• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Command Filtered Finite/Fixed-time Heading Tracking Control of Surface Vehicles

    2021-10-25 01:41:14ZhenyuGaoandGeGuo
    IEEE/CAA Journal of Automatica Sinica 2021年10期

    Zhenyu Gao and Ge Guo,

    Abstract—This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies.

    I.INTRODUCTION

    RECENTLY,the heading tracking problem for surface vehicles has received much interest,owing to it is directly related to the operation,economy,safety,and effectiveness of the vehicle control system.To track the desired heading,a proportional-integral-derivative (PID) controller,which greatly improves steering performance,was presented in 1920s.Later,many advanced control algorithms,such as modern optimal control [1],neural network control [2]–[4],robust control [5],[6],and fuzzy control [7],have been applied to heading control of surface vehicles.However,the control approaches in [1]–[7] can only obtain the infinite-time stability of tracking systems,where it is generally known that the finite-time stability is more practical than the infinite-time stability in a real control system.

    To handle the finite-time control of the system,many interesting results have been obtained in recent years [8]–[11].These research works are based on the theory of finite-time stability or fixed-time stability [12].In addition,the system with finite-time or fixed-time convergence usually demonstrates not only faster convergence rates,but also has better rejection features against uncertainties and disturbances.Although the idea of finite-time and fixed-time control are promising,research works so far has been solely focused on stabilization of various nonlinear system [9]–[11] and the consensus of multi-agent systems [13],[14].Here,we aim to extend the control strategies under finite/fixed-time control frameworks such that the heading tracking can be achieved with faster convergence rates and higher tracking precision.

    It is also worth mentioning that,the results mentioned above are all based on backstepping methods.As we all know,the backstepping method is subject to the problem of“explosion of complexity”caused by repeated differentiations of the virtual control signals.To eliminate this defect,the adaptive dynamic surface control method [15] was applied to address heading tracking control in [16],[17].However,since command filters are used to deal with differentiation of the virtual control signals,the control performance of this method may be affected by the filtering errors.Recently,[10],[18],[19] gave a new command-filtered control method to remove the filtering errors by introducing a compensator for each control signals.However,the filtering errors cannot be eliminated within setting time.

    Motivated by the aforementioned observations,this paper aims to give two novel adaptive control schemes,by which the desired heading can be tracked within a given settling time.The main contributions are summarized as follows:

    1) Proposing a finite-time and a fixed-time backstepping control scheme with which the vehicle can track the given heading with all the signals uniformly bounded and the tracking errors converge to a neighborhood of zeros within the settling time.Besides,under the proposed finite/fixed-time control scheme,the system has better robustness to external disturbance and uncertainty.

    2) Incorporating the compensator-based command filter technique into the proposed control scheme,by which the issue of“explosion of complexity”is eliminated,the filtering error can be compensated within finite/fixed time and the controller design procedure is much simpler and easier for implementation.

    This paper is organized as follows.Section II contains the preliminaries and problem statement.Section III presents the controller design and stability analysis.Section IV gives the simulation studies.Finally,some conclusions are drawn in Section V.

    II.PRELIMINARIES AND PROBLEM STATEMENT

    A.Preliminaries

    B.Problem Statement

    Consider the following Norrbin nonlinear model describing the steering dynamics of a surface vehicle,depicted by [17]

    where ψ ∈R is the course angle,δ ∈R is the actual rudder angle,T∈R is the time constant,K∈R is the gain constant,and γ ∈R is the Norrbin coefficient.

    For simplicity,the model (10) can be transformed into the following state space expression:

    whereris the yaw velocity of the vehicle,and θi,i=0,1,are model parameters.

    To facilitate the control design,the following assumption is made.

    Assumption 1:The parameters θi,i=0,1,in (11) are unknown yet bounded.

    Remark 1:Since the model parametersK,T,and γ are susceptible to external factors,such as velocity,shape,and load of vehicles,depth of water,etc,they are difficult to obtain accurately,but they are bounded.Hence,the Assumption 1 is reasonable.

    The objective of this paper is to design two control schemes(i.e.,a finite-time and a fixed-time control scheme) for a surface vehicle with unknown model parameters,so that the actual heading ψ tracks the desired heading ψdwithin the settling time successfully as shown in Fig.1,while guaranteeing all signals of the closed-loop system are uniformly bounded.Further,the control objective can be stated mathematically as

    Fig.1.Heading tracking of a surface vehicle.

    Fig.2.Schematic of heading tracking control of a surface vehicle.

    and

    whereT0,ε are positive constants,andT0∈[0,∞).

    III.CONTROLLER DESIGN AND STABILITY ANALYSIS

    In this section,two adaptive control schemes combining the adaptive technique with the command filter-backstepping design procedure,as shown in Fig.2,will be given.

    Define the heading tracking errorz1and yaw angle velocity tracking errorz2as follows:

    A.Adaptive Finite-time Controller Design

    In this subsection,a finite-time control scheme is proposed,and the controller design contains the following two steps.

    whereki,i=1,2,3,and α are positive gain constants withk1>k3/2,0<α<1,and ξ1is a compensating signal which will be given later.

    To generate the stabilizing functionand it is derivativethe nominal stabilizing function is then passed through the following finite-time command filter

    where λ1and λ2are positive constants,φ1,1is the estimate of αr,ι is the derivative of φ1,1,φ1,1(0)=αr(0) and ι(0)=0.

    Remark 2:If λ1and λ2are properly chosen,then we haveafter a finite time of transient process and the corresponding solutions of the dynamic systems are finite time stable in the absence of input noises.

    In practice,the input noise is inevitable,and to compensate for the filtering error,defines the filtering errorand then the compensating signal is defined as

    where ?1,k4,k5are positive constants withk4>(k3+1)/2 and ξ1(0)=0.

    Remark 3:Compared with the compensator-based command filter technique in [10],[18],[19],the proposed command filter technique (18) and (19) can not only eliminated the problem of“explosion of complexity”,but also can compensate the filtering error within finite time.

    Here,the candidate Lyapunov function is selected as

    According to Lemma 2,it can be concluded that the systemz2is practically finite-time stable.

    Consider the following candidate Lyapunov function for the whole system

    Therefore,there is the following theorem.

    Theorem 1:Consider the nonlinear heading dynamics of surface vehicles in (11) under Assumption 1,the heading tracking can be achieved by the proposed actual input (24)with virtual input (17),command filter (18),the compensating signal (19) and adaptive laws (25),(26),while guarantee that all signals of the closed-loop system are uniformly bounded and all tracking errors will convergence to a region near neighborhood of zeros in finite time.

    Proof:Based on (31) and Lemma 5,one can obtain

    According to Lemma 2,it is easy to obtain that the system is practically finite-time stable,and the residual set of the system(30) is given by

    Remark 4:Although the proposed control scheme above can ensure that the desired heading can be tracked in finite time,the convergence time cannot be determined beforehand,since it depends on the initial states of the system which is usually unknown.

    With the above finite-time control scheme,the convergence time depends on the initial states of the system and the heading tracking objective cannot be achieved within a given time.Therefore,in the next subsection,we will give a fixedtime control scheme.

    B.Adaptive Fixed-time Controller Design

    Here,a fixed-time control scheme is developed for the heading tracking of surface vehicles.

    Step 1:Here,the virtual input is chosen as follows:

    where φ2,1is the estimated value of αr,ι1,1is the derivative of φ2,1, λ1,i,i=1,2,3,4,are positive constants,andm1,1=α,n

    1,1=β,m1,2=α/(2?α),n1,2=2β?1, φ2,1(0)=αr(0),and ι1,1(0)=0.

    Remark 5:For the command filter (36),if the parameters λ1,1, λ1,2,λ1,3,and λ1,4are properly chosen,the following equalities φ2,1=αr,andare true in the absence of input noises after a fixed time of transient process,and the corresponding solutions of the dynamic systems are fixedtime stable.

    Here,the compensating signal is generated by the following system:

    where ?2and λi,i=4,5,6,are positive constants with

    Remark 6:Compared with the compensator-based command filter technique in [10],[18],[19] and the command filter technique (18) and (19),the proposed filter (36) and (37)can avert repeated differentiations of the virtual control signals which reduced the computation greatly.Meanwhile,the filter proposed here can compensate the filtering error within fixed time.

    Here,consider the same Lyapunov function as (20),and taking the time derivative ofV1along (35) and (37),one can obtain

    Therefore,there is the following theorem.

    Theorem 2:Consider the nonlinear heading dynamics of surface vehicles in (11) under Assumption 1,the heading tracking can be achieved by the proposed actual input (40)with virtual input (35),command filter (36),the compensating signal (37),and adaptive laws (41),(42),while guaranteeing all signals of the closed-loop system are bounded and all tracking errors converge to a neighborhood of zeros within the settling time regardless of the initial states of the system.

    Proof:In view of (45),one can easy obtain

    Remark 7:According to (48),we can see the maximum convergence time only depends on the controller parameters and ?1.Therefore,the presented method allows one to arbitrarily choose the convergence rate of the heading tracking control of surface vehicles,which makes it feasible for us to meet strict settling time requirements in practical applications.Moreover,the fixed-time algorithm can ensure a fixed settling time regardless of the initial states of surface vehicles.

    Remark 8:By selecting the controller parametersand ? to satisfy corresponding constraints as mentioned in the above discussions,we can guarantee a bound of the settling time as given in (48),which determines a certain convergence rate.Generally,the relation between the convergence rate and these parameters are shown in Table I.

    Remark 9:From the stability analysis and the definition of convergence time (48),we can see that the values of controller parameters do not affect the stability of the closed-loop system,although they may influence the convergence time.

    TABLEI RELATIONSHIP BETWEEN PARAMETERS AND CONVERGENCE RATE

    For a practical tracking control problem,the desired convergence time cannot be too short,otherwise,the closedloop system may be instable due to saturation constraint of the thruster.In addition,a feasible convergence time should also take the transient performance into consideration in the design procedure according to the maximum maneuver capability.

    Remark 10:The Lyapunov function (20) in the paper is in general a non-quadratic,and according the result in [22] and[23],the non-quadratic Lyapunov functions usually result in better performance compared with quadratic functions.In this paper,the usage of non-quadratic Lyapunov function and finite/fixed-time theory leads to improved convergence of the system error signal to zero.

    IV.SIMULATION STUDIES

    In this section,we do the high-fidelity simulations using the module MSS/control/autopilots/heading autopilot model from the marine system simulator (MSS) toolbox [24] developed by the Department of Marine Technology,Norwegian University of Science and Technology,Norwegian.An autopilot with the following parametersT=21 s,K=0.23 s?1, γ=0.3 s2are taken as the simulation example.The design parameters of finite-time controller arek1=k6=2,k2=k7=5/7,k3=k4=3/2, γ1=γ2=0.1,ι0=3, ι1=5, α=5/7,and the parameters of fixed-time controller are λ1=λ7=2,λ2=λ5=λ8=5/7, λ3=λ6=λ9=3/5, λ4=2, γ3=γ4=0.1,ι2=3,ι3=3,α=5/7, β=5/3 and ?1=?2=0.2.To show the relation between convergence time and initial states,the following initial states are chosen(ψ1(0)=0,r1(0)=0) and(ψ2(0)=?10,r2(0)=10).

    In this simulation,the reference heading of the vehicle is given as

    A.Performance of Proposed Heading Tracking Control Schemes

    In this subsection,the simulations are carried out using the proposed control schemes.

    Case 1:Adaptive finite-time (FinT) controller;

    Case 2:Adaptive fixed-time (FixT) controller.

    Fig.3.Desired heading and actual heading with different initial states under adaptive FinT/PID controller.

    Fig.4.Heading tracking error z1.

    Fig.5.Paramet er estimat es and

    Simulation results are shown in Figs.3–14.The results of the heading tracking control with different initial conditions under FinT controller and PID controller are shown in Figs.3 and 4.Here,the PID controller is chosen as δPID=From these figures we can see,under the same FinT controller parameters,different initial states have different convergence time that means the settling time depend on the initial states of the system.Furthermore,the FinT controller has faster convergence speed than PID controller.Fig.5 shows the estimate result of θ0and θ1,which will converge to their true values under the proposed adaptive law.Fig.6 shows the filtering errorin FinT control scheme,by which we can see the filter with compensator has smaller filtering error.Fig.7 shows the filtering errorwith the command filter in[19] and the finite-time command filter proposed in this paper.From the result in Fig.3,it is shown that the proposed finitetime command filter not only has faster convergence rate but also achieves better tracking effect.Fig.8 shows the actual control input δ in FinT control scheme,by which the heading tracking control can be achieved.

    Fig.6.Filtering err or αr ?with/without compensator.

    Fig.7.Filtering errorαr ?with different command filter.

    Fig.8.The actual control i nput δ under the FinT controller.

    Fig.9.Desired heading and actual heading with different initial states under adaptive FixT/FinT controller.

    Fig.10.Heading tracking error z1.

    Fig.11.Para meter esti matesand

    Figs.9 and 10 show the results of the heading tracking control under the proposed FixT controller and FinT controller.From these two figures we can see,with the same parameters of FixT controller,the vehicle will track the desired heading within the same settling time regardless of the initial condition.Besides,under the proposed adaptive law,the unknown parameters θ0and θ1can be estimated as shown in Fig.11.Filtering error with/without compensator is shown in Fig.12,which implies that the filter with compensator has better performance.Fig.13 shows the result of filtering errorunder the command filter in [19],the finite-time command filter,and the fixed-time command filter proposed in this paper.The simulation results indicate that the fixedtime command filter has the best performance,that is,faster tracking speed and higher tracking accuracy.Fig.14 shows the actual control input δ in FixT control scheme,by which the heading tracking control can be achieved within settling time.

    Fig.12.Filteringerror αr ?with/without compensator.

    Fig.13.Filtering error αr ?withdifferent command filter.

    Fig.14.The act ual control input δ under the FixT controller.

    B.Performance of Proposed Heading Tracking Control Schemes Under Disturbance

    The time-varying external disturbance is taken asd(t) with the Gaussian random process.

    The simulation results are depicted in Figs.15 and 16 and the performance indices are also summarized in Table II.It is observed from Figs.15 and 16 and Table II that the proposed heading tracking control law exhibits almost identical control performance in presence of disturbance,which shows that the proposed control law has better rejection feature against disturbance.

    Fig.15.Desired heading and actual heading with disturbance under adaptive FixT/FinT and PID controller.

    Fig.16.Heading t racking error z1 under disturbance.

    V.CONCLUSION

    The paper presents two novel control schemes of heading tracking control of surface vehicles with model parameter uncertainties.Firstly,a novel finite-time control scheme is proposed by which the vehicle can tracks the desired heading in finite-time that depends on the initial states of the system.In order to solve the drawback of convergence time related to the initial states,then,a fixed-time control scheme is developed,with which the control objective can be achieved within the settling time independent of the initial conditions,while guaranteeing all signals of the closed-loop system are uniformly bounded and the tracking errors converge to a neighborhood of zeros within the settling time.In addition,to eliminate the problem of“explosion of complexity”in backstepping method,compensator-based command filter technique is introduced to obtain the derivative of virtual input.Simulation results demonstrate the effectiveness of the proposed control method.In future work,we plan to extend the finite/fixed-time control theory to trajectory tracking or formation control of surface vehicles,and investigate the possibility of heading control of surface vehicle within settling time in the presence of actuator saturation.

    TABLEII PERFORMANCE COMPARISON OF THE PROPOSED CONTROL SCHEME AND PID SCHEME

    少妇被粗大猛烈的视频| 成人免费观看视频高清| 欧美一级a爱片免费观看看| 妹子高潮喷水视频| 亚洲欧美日韩另类电影网站| 丰满少妇做爰视频| 一本久久精品| 国产成人a∨麻豆精品| 91久久精品国产一区二区成人| 观看美女的网站| 最新中文字幕久久久久| 亚洲精品,欧美精品| 亚洲精品aⅴ在线观看| 欧美激情极品国产一区二区三区 | 少妇丰满av| 久久久亚洲精品成人影院| 免费观看在线日韩| h日本视频在线播放| 国产白丝娇喘喷水9色精品| 性高湖久久久久久久久免费观看| 日韩欧美 国产精品| 日日撸夜夜添| 毛片一级片免费看久久久久| 嘟嘟电影网在线观看| 另类亚洲欧美激情| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 国产中年淑女户外野战色| 免费少妇av软件| 久久女婷五月综合色啪小说| 十分钟在线观看高清视频www | 亚洲欧美成人精品一区二区| 男人舔奶头视频| √禁漫天堂资源中文www| av不卡在线播放| 丝瓜视频免费看黄片| 亚洲精品日韩av片在线观看| 97超视频在线观看视频| 国产亚洲欧美精品永久| 丰满人妻一区二区三区视频av| 欧美日韩精品成人综合77777| 国产黄色免费在线视频| 亚洲av国产av综合av卡| 免费av不卡在线播放| av天堂中文字幕网| 免费观看av网站的网址| 九九在线视频观看精品| 两个人的视频大全免费| av网站免费在线观看视频| 亚洲美女黄色视频免费看| 又粗又硬又长又爽又黄的视频| 美女内射精品一级片tv| 一个人免费看片子| 成人亚洲欧美一区二区av| 久久精品国产自在天天线| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 午夜视频国产福利| 91久久精品电影网| xxx大片免费视频| 在现免费观看毛片| 国产成人精品一,二区| 欧美区成人在线视频| 一区二区av电影网| 人妻人人澡人人爽人人| 午夜免费观看性视频| 三级国产精品欧美在线观看| 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 亚洲欧美成人精品一区二区| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 国产精品一二三区在线看| 久久毛片免费看一区二区三区| 永久免费av网站大全| 免费久久久久久久精品成人欧美视频 | 精品一区在线观看国产| 国产69精品久久久久777片| 亚洲,欧美,日韩| 亚洲欧美精品专区久久| 高清不卡的av网站| 亚洲av不卡在线观看| 99re6热这里在线精品视频| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| 久久久久久久久久久丰满| 日韩熟女老妇一区二区性免费视频| 精品国产一区二区久久| 中文字幕精品免费在线观看视频 | 老熟女久久久| 久久久久久久久久人人人人人人| 亚洲自偷自拍三级| 日本黄色片子视频| 国产一区二区三区综合在线观看 | 只有这里有精品99| 最近中文字幕高清免费大全6| 嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区| 最黄视频免费看| 亚洲,一卡二卡三卡| 中文字幕亚洲精品专区| 插逼视频在线观看| 国产亚洲午夜精品一区二区久久| 另类精品久久| 国产av码专区亚洲av| av免费在线看不卡| 亚洲精品成人av观看孕妇| 久久毛片免费看一区二区三区| 国产亚洲5aaaaa淫片| 视频中文字幕在线观看| 特大巨黑吊av在线直播| 欧美三级亚洲精品| 久久影院123| 天堂俺去俺来也www色官网| 亚洲国产精品999| 精华霜和精华液先用哪个| 久久青草综合色| 亚洲av不卡在线观看| 亚洲av二区三区四区| 国产一区二区在线观看av| 久久午夜福利片| 精品人妻一区二区三区麻豆| 久久久久久久久久久久大奶| 9色porny在线观看| 99久久人妻综合| 日本免费在线观看一区| 久久久精品94久久精品| 久久久久久久大尺度免费视频| 五月开心婷婷网| 成人黄色视频免费在线看| 亚洲国产精品一区三区| 王馨瑶露胸无遮挡在线观看| 国产美女午夜福利| 国产精品99久久99久久久不卡 | 久久精品久久精品一区二区三区| 午夜福利视频精品| 日日爽夜夜爽网站| 国模一区二区三区四区视频| 曰老女人黄片| 亚洲精品成人av观看孕妇| 晚上一个人看的免费电影| 乱人伦中国视频| 国产av一区二区精品久久| 亚洲经典国产精华液单| 午夜av观看不卡| 亚洲欧美日韩卡通动漫| 欧美一级a爱片免费观看看| 亚洲精品乱码久久久久久按摩| av天堂久久9| 国产一级毛片在线| 国产精品一区二区性色av| 精品久久国产蜜桃| 婷婷色av中文字幕| 国产在线男女| 精华霜和精华液先用哪个| 精品国产国语对白av| 国产av码专区亚洲av| 黑人高潮一二区| 欧美精品亚洲一区二区| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇丰满av| 午夜福利影视在线免费观看| 国产伦在线观看视频一区| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 美女中出高潮动态图| 两个人的视频大全免费| 久久 成人 亚洲| 国产日韩欧美亚洲二区| 国产精品成人在线| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 日韩不卡一区二区三区视频在线| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 91aial.com中文字幕在线观看| 高清不卡的av网站| 一级毛片aaaaaa免费看小| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 国产午夜精品一二区理论片| 成人国产麻豆网| 大香蕉97超碰在线| 久久精品国产亚洲av涩爱| 精品一区二区免费观看| 国产精品国产三级国产专区5o| 女性生殖器流出的白浆| 精品久久久久久久久av| 国产爽快片一区二区三区| 亚洲电影在线观看av| √禁漫天堂资源中文www| 久久久久久久国产电影| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 日韩精品有码人妻一区| 国产乱来视频区| 国产精品一区二区三区四区免费观看| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 夜夜爽夜夜爽视频| 日本色播在线视频| a 毛片基地| 亚洲国产日韩一区二区| 国产男人的电影天堂91| 亚洲精品456在线播放app| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 国产精品久久久久久久久免| 永久网站在线| 国产精品久久久久久av不卡| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 女性被躁到高潮视频| www.av在线官网国产| 久久久久视频综合| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 中国国产av一级| 又爽又黄a免费视频| 亚洲精品久久久久久婷婷小说| 少妇猛男粗大的猛烈进出视频| 香蕉精品网在线| 少妇精品久久久久久久| 毛片一级片免费看久久久久| 妹子高潮喷水视频| 精品99又大又爽又粗少妇毛片| 色5月婷婷丁香| 哪个播放器可以免费观看大片| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 九九在线视频观看精品| av又黄又爽大尺度在线免费看| 曰老女人黄片| 国产深夜福利视频在线观看| 久久久国产精品麻豆| 亚洲一级一片aⅴ在线观看| 久久久久网色| 日韩成人伦理影院| 一区二区三区精品91| 色视频在线一区二区三区| 超碰97精品在线观看| 亚洲人成网站在线观看播放| 精品人妻偷拍中文字幕| 亚洲精品日韩av片在线观看| 99热国产这里只有精品6| 九九久久精品国产亚洲av麻豆| 大片免费播放器 马上看| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看| 少妇熟女欧美另类| 美女中出高潮动态图| 国产精品一区二区性色av| 国产精品无大码| 有码 亚洲区| 男人和女人高潮做爰伦理| 黑人巨大精品欧美一区二区蜜桃 | 国产精品偷伦视频观看了| 久久久久久伊人网av| 精品一区在线观看国产| 亚洲成人手机| 国产一级毛片在线| 免费看光身美女| 精品熟女少妇av免费看| 中文欧美无线码| 五月玫瑰六月丁香| 亚洲婷婷狠狠爱综合网| 午夜精品国产一区二区电影| 国产精品不卡视频一区二区| 国内少妇人妻偷人精品xxx网站| 国产亚洲91精品色在线| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 五月开心婷婷网| av免费在线看不卡| 久久99热这里只频精品6学生| 在现免费观看毛片| 国产一级毛片在线| 久久精品熟女亚洲av麻豆精品| 久久女婷五月综合色啪小说| 亚洲国产精品专区欧美| 热99国产精品久久久久久7| 日韩一区二区视频免费看| 日韩av不卡免费在线播放| 观看美女的网站| 伊人久久国产一区二区| 精品熟女少妇av免费看| 免费av中文字幕在线| 国产亚洲午夜精品一区二区久久| 毛片一级片免费看久久久久| 91精品国产九色| 久久鲁丝午夜福利片| 只有这里有精品99| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 伦精品一区二区三区| 亚洲av中文av极速乱| 国产黄片视频在线免费观看| 免费黄网站久久成人精品| 看十八女毛片水多多多| av在线观看视频网站免费| 久久久久人妻精品一区果冻| 国精品久久久久久国模美| 麻豆精品久久久久久蜜桃| 国产免费又黄又爽又色| 国产高清不卡午夜福利| 成人黄色视频免费在线看| a级毛片免费高清观看在线播放| 高清欧美精品videossex| 国产爽快片一区二区三区| 人妻一区二区av| a级毛片在线看网站| 黑人高潮一二区| 99久久综合免费| 在线亚洲精品国产二区图片欧美 | 日本欧美视频一区| 黑丝袜美女国产一区| 亚洲天堂av无毛| 久久ye,这里只有精品| a 毛片基地| 免费少妇av软件| 高清午夜精品一区二区三区| 亚洲美女视频黄频| 国产高清有码在线观看视频| 建设人人有责人人尽责人人享有的| 亚洲第一av免费看| 国产男女超爽视频在线观看| 日韩中字成人| 少妇裸体淫交视频免费看高清| 欧美精品亚洲一区二区| 欧美一级a爱片免费观看看| 国产av精品麻豆| 日韩制服骚丝袜av| 青青草视频在线视频观看| 国产黄色视频一区二区在线观看| 成人美女网站在线观看视频| 欧美日韩综合久久久久久| 日韩伦理黄色片| 一区二区三区四区激情视频| 欧美丝袜亚洲另类| 亚洲精华国产精华液的使用体验| 91久久精品电影网| 最近最新中文字幕免费大全7| 六月丁香七月| 欧美成人午夜免费资源| 五月开心婷婷网| 少妇丰满av| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 欧美+日韩+精品| 少妇人妻一区二区三区视频| 久久人人爽av亚洲精品天堂| 人妻系列 视频| 18+在线观看网站| 伊人亚洲综合成人网| 亚洲欧洲日产国产| 丝袜在线中文字幕| www.av在线官网国产| 日日撸夜夜添| 国产精品一区www在线观看| 我要看黄色一级片免费的| 日本91视频免费播放| 交换朋友夫妻互换小说| 夫妻午夜视频| 亚洲精品中文字幕在线视频 | 国产一区二区三区综合在线观看 | 妹子高潮喷水视频| 国产成人精品福利久久| 99热网站在线观看| 婷婷色综合www| 少妇精品久久久久久久| 人体艺术视频欧美日本| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 中文字幕人妻丝袜制服| 一级片'在线观看视频| 国内精品宾馆在线| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| 一级毛片电影观看| a 毛片基地| av专区在线播放| 两个人的视频大全免费| 中文精品一卡2卡3卡4更新| 最后的刺客免费高清国语| 狠狠精品人妻久久久久久综合| 国产在线视频一区二区| 日本与韩国留学比较| 成人18禁高潮啪啪吃奶动态图 | 亚洲av福利一区| 男人和女人高潮做爰伦理| 少妇精品久久久久久久| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 性色avwww在线观看| 老女人水多毛片| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 美女cb高潮喷水在线观看| 涩涩av久久男人的天堂| 全区人妻精品视频| 久久久久视频综合| 国产老妇伦熟女老妇高清| 大又大粗又爽又黄少妇毛片口| 两个人的视频大全免费| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| av.在线天堂| 日日撸夜夜添| 一本大道久久a久久精品| 亚洲av成人精品一区久久| 亚洲av日韩在线播放| 国产精品免费大片| 51国产日韩欧美| 亚洲国产精品999| 国产精品无大码| 一区二区三区四区激情视频| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 成人国产av品久久久| 视频中文字幕在线观看| 国产91av在线免费观看| 熟女电影av网| 国产男女内射视频| 久久99热6这里只有精品| 黄色一级大片看看| 色吧在线观看| 下体分泌物呈黄色| 久久av网站| 日韩精品有码人妻一区| 最近手机中文字幕大全| h视频一区二区三区| 黄片无遮挡物在线观看| av国产精品久久久久影院| av在线app专区| 中文天堂在线官网| 青青草视频在线视频观看| 高清毛片免费看| 三级国产精品欧美在线观看| 我要看日韩黄色一级片| 亚洲av不卡在线观看| 欧美三级亚洲精品| av天堂久久9| 亚洲美女搞黄在线观看| 人妻夜夜爽99麻豆av| 美女xxoo啪啪120秒动态图| 亚洲不卡免费看| 永久免费av网站大全| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美 | 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| 国产一区亚洲一区在线观看| 人妻系列 视频| av福利片在线观看| 精品久久国产蜜桃| 中文资源天堂在线| 日韩一本色道免费dvd| 日韩欧美 国产精品| 欧美国产精品一级二级三级 | 秋霞伦理黄片| 亚洲熟女精品中文字幕| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 日本免费在线观看一区| 97在线视频观看| 秋霞在线观看毛片| 看十八女毛片水多多多| 99热网站在线观看| 欧美xxxx性猛交bbbb| 国产成人一区二区在线| 日本vs欧美在线观看视频 | h视频一区二区三区| 亚洲精品视频女| 91精品伊人久久大香线蕉| a 毛片基地| 九草在线视频观看| 久久久久久久久大av| 最近的中文字幕免费完整| 国产毛片在线视频| 色吧在线观看| 国产精品一区www在线观看| 成年人免费黄色播放视频 | 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 精品久久久精品久久久| 另类亚洲欧美激情| 日本av免费视频播放| 99九九在线精品视频 | 人妻夜夜爽99麻豆av| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 夫妻性生交免费视频一级片| 女人精品久久久久毛片| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 99热网站在线观看| 国产 精品1| 日韩熟女老妇一区二区性免费视频| 亚洲综合色惰| 色视频www国产| 九草在线视频观看| 一级a做视频免费观看| 免费黄色在线免费观看| 亚洲成色77777| 最近最新中文字幕免费大全7| 色视频www国产| 性高湖久久久久久久久免费观看| 午夜久久久在线观看| 国产精品一二三区在线看| 日本免费在线观看一区| 国产精品欧美亚洲77777| 久久毛片免费看一区二区三区| 美女国产视频在线观看| 高清在线视频一区二区三区| 婷婷色综合大香蕉| 欧美 日韩 精品 国产| av天堂中文字幕网| 人人妻人人添人人爽欧美一区卜| 黄色欧美视频在线观看| 日韩av不卡免费在线播放| 久久综合国产亚洲精品| 99久久精品一区二区三区| 欧美日韩综合久久久久久| 久久久国产一区二区| 欧美成人午夜免费资源| 日本黄大片高清| 日日爽夜夜爽网站| 亚洲av成人精品一区久久| 最黄视频免费看| 亚洲综合精品二区| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 国产美女午夜福利| 插逼视频在线观看| 日韩欧美精品免费久久| 少妇猛男粗大的猛烈进出视频| 女人久久www免费人成看片| 国产精品欧美亚洲77777| 日本91视频免费播放| 欧美+日韩+精品| 日本爱情动作片www.在线观看| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 内地一区二区视频在线| 免费观看av网站的网址| 曰老女人黄片| 22中文网久久字幕| 日韩免费高清中文字幕av| 久久99一区二区三区| 欧美日韩av久久| 在线天堂最新版资源| 亚洲欧美清纯卡通| kizo精华| 精品一区在线观看国产| 夜夜爽夜夜爽视频| 少妇人妻久久综合中文| 国产免费又黄又爽又色| 精品国产一区二区久久| 熟女人妻精品中文字幕| 精品酒店卫生间| 啦啦啦中文免费视频观看日本| 自线自在国产av| 国产永久视频网站| 大香蕉97超碰在线| 久久久久国产网址| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 日本vs欧美在线观看视频 | 大香蕉久久网| 国产视频首页在线观看| 中文字幕久久专区| 亚洲av欧美aⅴ国产| 久久久久网色| 亚洲第一区二区三区不卡| 最近中文字幕高清免费大全6| 日韩成人伦理影院| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 欧美bdsm另类| 国产精品久久久久久久久免| 日韩人妻高清精品专区| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 91久久精品国产一区二区成人| 久久鲁丝午夜福利片| 成人18禁高潮啪啪吃奶动态图 | 国产极品天堂在线| 中文字幕精品免费在线观看视频 | 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 亚洲国产精品成人久久小说| 午夜福利网站1000一区二区三区| 99久国产av精品国产电影| 国产欧美亚洲国产| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 三级国产精品片| 免费观看a级毛片全部| 国产精品一区www在线观看| 2022亚洲国产成人精品| 性色av一级| 欧美xxⅹ黑人| 在线免费观看不下载黄p国产| 五月伊人婷婷丁香| 国产乱人偷精品视频|