亚洲国产| 男人舔女人的私密视频| 免费在线观看黄色视频的| 老熟妇仑乱视频hdxx| 精品国产一区二区久久| 久久精品91蜜桃| 如日韩欧美国产精品一区二区三区| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 丝袜美足系列| 亚洲av日韩精品久久久久久密| 欧洲精品卡2卡3卡4卡5卡区| 日本欧美视频一区| 日本vs欧美在线观看视频| 大型黄色视频在线免费观看| 亚洲人成电影免费在线| 欧美日韩黄片免| 午夜免费激情av| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频| 一区二区三区国产精品乱码| 国产三级黄色录像| 国产精品野战在线观看 | 18禁裸乳无遮挡免费网站照片 | 亚洲伊人色综图| 欧美日韩一级在线毛片| 免费在线观看影片大全网站| 两性夫妻黄色片| 精品国产亚洲在线| 大香蕉久久成人网| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点 | 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 国产精品久久久av美女十八| a在线观看视频网站| 成年版毛片免费区| 亚洲欧美一区二区三区黑人| 免费在线观看日本一区| 午夜福利欧美成人| 日本一区二区免费在线视频| 少妇粗大呻吟视频| 一夜夜www| xxxhd国产人妻xxx| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 午夜福利欧美成人| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 很黄的视频免费| 男女午夜视频在线观看| aaaaa片日本免费| 新久久久久国产一级毛片| 最新在线观看一区二区三区| 最好的美女福利视频网| 成年女人毛片免费观看观看9| 亚洲少妇的诱惑av| 在线av久久热| 在线观看一区二区三区| 黑人猛操日本美女一级片| av视频免费观看在线观看| 精品第一国产精品| 免费高清视频大片| 99国产精品99久久久久| 国产av精品麻豆| 不卡av一区二区三区| 亚洲黑人精品在线| 亚洲欧美日韩另类电影网站| 国产精华一区二区三区| 在线观看免费视频日本深夜| 久久午夜亚洲精品久久| 18禁观看日本| 日本撒尿小便嘘嘘汇集6| 亚洲成人精品中文字幕电影 | 精品国产一区二区久久|