• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Order-Up-To Inventory Control in Networked Supply Systems With Delay

    2021-10-25 01:41:28PrzemysawIgnaciuk
    IEEE/CAA Journal of Automatica Sinica 2021年10期

    Przemys?aw Ignaciuk,

    Abstract—In this work,the dynamics of networked goods distribution systems subject to the control of a continuous-review order-up-to inventory policy are investigated.In the analytical study,as opposed to the earlier models constrained to the serial and arborescent interconnection structures,an arbitrary multiechelon topology is considered.This external,uncertain demand,following any distribution,may be imposed on all network nodes,not just conveniently selected contact points.As in the physical systems,stock relocation to refill the reserves is subject to nonnegligible delay,which poses a severe stability threat and may lead to cost-inefficient decisions.A state-space model is created and used as the framework for analyzing system properties.In particular,it is formally demonstrated that despite unpredictable demand fluctuations,a feasible (nonnegative and bounded)reserves replenishment signal is generated at all times,and the stock gathered at the nodes does not surpass a finite,precisely determined level.The theoretical content is illustrated with a case study of the Chinese oil supply system.

    I.INTRODUCTION

    THE challenges associated with complex connectivity architectures in current production and goods distribution systems predispose control policy selection towards numerical methods [1]–[3] and approximate solutions [4],[5].Formal studies are primarily restricted to basic configurations:singleechelon [6],serial [7],or arborescent (with separable paths of goods flow) [8]–[10].In contrast,this work aims to establish a formal framework to analyze the dynamics of modern distribution systems organize in a more complex– networked– scheme of suppliers,distribution centers,and retailers exchanging resources with a delay according to the popular order-up-to (OUT) inventory policy [11].

    Earlier studies on distribution system dynamics regulated by the OUT policy are summarized in [12].Later on,using the transfer-function approach,Hoberget al.[13] assessed the impact of delay on the stability of the periodic-review twoechelon configuration.The study was extended over perishable inventories in [14] and variability containment objectives in [15].In [16],a block-diagram manipulation was employed to give more insights into the dynamical phenomena in contemporary supply chains,albeit still limited to the localized approximation.The serial configuration in a discrete-time framework was investigated in [17] as a basis forH∞-optimal controller design,and in [18] for modelpredictive control.A continuous-time model of a similar system was developed in [7] to help in choosing suitable gains for the modified– proportional OUT policy.The works on the arborescent retarded systems continued in [19]–[21],targeting parameter selection to improve stability margin [19],reduce variability [20],or costs [21],under a given demand type.

    Approximating the presently deployed multi-echelon systems with non-trivial interconnection dependencies [22],[23] by fundamental constructs leads to cost increase,or even instability [24],[25].In this paper,as opposed to [6]–[10],[13]–[21],the networked nature of resource distribution systems is given explicit consideration.The constructed framework allows for an arbitrary interconnection topology among system elements (nodes) and uncertain,time-varying demand to be placed at any node.The excess demand is lost,which breaks the frequently applied simplification to linear stock dynamics [12],[15].The reserves,from which both the exogenous and internal demand is served,are acquired with non-zero lead-time delay.

    The contributions of this paper include providing a statespace model of networked goods distribution systems with retarded transshipments and lost sales and conducting an analytical study of OUT policy dynamical performance.It is formally shown that the policy always issues a feasible,i.e.,nonnegative and bounded,replenishment signal despite having no knowledge of demand future evolution,or a global perspective on the system interconnection structure.The stock level at the nodes is demonstrated to be nonnegative and upper-bounded.The policy can thus be safely deployed in current systems with cross-border cooperation,in a fully distributed mode.The choice of the reference stock level for high demand satisfaction rate is indicated.The inventory managers are thus equipped with explicit guidelines regarding the selection of storage space at the nodes and maximizing the response towards external actors.Consequently,the attractive image of a reliable goods provider is established,and solid,long-term business relationships may be formed.The theoretical content is illustrated via a case study of the Chinese oil supply system [9].

    II.ANALYTICAL FRAMEWORk

    In the considered class of systems,suppliers,distribution centers,and retailers interact with each other in goods exchange so that an exogenous,uncertain demand is satisfied.The controlled elements– distribution centers,retailers– will be termed“nodes.”An example setting comprising six nodes,three of which are subjected to market demand,and two external suppliers is sketched in Fig.1.Neither the statistical parameters nor the actual demand pattern is accessible beforehand.From a logistic system perspective,the demand constitutes a driving factor for ordering decisions to refill stock.Hence,there are two types of inputs:the exogenous signal– demand– that in the dynamical framework is treated as a perturbation,and the control signal– the sequence of stock refill decisions.

    Fig.1.Chinese oil supply system:1–6 controlled nodes,7,8 external sources.Demand is placed at nodes 1–3.The numbers at the links signify:(supplier contribution,delivery delay).

    As opposed to [6]–[10],[13]–[21],an arbitrary system topology in which a unidirectional path connecting each controlled node with at least one supplier exists is considered.In the proposed model,the topology encompassesnnodes whose indices are taken from the setXn={1,2,…,n}.The stock gathered at the nodes,used to answer the demand,is refilled frommexternal suppliers.The set of indices of all nodes and suppliers isX={1,2,…,m+n}.

    The evolution of time will be tracked by the continuous variablet.Letxi(t) denote the stock level at nodei,i∈Xn,at instantt,anddi(t) be the intensity of external demand placed at that node.The operations performed at the node proceed according to the following sequence:

    1) Determine the current stock levelxi(t),received shipmentsand external demanddi(t).

    2) Fulfill the demand up to the volume of available resources.In the case of a deficit,the surplus demand is realized elsewhere– a lost-sales system.

    3) Record the (internal) replenishment requests from neighbors in the network.

    4) Respond to internal requests using leftover resources.In the case of deficit,the requested quantity is proportionally reduced,i.e.,the shortage at timetat nodei,sayεi(t),implies the reduction of the lot sent towards nodej,uj(t),touj(t)[1–– the set of node indices for which nodeisupplies goods.

    The reserves gathered at a node are used to fulfill both external market demand and internal requests from the neighbors,with external demand given priority to achieve a better company image.Unlike previous similar approaches to the analysis of inventory system dynamics,e.g.,[9],in the presented model,the demand may be placed at any node.Although substantially complicates the design framework,this premise allows one to relate to the phenomena occurring in the currently deployed physical systems more closely.

    The demand is represented by an a priori unknown,timevarying function

    The request issued by nodeiat timetfor its suppliers(external sources and neighbors in the system) will be denoted byui(t),i∈Xn,and the lot to be retrieved from supplierj,j∈X,via partitioning coefficientφji(t) ∈ [0,1].Consequently,the quantity of the goods sent by nodeito the neighbors

    If the nominal order partitioning:is not possible because of a goods shortage,the coefficients are reduced as dictated by rule 4.More specifically,if nodejhas gathered enough resources to respond to the request from node i immediately,thenotherwiseand

    The external suppliers are assumed to be uncapacitated(they do not experience shortage).Coefficientsφijreflect the connection structure.Without losing generality,it is assumed that no node is isolated,i.e.,a path exists from each node to at least one external source,and the network is directed,i.e.,φji(t) ≠ 0 impliesφij(t)=0,andφii(t)=0,to preclude selfsupply.

    The order realization takes a non-negligible amount of time.The delay in goods provision from nodejtoiwill be denoted byhji,hji∈H,H– the set of all delay values at the internode links.With this notation,the quantity of the goods received by nodeiat instanttis

    In order to perform a detailed,formalanalysis,a state-space description of the system dynamics will be introduced.The following representation is proposed

    where,

    1)x(t)=[x1(t) ···xn(t)]Tis the state vector (stock level at the nodes),

    2)u(t)=[u1(t) ···un(t)]Tis the controlled input (replenishment quantity requested by the nodes),

    3)s(t)=[s1(t) ···sn(t)]Tis the perturbing input which expresses the uncertainty in demand realization at the nodes;withone has from (1)

    For the sake of further analysis,a matrix,grouping the topological information,will be defined as

    The time reference has been dropped in (11) to emphasize the nominal– no-goods-shortage– conditions.

    Lemma 1:Matrix Φ given by (11) has a positive inverse.

    Proof:One needs to show that all the entries of Φ–1are nonnegative.In the nominal case,for eachi,one has from (4),

    III.ORDER-UP-TO INVENTORY CONTROL

    The OUT policy states that the stock should be refilled to a reference level whenever it falls below this level.In systems with non-negligible delivery delays,the quantity of the goods in transit needs to be incorporated into the replenishment request,usually through the inventory position [11,ch.3].

    The order quantity at nodeiat instanttis determined as(forecasts ignored)

    is the inventory position,which holds information about the on-hand stockxi(t) and the transported goods Ωi(t),i.e.,the shipments already requested but not yet procured due to delays.The open-order quantity Ωi(t) is calculated by tracking the difference between the requested and retrieved resources as

    For notational convenience,the summation in (17) is taken over allj∈X.However,coefficientsφji(·) are non-zero only for the nodeisuppliers.

    Looking at (17) from the perspective of a control system,the calculation of the replenishment quantity– the input signal–proceeds according to proportional control (with unity gain)with dead-time compensation.Since resource accumulation at the nodes is an integrating process,the controlled plant is an integrator.In turn,tracking the open-order quantity may be interpreted as an operation of the Smith predictor.The presence of multiple channels in the network,however,requires extending the classical predictor structure over multiple loops modulated by time-varying weighting coefficients.The block diagram of control structure (17) is illustrated in Fig.2.The weightsφji(t) change with time with respect to the resource state at the upstream nodes.If the delay undergoes uncertain variations,to uphold the information about the open-order quantity,the delay compensator may be complemented by a corrective term,as in [26].The continuous-time systems,however,require separate treatment,possibly using recent advancements [27],[28].

    Fig.2.OUT policy in a time-delay system perspective.

    In order to establish a replenishment order,the OUT policy needs no explicit information from other nodes– it can be conveniently deployed in a distributed fashion.However,the ordering decisions will impact the entire system state owing to a non-trivial interconnection topology.To examine the control system properties as a whole,a state-space policy representation,consistent with (6),will be introduced.

    First,the information about reference levels is grouped into the vectorWith this notation,using(6)–(9),the OUT policy (17),implemented independently at the nodes,can be synthesized into a vector form as

    IV.OUT POLICY PROPERTY ANALYSIS

    It follows from (18) thatu(0)=xref–x(0).Consequently,for a feasible (nonnegative and upper-bounded) replenishment signal,one needs to choose the reference asxref≥x(0).The theorem below demonstrates thaturemains feasible for anyt>0 despite a priori unknown demand fluctuations.

    Theorem 2:The input signalu(t) in system (6),generated according to (18),is nonnegative and upper-bounded for anyt>0.

    The control process commences withu(0)=xref–x(0) ≥ 0.Hence,it follows from (20) and (21) that the components ofudecrease as long as they are bigger than the corresponding components of vector s,which are nonnegative by definition.Consequently,they may not drop below zero.In turn,to establish the maximum value of the replenishment signal,it is necessary to investigate the case whenIn those circumstances,onceui(·) reaches the corresponding level of vector(constraint (7)),uimay never grow beyond that level again,andu(t) ≤ Φ–1dmax.■

    The derivations presented so far prove that to ensure a realizable– non-negative– stock replenishment signal,the reference level cannot be set lower than the initial reserves.Equivalently,only such set of the initial states is permitted,which conform to the inequalityx(0) ≤xref.The theorem formulated in a later part of the text demonstrates that the stock never grows beyond the reference level,which thus designates the storage space to be reserved at the nodes.

    Theorem 3:If control (18) is applied in system (6) to regulate the goods distribution process,then the stock accumulated at the nodes is nonnegative and does not exceed the reference level,i.e.,

    Proof:Rules 2 and 4 implyxi(t) ≥ 0 at any node.Consequently,x(t) ≥ 0,and it remains to show that for anyt≥0 the upper bound dictated by (22) is also satisfied.

    The reference stock level is chosen so thatx(0) ≤xref.Applying (19) to (6),yields

    By definition,Φh≥ 0 and s(t) ≥ 0.In turn,it follows from Lemma 1 that the inverse of Φ is a positive matrix (it contains only nonnegative entries).Hence,using (25),x(t) ≤xref.■

    Theorem 3 shows that the warehouse space equal to the stock reference level is sufficient to store all goods transported to each node.Thus (costly) emergency storage is never required.Another desirable property is being able to obtain a high service level,i.e.,to satisfy as much of the demand as possible from the immediately available resources.The sequel demonstrates how to achieve full demand satisfaction by selecting a single design parameter– the stock reference level.

    V.NUMERICAL ExAMPLE

    The characteristics of the resource distribution process will be illustrated for the example setting depicted in Fig.1,which reflects the China oil supply system [9].The oil for market contact points 1–3,responding to demandsd1–d3,is delivered through intermediate nodes 4–6 using channels with different parameters (φij– lot partitioning,hij– delay),originating at two external sources 7 and 8.The demand,depicted in Fig.3,experiences seasonal variations with abrupt,unanticipated intensity shifts.The stock replenishment in the controlled network (nodes 1–6) is regulated by the OUT policy (18).AssumingMbpd (millions of barrels per day),the reference level is selected according to(27) asxref=[20.5 15 63 21.5 52 113.5]TMb to maximize the service rate.The initial conditionx(0)=xref.

    The analytical findings from Section IV regarding the OUT policy performance are verified in relation to another common policy– (r,Q) one– that states that one must refill the stock byQunits when the level of reserves drops belowr,which is useful when the trading agreements favor shipments of a predetermined quantity.Here,Qis set equal to the large crude oil tanker capacity of 2.0 Mb.The stock evolution under the OUT policy is sketched in Fig.4 and under the (r,Q) one in Fig.5.One can learn from Fig.4 that,precisely as dictated by Theorem 3,the OUT policy keeps the stock within the allocated storage space set asxref.The stock stays positive even when the demand is at its maximum,which means a full service rate and uninterrupted oil supply despite a priori unknown demand changes.Although the (r,Q) policy generates smaller holding costs at intermediate nodes 4–6,it leads to unfulfilled demand at the end-points.As evidenced in Fig.5,the reserves drop to zero in response to a demand surge(at node 2:days 18–25,at node 3:days 33–40),which implies inconsistent supplies.

    Fig.3.Daily demand.

    Fig.4.Stock level evolution under OUT policy.

    Fig.5.Stock level evolution under (r,Q) policy.

    VI.SUMMARY AND CONCLUSIONS

    In the paper,a framework to conduct a formal analysis of inventory policy dynamics in systems with complex,networked structures has been provided.It was proved that irrespective of the demand pattern imposed onto the system,the OUT policy generates a nonnegative and upper-bounded stock replenishment signal,even though it has access to local information only.It was also shown that the stock of goods accumulating at the nodes does not grow beyond the reference level.Thus,it was formally demonstrated that this popularamong-practitioners strategy could be safely deployed in modern,multi-dimensional distribution systems.Moreover,guidelines for tuning policy performance to maximize the service level have been provided.As a result,the image towards external actors of a reliable goods distributor can be preserved,even in the uncertain lost-sales setting.While the analytical study emphasizes the OUT policy,the framework is flexible to investigate the performance of other inventory control strategies,e.g.,a nonlinear (r,Q) policy.It is a subject of the current work to be reported in future publications.

    99re在线观看精品视频| 国产主播在线观看一区二区| 午夜a级毛片| av有码第一页| 两性夫妻黄色片| 在线观看午夜福利视频| 法律面前人人平等表现在哪些方面| 脱女人内裤的视频| 精品一区二区三区视频在线观看免费| 国产一区二区在线观看日韩 | 午夜激情av网站| 亚洲av成人不卡在线观看播放网| 在线免费观看的www视频| 夜夜爽天天搞| 高清在线国产一区| 全区人妻精品视频| 黄片小视频在线播放| 日本免费a在线| 1024手机看黄色片| 国产精品亚洲av一区麻豆| 国产成人aa在线观看| 窝窝影院91人妻| 9191精品国产免费久久| 日韩大尺度精品在线看网址| 熟妇人妻久久中文字幕3abv| 在线观看www视频免费| 黑人巨大精品欧美一区二区mp4| 国产精品免费视频内射| 最好的美女福利视频网| 国产一区二区在线av高清观看| a级毛片在线看网站| 可以免费在线观看a视频的电影网站| 黑人欧美特级aaaaaa片| 波多野结衣巨乳人妻| 在线观看免费视频日本深夜| 日韩中文字幕欧美一区二区| 身体一侧抽搐| 精品人妻1区二区| 亚洲成人中文字幕在线播放| 午夜福利欧美成人| 丰满人妻一区二区三区视频av | 九色成人免费人妻av| 欧美绝顶高潮抽搐喷水| 国产免费男女视频| 欧美乱码精品一区二区三区| 亚洲人成伊人成综合网2020| 在线观看日韩欧美| 亚洲五月天丁香| 欧美乱妇无乱码| 精品第一国产精品| 一边摸一边做爽爽视频免费| 日韩欧美一区二区三区在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人看人人澡| 久久精品人妻少妇| 精品免费久久久久久久清纯| 精品久久久久久成人av| 成人特级黄色片久久久久久久| 国内少妇人妻偷人精品xxx网站 | 国内揄拍国产精品人妻在线| 嫩草影视91久久| 免费在线观看影片大全网站| 999精品在线视频| 国产爱豆传媒在线观看 | av超薄肉色丝袜交足视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人与动物交配视频| 欧美日本视频| 国产精品香港三级国产av潘金莲| 亚洲av第一区精品v没综合| 国产精品亚洲av一区麻豆| 国产亚洲精品综合一区在线观看 | 成年女人毛片免费观看观看9| 成人精品一区二区免费| 日韩成人在线观看一区二区三区| 精品免费久久久久久久清纯| 亚洲欧洲精品一区二区精品久久久| 搡老熟女国产l中国老女人| 老司机靠b影院| 男人舔奶头视频| 黄色片一级片一级黄色片| 1024视频免费在线观看| videosex国产| 国产亚洲欧美在线一区二区| 最近视频中文字幕2019在线8| 丝袜美腿诱惑在线| 亚洲精品中文字幕一二三四区| 男女视频在线观看网站免费 | 久久久久免费精品人妻一区二区| 真人做人爱边吃奶动态| 欧美zozozo另类| 中文字幕熟女人妻在线| 看黄色毛片网站| 国产午夜精品论理片| 三级男女做爰猛烈吃奶摸视频| 欧美日韩精品网址| 在线观看66精品国产| 18禁观看日本| 男女床上黄色一级片免费看| 好男人在线观看高清免费视频| 黑人欧美特级aaaaaa片| 一进一出抽搐gif免费好疼| 麻豆国产97在线/欧美 | 香蕉久久夜色| 久久99热这里只有精品18| 一边摸一边抽搐一进一小说| 成人一区二区视频在线观看| 久久久国产欧美日韩av| 亚洲av第一区精品v没综合| www.精华液| 婷婷亚洲欧美| 天堂动漫精品| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 美女大奶头视频| 亚洲黑人精品在线| 成人18禁高潮啪啪吃奶动态图| 一边摸一边做爽爽视频免费| 国产精品,欧美在线| 麻豆国产av国片精品| 欧美一级a爱片免费观看看 | 国产v大片淫在线免费观看| 亚洲午夜精品一区,二区,三区| av国产免费在线观看| 男女视频在线观看网站免费 | 国产三级黄色录像| 精品欧美一区二区三区在线| 在线观看免费视频日本深夜| 精华霜和精华液先用哪个| 成人特级黄色片久久久久久久| 日本三级黄在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品电影一区二区三区| 日本黄色视频三级网站网址| 国产野战对白在线观看| 一区福利在线观看| 国产欧美日韩精品亚洲av| 一夜夜www| 亚洲精品久久国产高清桃花| 99久久国产精品久久久| 国产高清videossex| 超碰成人久久| 一区二区三区激情视频| 波多野结衣高清无吗| 亚洲av美国av| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 亚洲精品美女久久av网站| 久久久国产成人免费| 久久久久久久久中文| 丁香欧美五月| 久9热在线精品视频| 欧美乱码精品一区二区三区| 日韩精品免费视频一区二区三区| 毛片女人毛片| 日本熟妇午夜| 床上黄色一级片| 亚洲免费av在线视频| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 黄片大片在线免费观看| 欧美高清成人免费视频www| 国产不卡一卡二| 又大又爽又粗| 免费在线观看日本一区| 国产一区二区在线观看日韩 | 妹子高潮喷水视频| 岛国在线免费视频观看| 成人欧美大片| 日本 av在线| 好男人在线观看高清免费视频| 丁香六月欧美| 丁香欧美五月| 午夜福利视频1000在线观看| 不卡av一区二区三区| 黄色女人牲交| 欧美3d第一页| 两个人的视频大全免费| 男女视频在线观看网站免费 | 国内毛片毛片毛片毛片毛片| 久久久久久久久免费视频了| 2021天堂中文幕一二区在线观| 亚洲av熟女| 精品一区二区三区av网在线观看| 精品久久久久久,| 午夜免费激情av| 亚洲av成人一区二区三| 亚洲,欧美精品.| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 美女黄网站色视频| 成人三级做爰电影| 成人av一区二区三区在线看| 日韩av在线大香蕉| 国产亚洲精品综合一区在线观看 | 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 一级片免费观看大全| 亚洲人成网站高清观看| 日韩欧美精品v在线| 桃红色精品国产亚洲av| 国内精品一区二区在线观看| 亚洲无线在线观看| 99热这里只有是精品50| 一区福利在线观看| 麻豆成人午夜福利视频| 国产黄片美女视频| 精品国产乱码久久久久久男人| √禁漫天堂资源中文www| 欧美一区二区精品小视频在线| 日韩欧美免费精品| 国产av麻豆久久久久久久| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 亚洲午夜理论影院| 亚洲电影在线观看av| 国产精品野战在线观看| 色综合婷婷激情| 99久久久亚洲精品蜜臀av| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 国产精品 欧美亚洲| 色老头精品视频在线观看| 一进一出抽搐gif免费好疼| 午夜福利欧美成人| 长腿黑丝高跟| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av激情在线播放| 午夜激情av网站| 亚洲国产精品999在线| 99riav亚洲国产免费| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 欧美av亚洲av综合av国产av| 日本熟妇午夜| 亚洲国产精品999在线| 国产成人精品无人区| 人妻久久中文字幕网| 天堂影院成人在线观看| 日本成人三级电影网站| 欧美黄色片欧美黄色片| www.www免费av| 欧美最黄视频在线播放免费| 搞女人的毛片| 国产不卡一卡二| 最近最新中文字幕大全免费视频| 在线观看免费午夜福利视频| 精品国内亚洲2022精品成人| 日韩中文字幕欧美一区二区| 少妇被粗大的猛进出69影院| 黄频高清免费视频| 狂野欧美白嫩少妇大欣赏| 人妻丰满熟妇av一区二区三区| 午夜激情av网站| 大型黄色视频在线免费观看| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 90打野战视频偷拍视频| 精品第一国产精品| 国内揄拍国产精品人妻在线| 可以免费在线观看a视频的电影网站| 精品一区二区三区视频在线观看免费| 免费人成视频x8x8入口观看| 天天一区二区日本电影三级| 国产精品av久久久久免费| 亚洲天堂国产精品一区在线| 搡老岳熟女国产| 久久久国产成人免费| 国产精品1区2区在线观看.| videosex国产| 精品国产乱子伦一区二区三区| 美女午夜性视频免费| 麻豆成人午夜福利视频| 午夜两性在线视频| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 九九热线精品视视频播放| 国产在线精品亚洲第一网站| 香蕉av资源在线| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 精品久久久久久久末码| 50天的宝宝边吃奶边哭怎么回事| 久久香蕉精品热| 亚洲18禁久久av| 国产成人一区二区三区免费视频网站| 一级毛片高清免费大全| av中文乱码字幕在线| 精品国产乱码久久久久久男人| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区免费观看 | 国产激情久久老熟女| 中文字幕av在线有码专区| 成人国产一区最新在线观看| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 一级作爱视频免费观看| 天堂av国产一区二区熟女人妻 | 天堂动漫精品| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 在线视频色国产色| 亚洲精品中文字幕一二三四区| www国产在线视频色| 在线十欧美十亚洲十日本专区| 久久人人精品亚洲av| 欧美zozozo另类| 一本精品99久久精品77| 日韩欧美 国产精品| 日韩欧美免费精品| 久久午夜综合久久蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 亚洲最大成人中文| 一a级毛片在线观看| 又大又爽又粗| 亚洲欧洲精品一区二区精品久久久| 精品不卡国产一区二区三区| 亚洲精品美女久久av网站| 欧美色欧美亚洲另类二区| 国产99白浆流出| 少妇裸体淫交视频免费看高清 | 在线视频色国产色| 国产单亲对白刺激| 美女大奶头视频| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 欧美日韩乱码在线| 美女扒开内裤让男人捅视频| 久久香蕉精品热| or卡值多少钱| 观看免费一级毛片| 欧美一区二区精品小视频在线| 国产一区二区激情短视频| 久久久久久亚洲精品国产蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久精品欧美日韩精品| 精品久久蜜臀av无| 搞女人的毛片| 男女下面进入的视频免费午夜| 久久久久国内视频| 黄色a级毛片大全视频| 女人高潮潮喷娇喘18禁视频| 免费看美女性在线毛片视频| 国产片内射在线| 午夜福利在线在线| 国内精品久久久久久久电影| 午夜福利在线在线| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| xxxwww97欧美| 欧美av亚洲av综合av国产av| 婷婷丁香在线五月| 久久亚洲精品不卡| √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲| 色av中文字幕| 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 久久久久九九精品影院| x7x7x7水蜜桃| 中文字幕av在线有码专区| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 国产熟女xx| 精品乱码久久久久久99久播| 亚洲成a人片在线一区二区| 国产一级毛片七仙女欲春2| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 亚洲精品中文字幕在线视频| 91成年电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲全国av大片| 这个男人来自地球电影免费观看| 久久久久久久久中文| 欧美性猛交黑人性爽| 色综合婷婷激情| 舔av片在线| 一本综合久久免费| 两个人视频免费观看高清| 精品久久久久久久人妻蜜臀av| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 亚洲自偷自拍图片 自拍| 国产私拍福利视频在线观看| 97超级碰碰碰精品色视频在线观看| 一级黄色大片毛片| 香蕉丝袜av| 50天的宝宝边吃奶边哭怎么回事| 成人三级黄色视频| 国产日本99.免费观看| 最好的美女福利视频网| 成人亚洲精品av一区二区| 国内揄拍国产精品人妻在线| 一本精品99久久精品77| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 亚洲国产欧美人成| 国产亚洲精品一区二区www| 日韩欧美免费精品| 免费无遮挡裸体视频| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸| 欧美成狂野欧美在线观看| 亚洲成人久久性| 国产成人av教育| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色| 不卡一级毛片| 极品教师在线免费播放| 亚洲国产欧洲综合997久久,| 很黄的视频免费| 亚洲人成网站在线播放欧美日韩| 午夜免费观看网址| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日韩免费av在线播放| 久久精品成人免费网站| 不卡av一区二区三区| 国产三级黄色录像| 日韩免费av在线播放| 久99久视频精品免费| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区| √禁漫天堂资源中文www| 欧美在线黄色| 亚洲国产精品久久男人天堂| 亚洲全国av大片| 国产黄色小视频在线观看| 欧美黄色淫秽网站| 一级毛片女人18水好多| 日本 av在线| 国产69精品久久久久777片 | 人妻丰满熟妇av一区二区三区| 婷婷精品国产亚洲av在线| 国产av又大| 在线a可以看的网站| 欧美成人性av电影在线观看| 亚洲成av人片在线播放无| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 啦啦啦免费观看视频1| 免费在线观看亚洲国产| 三级男女做爰猛烈吃奶摸视频| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三| 一夜夜www| 丁香六月欧美| 黄色女人牲交| 99久久综合精品五月天人人| 最好的美女福利视频网| 国产真实乱freesex| 欧美日韩黄片免| 99riav亚洲国产免费| 欧美精品啪啪一区二区三区| 国产精品九九99| 丰满人妻熟妇乱又伦精品不卡| 99国产极品粉嫩在线观看| 国产真实乱freesex| 久久精品91蜜桃| 69av精品久久久久久| 欧美日本视频| 亚洲av电影在线进入| 国产精品一区二区免费欧美| 婷婷六月久久综合丁香| 成人三级做爰电影| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 熟女电影av网| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 无限看片的www在线观看| 久久精品影院6| 欧美最黄视频在线播放免费| 在线免费观看的www视频| 高潮久久久久久久久久久不卡| 久久久久久久午夜电影| 国内精品一区二区在线观看| 午夜精品在线福利| 成人三级黄色视频| 精品久久久久久久久久免费视频| www.999成人在线观看| 脱女人内裤的视频| 午夜a级毛片| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| 久久久久久人人人人人| 久99久视频精品免费| 亚洲精品在线观看二区| 狂野欧美激情性xxxx| 色在线成人网| 亚洲男人的天堂狠狠| 香蕉av资源在线| 黄色a级毛片大全视频| 久久香蕉国产精品| 国内精品久久久久精免费| 亚洲18禁久久av| 啦啦啦韩国在线观看视频| 国产一区二区三区在线臀色熟女| 久久 成人 亚洲| 天天添夜夜摸| 99国产精品99久久久久| 露出奶头的视频| 制服丝袜大香蕉在线| 欧美日本视频| 中文字幕熟女人妻在线| 成人欧美大片| 露出奶头的视频| 日韩欧美在线乱码| 亚洲人成77777在线视频| 国产精品野战在线观看| 久久香蕉国产精品| 色综合婷婷激情| 丝袜美腿诱惑在线| 黑人操中国人逼视频| 欧美日韩乱码在线| 亚洲欧美日韩东京热| 亚洲精华国产精华精| 亚洲精品中文字幕在线视频| 国产成人一区二区三区免费视频网站| av在线播放免费不卡| 国产av麻豆久久久久久久| 国产精品久久久久久人妻精品电影| 国产午夜福利久久久久久| www国产在线视频色| 国产高清视频在线观看网站| 国内精品一区二区在线观看| 可以在线观看的亚洲视频| 国产高清激情床上av| 一区二区三区国产精品乱码| 1024视频免费在线观看| 97碰自拍视频| 91大片在线观看| 在线观看美女被高潮喷水网站 | 特级一级黄色大片| 亚洲一码二码三码区别大吗| 岛国在线观看网站| 中国美女看黄片| 三级国产精品欧美在线观看 | 三级毛片av免费| 久久人人精品亚洲av| 精品久久久久久成人av| 国产私拍福利视频在线观看| 亚洲专区字幕在线| 国产av又大| 欧美在线黄色| 怎么达到女性高潮| 日韩av在线大香蕉| 97碰自拍视频| 最新美女视频免费是黄的| 听说在线观看完整版免费高清| 欧美不卡视频在线免费观看 | av国产免费在线观看| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区黑人| 妹子高潮喷水视频| 成人三级做爰电影| 一二三四社区在线视频社区8| 欧美日本视频| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 天堂影院成人在线观看| 我要搜黄色片| 麻豆久久精品国产亚洲av| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 最新美女视频免费是黄的| 亚洲国产欧美人成| 国产激情欧美一区二区| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 亚洲色图av天堂| 一本久久中文字幕| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 亚洲成人精品中文字幕电影| 国产久久久一区二区三区| 国产高清视频在线观看网站| 国产亚洲精品综合一区在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 国产又黄又爽又无遮挡在线| 哪里可以看免费的av片| 中文资源天堂在线| 一边摸一边抽搐一进一小说| 搡老岳熟女国产| 啦啦啦观看免费观看视频高清| 亚洲精品中文字幕一二三四区| 日韩欧美 国产精品| 午夜久久久久精精品|