• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete Mitochondrial Genome of the Steppe Ribbon Racer (Psammophis lineolatus):The First Representative from the Snake Family Psammophiidae and its Phylogenetic Implications

    2021-09-27 11:25:42MinliCHENJinlongLIUJunLINaWUandXianguangGUO
    Asian Herpetological Research 2021年3期

    Minli CHEN ,Jinlong LIU ,Jun LI ,Na WU and Xianguang GUO

    1Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3College of Life Science and Technology,Xinjiang University,Urumqi 830046,Xinjiang,China

    Abstract Comparisons of vertebrate mitochondrial genomes (mitogenomes) may yield significant insights into the evolution of organisms and genomes.However,no complete mitogenome from the snake family Psammophiidae has been reported.In this study,we sequenced and annotated the complete mitogenome ofPsammophis lineolatus,representing the first mitogenome of Psammophiidae.The total length is 17 166 bp,consisting of 13 protein-coding genes (PCGs),22 transfer RNAs (tRNAs),two ribosomal RNAs (12S rRNA and 16S rRNA),and duplicate control regions (CRs).This gene arrangement belongs to the Type III pattern,which is a widely shared gene order in Alethinophidian snakes.All tRNAs exhibit cloverleaf structures with the exception of tRNA-SerAGY and tRNA-Pro,which lack a dihydrouridine (DHU) arm/stem and TΨC loop,respectively.The 13 PCGs include five start codons (ATG,GTG,ATA,ATT,and ATC),two complete stop codons(TAA and AGG),and two incomplete stop codon (T--and TA-).In addition,the Ka/Ks ratios indicate that all PCGs had undergone a strong purifying selection.Four types of CR domains rearrangement occurred among eight species of Elapoidea.The phylogenetic reconstructions with both Bayesian inference and maximum likelihood methods support the placement of Psammophiidae in the Elapoidea superfamily,with Homalopsidae being the sister taxon to Elapoidea and Colubroidea.However,the sister taxon of Psammophiidae is unclear due to the availability of Elapoidea mitogenomes being limited to the family Elapidae.More mitogenomes from different taxonomic groups in Elapoidea are needed to better understand the phylogenetic relationships within Elapoidea.

    Keywords mitochondrial genome,phylogenetic relationships,Psammophis lineolatus,Psammophiidae,purifying selection

    1.Introduction

    During the last four decades,sequences of the mitochondrial genomes (mitogenomes) of thousands of Metazoan species have been produced and are freely available in GenBank (https://www.ncbi.nlm.nih.gov/genbank/).Approximately two thirds of these sequences are from vertebrates.These sequences have been successfully applied to phylogenetic analyses at both shallow and deep levels (e.g.,Berntet al.,2013a;Knauset al.,2011),as well as for analyses of mitogenome organization and evolution (e.g.,Berntet al.,2013b;Boore,1999;Mauroet al.,2006).As the number of mitogenome sequences continues to increase,it has become clear that,rearrangements of several transfer RNA genes (tRNAs) are quite common (e.g.,Mauroet al.,2006;Pereira,2000;Xiaet al.,2016),even though gene arrangement is quite stable across many vertebrates.Overall,most vertebrate mitogenomes contain the same 37 genes (two for rRNAs,13 for proteins and 22 for tRNAs),but their order is variable among -and to a lesser extent,within -major groups (Berntet al.,2013;Boore,1999;Pereira,2000).Accordingly,comparisons of vertebrate mitochondrial genomes may lead to significant insights into the evolution both of organisms and of genomes.

    Snakes,which are members of the suborder Serpentes in Squamata,are an example of a group having a dynamic mitogenome structure.Currently,there are over 3700 recognized snake species,comprising two major clades:Scolecophidia (blind snakes) and Alethinophidia (Uetzet al.,2020).Scolecophidia are small fossorial snakes that feed mainly on ants and termites.Alethinophidia includes Henophidia(primitive snakes) and Caenophidia (advanced snakes;including~80% of extant snakes) (Vidal and Hedges,2002a).Some unique characteristics have been reported in the mitogenomes of snakes,including duplicate control regions (CRs),gene order rearrangements,shorter tRNA genes,and other shortened genes (Chen and Zhao,2009;Douglas and Gower,2010;Jianget al.,2007).To date,11 types of rearrangement patterns have been detected in snake mitogenomes (Type I,II,III,III-A,III-B,III-B1,III-C,III-D,III-E,III-F,III-G) (Qianet al.,2018).Among these,Type III is characterized by duplication of the CR and translocation of the tRNA-Leu gene;it is also the most common gene arrangement,extensively distributed in Alethinophidia.These arrangements are thought to involve three main processes:gene loss,translocation and duplication (Qianet al.,2018).Although a few convergent gene rearrangements have been observed in vertebrate mtDNAs,many derived genomic rearrangements are clearly useful as phylogenetic makers(thus,synapomorphic characters) for the identification of monophyletic groups (Boore and Brown,1998;Okajima and Kumazawa,2010;Xiaet al.,2014).Therefore,mitogenome data will contribute to our phylogenetic understanding of snakes,as well as the evolutionary implications of their mitogenomic rearrangements.

    As of October 1,2020,there were 188 complete mitogenomes of snakes present in the NCBI RefSeq database (Pruittet al.,2007),covering 124 snake species.However,no complete mitogenome from the family Psammophiidae (formerly the subfamily Psammophiinae;Bourgeois,1968) has ever been reported.This family comprises a natural group occurring throughout Africa,the Middle East,Madagascar,southern Europe and south-central Asia (Dowling and Duellman,1978;Kellyet al.,2003;Kellyet al.,2009),and currently consists of eight genera and 55 extant species (Uetzet al.,2020).Many studies of Psammophiidae have focused on systematics based on morphological features (Bourgeois,1968;Dowling and Duellman,1978;Zaher,1999).Although there are some molecular studies,most are based on limited mitochondrial DNA fragments and/or nuclear genes (Gravlun,2001;Kellyet al.,2008;Kellyet al.,2009;Lawsonet al.,2005;Nagyet al.,2003;Vidal and Hedges,2002b).

    In this study,we produced for the first time the complete mitogenome sequence ofthe Steppe Ribbon Racer,Psammophis lineolatus(Brandt,1838),a representative of the family Psammophiidae.As noted by Qianet al.(2018),the Type III mitogenome rearrangement is the most prevalent and widely occurring in Elapidae.Given that Psammophiidae is closely related to Elapidae among the major snake families-both belonging to the Elapoidea superfamily (Figueroaet al.,2016;Kellyet al.,2009;Zaheret al.,2019) -we predict that the mitogenome arrangement ofP.lineolatuswould belong to the Type III pattern.In addition,we used the mitogenome to infer the phylogenetic position of Psammophiidae in the major lineages of the advanced snakes.

    2.Materials and Methods

    2.1.Sample collection and DNA extractionAP.lineolatusspecimen was captured by hand in Buerjin County (47.559316°N,87.056509°E),Xinjiang Uygur Autonomous Region,China in July 2019.A piece of liver was dissected from the snake,which has been euthanized with an overdose of sodium pentobarbital delivered by intraperitoneal injection.Both the liver sample and voucher specimen (Field number GXG311) were fixed in 95% ethanol,and deposited at the herpetological collection,Chengdu Institute of Biology,Chinese Academy of Sciences.Total genomic DNA was extracted using the TIANamp Genomic DNA Kit (TIANGEN,Beijing,China) following the manufacturer’s instructions,and stored at -20°C.The amount and quality of the extracted DNA were assessed through electrophoresis in a 0.8% agarose gel with GoldView (Solarbio,Beijing,China).

    2.2.PCR amplification and sequencingTwenty pairs of primers (Table S1) were designed to amplify the complete mitogenome,based on published mitogenomes from Elapidae(GenBank accession number:EU579523,GU045453).The polymerase chain reaction (PCR) amplification was carried out in volumes of 25 μL consisting of 2 μL template DNA (~ 40 ng/μL),2.5 μL dNTPs (0.2 mmol/L each),1.5 μL MgSO4(1.5 mmol/L),2.5 μL buffer of KOD-plus neo (TOYOBO,Shanghai,China),0.5 μL KOD-plus neo (1.0 U/μL),0.75 μL each primer (0.3 μmol/L),and 14.5 μL ultrapure water.Thermal cycling was performed with an initial denaturation at 94°C for 2 min,followed by 32-35 cycles of 98°C for 10 s,45-60°C (depending on the primers)for 30 s,and 68°C for 60-90 s;the reaction concluded with a final extension of 7 min at 68°C,then stored at 4°C.The PCR products were assessed using 1% agarose gel electrophoresis,purified,and sequenced with the PCR primers and internal primers generated by primer walking.All fragments were sequenced on an ABI 3730 automated sequencer (Applied Biosystems,Inc.) at TsingKe Biotech (Beijing,China).

    2.3.Genome assembly,annotation and analysisMitochondrial DNA fragments were assembled to create the complete mitochondrial genome using the SeqMan II program included in the Lasergene software package (DNAStar Inc.,Madison,USA).The complete mitogenome was submitted to GenBank using the software of Sequin v15.10 (http://www.ncbi.nlm.nih.gov/Sequin/).The boundaries of the proteincoding genes (PCGs) and ribosomal RNA genes (rRNAs) were identified using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov)and MITOS Web Server (http://mitos2.bioinf.uni-leipzig.de/index.py) (Berntet al.,2013c).The tRNAs and their potential cloverleaf structures were predicted using tRNAscan-SE Search Server v1.21 (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Chan,2016),and verified by aligning them with other snakes.The size of the CR was confirmed by the boundaries of tRNAs and by sequence comparison with previously reported snake mitogenomes.A circular mitogenomic map was generated using OGDRAW v1.3.1 (Greineret al.,2019).Base composition and the relative synonymous codon usage (RSCU) values were calculated using MEGA v7.0 (Kumaret al.,2016).Strand asymmetry was calculated using the formulae:AT-skew=(A-T)/(A+T);GC-skew=(G -C)/(G+C) (Perna and Kocher,1995).

    Ka/Ks is the ratio of the number of nonsynonymous substitutions per nonsynonymous site (Ka) to the number of synonymous substitutions per synonymous site (Ks) (Hurst,2002).This ratio is considered to be a good indicator of selective pressure at the sequence level (Yang and Bielawski,2000) and has been used to identify PCGs under positive and purifying selection in a wide range of organisms (Hurst,2009).In general,positive selection yields a Ka/Ks ratio greater than 1.Conversely,if purifying selection occurs,the Ka/Ks ratio is less than 1,which would lead to a decrease in diversity at the amino acid level.Therefore,to determine the direction of natural selection (positive or purifying) of the PCGs at the molecular level,we calculated the Ka/Ks ratio of each PCG betweenP.lineolatusand three Elapidae snakes (Bungarus multicinctus,Naja najaandOphiophagus Hannah) using DnaSP v6.12.03 (Rozaset al.,2017).

    2.4.Phylogenetic reconstructionPhylogenetic analyses were conducted using the mitochondrial genome (excluding the CR) to infer the placement of Psammophiidae within the advanced snakes (Table S2).Complete gene sequences from representatives of the major snake families were chosen following a recent study (Qianet al.,2018),and were retrieved from GenBank.Each gene was extracted from the whole mitogenome,then separately aligned in batches with MAFFT v7.263 (Katoh and Standley,2013) using ‘-auto’ strategy and normal alignment mode.In total,37 mitochondrial genes were combined from 71 taxa using SeaView v5.0.1 (Gouyet al.,2010),which formed a dataset of 15 838bpin length.Considering that Henophidia is closely related to Caenophidia (Streicher and Wiens,2016;Yanet al.,2008),six Henophidia snake species,representing six families,were chosen as outgroup taxa (Table S2).Among these,Tropidophiidae and Aniliidae were used to root the trees based on two recent publications (Qianet al.,2018;Streicher and Wiens,2016).

    Prior to the phylogenetic analyses,optimal combinations of partitioning schemes and nucleotide substitution models were determined with PartitionFinder v2.1.1 (Lanfearet al.,2017),using the “greedy” algorithm and the Akaike information criterion.The branch lengths of alternative partitions were linked and the “mrbayes” model was used to estimate the best substitution model for IQ-TREE and MrBayes.The best-fit substitution models and partitioning schemes for each gene are given in Table S3.

    Phylogenetic analyses were performed with Bayesian inference (BI) and maximum likelihood (ML) methods.Bayesian phylogenies were inferred using MrBayes v3.2.6 (Ronquistet al.,2012) under partitioned models.Two independent runs were conducted with four Markov Chain Monte Carlo (MCMC) for 10,000,000 generations with parameters and topologies sampled every 1000 generations.When the average standard deviation of split frequencies reached a value of less than 0.01,the initial 25% trees were discarded as burn-in and the remaining trees were used to calculate Bayesian posterior probabilities (PP).Maximum likelihood analyses were conducted in IQ-TREE v1.6.12 (Nguyenet al.,2015) under the models selected for each identified partition.We assessed nodal support using 5000 bootstrap pseudoreplicates via the ultrafast-bootstrap (UFBoot)(Minhet al.,2013) method.Nodes with UFBoot ≥ 95 were considered to be well-supported (Minhet al.,2013;Wilcoxet al.,2002).Finally,the trees were visualized and edited in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree) and PowerPoint.

    3.Results and Discussion

    3.1.Genome structure,organization and compositionThe complete sequence of the mitogenome ofP.lineolatus(accession number MT991050) is a traditional circular,double-strain DNA molecule (Figure 1).It contains 37 genes with 13 PCGs,two rRNA genes,and 22 tRNA genes but two control regions(CR I,CR II) (Table 1).However,the tRNA-LeuUUR(Leu2) gene was translocated;in most vertebrates,it is between 16S rRNA and ND1,but in snakes it is between tRNA-Ile and tRNA-Gln(Figure 1).The gene order is in agreement with the Type III pattern designated by Qianet al.(2018).The majority of the 37 genes were encoded by the heavy-strand,except the ND6 gene and eight tRNAs (tRNA-Gln,Ala,Asn,Cys,Tyr,Ser2,Glu,Pro).The intergenic spacers were 33 bp,ranging from 1 to 9 bp in size;the longest (9 bp) was located between ND6 and tRNAGlu.Overlapping nucleotides were found between six pairs of genes,with the length varying from 1 to 25 bp;the largest was located between tRNA-Val and 16S rRNA.

    Figure 1 Mitochondrial map of Psammophis lineolatus.Genes encoded on the heavy or light strand are indicated on the outside or inside of the circular mitogenome map,respectively,showing the direction of transcription.The tRNAs are denoted by color and labeled according to the three-letter amino acid codes.

    The whole mitogenome ofP.lineolatusis 17 166 bp in length (Table 1),with A 32%,G 15.5%,T 23.5%,C 29% (Table 2).The strand bias of nucleotide composition of metazoans mtiogenomes are usually measured by AT-skews and GCskews (Perna and Kocher,1995).The AT-skew and GC-skew of the mitogenome are 0.154 and -0.305,respectively (Table 2),indicating As and Cs are more abundant than Ts and Gs.The nucleotide composition ofP.lineolatusis obviously inclined to A/T.

    3.2.Protein-coding genes and codon usageThe total length of the PCGs in mitogenome ofP.lineolatuswas 11 255 bp,which consisted of seven NADH dehydrogenases (ND1-ND6 and ND4L),three cytochrome c oxidases (COX1-COX3),two ATPases (ATP6 and ATP8) and one cytochromeb(Cyt b) (Table 1).Herein,five-type starting codons for PCGs were adopted:most start with ATG (COX2,ATP8,ATP6,COX3,ND4L,ND4,ND5,ND6,Cytb),while ND1 with ATA,ND2 with ATT,COX1 with GTG and ND3 with ATC.The majority of the PCGs terminated with TAA,while COX1 used AGG.Five (ND2,COX2,COX3,ND3 and Cytb) terminated with incomplete T,presumably transformed into complete stop codons through post-transcriptional polyadenylation (Ojalaet al.,1981).

    Table 1 Complete mitochondrial genome of Psammophis lineolatus and traits of codon as well as anticodon.

    Thirteen PCGs contained 3 589 codons without termination codons.The most frequently used amino acids are Leu1 (7.4%),Ser2 (6.3%),and Gly (4.1%),whereas the least common amino acids are Glu (1.8%),Cys (1.7%),Trp (0.18%) (Table 3).The RSCU refers to the relative frequency of each codon to code a specific amino acid,which could measure the bias of codon usage.The RSCU for the mitochondrial PCGs inP.lineolatusexhibited an over-usage of A and T at the third codon positions.Among them,AAA-Lys (1.46),CCU-Pro (1.43),ACU-Thr (1.39) and UCA-Ser2 (1.39) are the most frequently used codons.The least frequent codons are ACG-Thr (0.36),CCG-Pro (0.39) and GCGAla (0.49) (Table 3).The AT content of the 12 PCGs (excluding ND6 in the light-strand) is 54.9%;the AT-skew and GC-skew are 0.15 and -0.336,respectively (Table 2),which is also a similar trend in other snakes (Debuyet al.,2012;Wanget al.,2012).

    3.3.Transfer and ribosomal RNAsTwenty-two tRNAs were obtained from the complete mitochondrial ofP.lineolatus.The tRNAs ranged from 57 to 73 bp,and the total length was 1436 bp.There was a positive AT-skew,except in the light-strand tRNA (Table 1;Table 2).The skew analysis of tRNA indicatedthe use of As and Cs in the heavy-strand,while there was an obvious bias toward the use of Ts and Gs in the light-strand(Table 2).All of the tRNAs were able to fold into a typical cloverleaf structure,with the exception of tRNA-SerAGYand tRNA-Pro,which lacked a dihydrouridine (DHU) arm/stem and TΨC loop,respectively (Figure 2).Lacking the DHU arm/stem is likely related to a compensation mechanism for tRNA transport function -a phenomenon that has been proposed in lizards (Maceyet al.,1997;Yuet al.,2018) and toads (Caiet al.,2020).The T arm contraction of snake mitochondrial tRNA has been reported (Kumazawaet al.,1996),and is also notable inP.lineolatusmitochondrial tRNA genes,most of which are less than 5 bp (tRNA-Ala,Asp,Glu,His,Lys,Thr) or have only 2-3 bp (tRNA-Gly,Met,Phe).These results suggest that the simplification of mitochondrial tRNA is subject to evolutionary pressure (Kumazawaet al.,1996).

    Table 2 Composition and skewness of P.lineolatus mitogenome.

    Since there is no reported complete mitogenome in Psammophiidae,we identified the boundaries of rRNA genes based on their relative location in the mitogenome.The 12S rRNA and 16S rRNA genes are 925 bp and 1509 bp in length,respectively,and generally separated by tRNA-Val (Table 1).The AT content of 12S rRNA is 54.9%,and 57.6% in 16S rRNA ofP.lineolatus(Table 2).The AT-skew of 12S rRNA and 16S rRNA are positive and greater than the GC-skew,suggesting that there are more As and Cs than Ts and Gs (Table 2).

    3.4.Control regionDuplicate CRs were found inP.lineolatusmitogenome.The first CR (CR I;1022 bp) was located between tRNA-Pro and tRNA-Phe.To date,this is the most typical position reported for the CR of vertebrate mtDNA.The second CR (CR II;1012 bp) was located between tRNA-Ile and tRNA-LeuUUR(Leu2) (Figure 1;Table 1).Both CRs were highly conserved in sequence similarity,which could be explained by concerted evolutionary mechanism (Kumazawaet al.,1998).All of their skew values were negative,indicating more Ts and Cs than As and Gs (Table 2).

    Three conservative functional domains were observed in both CRs:C-rich,termination-associated sequences (TASs) and conserved sequence blocks (CSBs).The C-rich sequence may facilitate formation of the D-loop by decelerating the extension of heavy-strand synthesis (Kumazawaet al.,1998).The CSBs play an important role in the CR of all organisms,which are associated with the start sites for DNA synthesis.It has been thought that TAS elements are associated with stop sites for DNA synthesis,and have been found near the 3' terminus of the D-loop (Dodaet al.,1981).Generally,each control region could find a CSB that presents a CSB-1-CSB-2-CSB-3 arrangement.On the other hand,one or more TASs can appear,and can include forward or reverse complementary sequences.In this study,four types of CR domains arrangements were observed in the Elapoidea species (Figure 3;Table S4),and each conserved domain appears only once,rather than,repeatedly.Type A occurred inP.lineolatus;Types B and C were assigned toNajaspp.andO.hannah,respectively;and Type D was assigned toBungarusspp.andMicrurus fulvius.These four arrangement types were mostly caused by the change in position of TAS2 and the presence or absence of CSB-2.However,CSB-2cannot be found inP.lineolatus,M.fulviusandBungarusspp.A similar finding was reported in previous studies (Dong and Kumazawa,2005;Kumazawa,2004).At present,the mechanism determining the presence or absence of CSB-2,and whether it has phylogenetic significance,is still unclear.The motif sequence of CSB-1 was highly similar in snake species,while the CSB-3 motif was rarely conserved in previous studies(Kumazawaet al.,1996;Kumazawaet al.,1998;Dong and Kumazawa,2005;Douglaset al.,2006).Hence,the recognition of CSB-3 was very difficult or ambiguous.Comparison of the CSB-3 motif ofNaja atra(Qian,2018) and the two CRs ofP.lineolatusand the other Elapidae snakes (Figure 3;Table S4)revealed that the CSB-3 motif is identical inP.lineolatusandNajaspp.,but slightly different in other Elapidae.Notably,the CSB-3 motif ofN.atrawas located between TAS1 and CSB-1 to form a CSB-3-CSB-1-CSB-2 order (Qian,2018) rather than the common CSB-1-CSB-2-CSB-3 structure.This arrangement was different than that reported in previous studies of snakes(Kumazawaet al.,1998;Dong and Kumazawa,2005;Douglaset al.,2006) and other vertebrates (Sbisaet al.,1997).The TAS motifs of the eight species (incorporating TAS1 and TAS2) were almost identical to those reported in other snakes (Kumazawaet al.,1998).No tandem repeats were discovered,while a poly T sequence (5'-TTTTTTT-3') was detected at both CRs within Elapoidea.These length variations are only seen in regions of simple repeats of a nucleotide or dinucleotide,suggesting that replicational slippage (Levinson and Gutman,1987) plays a role in creating length mutations.

    Figure 2 Putative secondary structures of the 22 tRNAs identified in the mitogenome of Psammophis lineolatus.The tRNAs are labeled with their corresponding three-letter amino acid codes.Dashed line (-) indicates Watson-Crick base pairing and solid dots (·) between G and U pairs mark canonical base pairings appearing in RNA.

    Figure 3 Arrangement of the mitochondrial control region structure of eight snake species of the Elapoidea superfamily,with the typical arrangement of vertebrates for comparsion.Green represents other regions of the control region.Type A:Psammophis lineolatus.Type B:Naja naja,Naja kaouthia,Naja atra.Type C:Ophiophagus Hannah.Type D:Micrurus fulvius,Bunganus fasciatus and Bunganus multioinctus.

    Figure 4 Non-synonymous (Ka) and synonymous (Ks) substitution ratio of comparisons between Psammophis lineolatus and the other three Elapidae species.BM:Bungarus multicinctus;NN:Naja naja;OH:Ophiophagus hannah;PL:P.lineolatus.

    Table 3 Genetic code,amino acid composition and relative synonymous codon usage (RSCU) for the mitochondrial protein-coding genes ofP.lineolatus.

    3.5.Ka/Ks ratioThe Ka/Ks ratios of the 13 PCGs varied from 0.027 to 0.680,but were always less than 1,indicating that these genes are evolving under purifying selection (Figure 4).Within all compared mitogenomes,the highest average of Ka/Ks ratio was observed for ATP8,while COX1 had the lowest ratio.ATP8 was indicated to be under positive or relaxed selection pressure,which has also been reported in other vertebrates(Sunet al.,2020).On the other hand,the low Ka/Ks ratio of COX1 is indicative of strong purifying selection,which is in accordance with results reported inPythonsnakes (Dubeyet al.,2012).Importantly,the Ks value of COX2 forP.lineolatus-B.multicinctus(PL-BM) was not applicable.This arose because the Jukes and Cantor correction cannot be calculated when the proportion of differences is equal or higher than 0.75 (Rozaset al.,2017).

    Figure 5 A majority-rule consensus tree inferred from Bayesian inference using MrBayes v3.2,based on the combined data set of RNA genes and protein-coding genes.The phylogenetic position of Psammophiidae is highlighted in gray.Numbers beside the nodes indicate Bayesian posterior probabilities (PP) and ML ultrafast bootstrap values (UFBoot),respectively.Branch lengths represent means of posterior distribution.Family/superfamily/group assignments are listed.Types III to III-G correspond to the nine types of mitochondrial gene arrangement patterns as designated in Qian et al. (2018).

    3.6.Phylogenetic analysesBoth BI and ML approaches provided identical and well-supported tree topologies.Thus,only the BI tree is presented,which includes PP as well as UFBoot from ML (Figure 5).With limited taxon sampling,monophyly of the Caenophidia (advanced snakes) was recovered with strong support (PP=1.0;UFBoot=100),which is largely consistent with results of recent studies (Greineret al.,2019;Pyronet al.,2011;Pyronet al.,2014;Reederet al.,2015;Wienset al.,2012;Zheng and Wiens,2016).In the Caenophidia,Acrochordidae was recovered as the sister taxon,followed successively by Xenodermatidae,Viperidae,Homalopsidae,Elapoidea and Colurbroidae.These results also align with recent studies (Streicher and Wiens,2016;Zaheret al.,2019).Monophyly of both the Elapoidea and Colurbroidae superfamilies was recovered with strong support (PP=1.0;UFBoot=100).Notably,in the sampled lineages,Psammophiidae was clustered into the Elapoidea superfamily (PP=1.0;UFBoot=100).Nevertheless,according to recent phylogenetic studies (Figueroaet al.,2016;Kellyet al.,2009;Zaheret al.,2019),which were based on analyses of a few mitochondrial and/or nuclear genes,the sister taxon of Psammophiidae is unclear.Thus,it is necessary to add more taxa and mitogenome sequences to explore the phylogenetic relationships of the advanced snakes in general,and to resolve the phylogenetic position of Psammophiidae in Elapoidea in particular.

    AcknowledgmentsWe thank Prof.Dali Chen (Sichuan University) and Mr.Song Wang for assistance with fieldwork in Xinjiang Uygur Autonomous Region,China.We also thank two anonymous referees for comments that improved the clarity of an earlier version of this manuscript.We are grateful to Dr.Jacquelin De Faveri for English editing.This study was supported by the National Natural Science Foundation of China (Nos.31672270,32070433).Jun Li was supported by grant from the National Natural Science Foundation of China(No.31560591).

    Appendix

    Table S1 PCR primers for amplification of the complete mitochondrial genome of Psammophis lineolatus.

    References

    Kumazawa Y.,Endo H.2004.Mitochondrial genome of the Komodo dragon:Efficient sequencing method with reptile-oriented primers and novel gene rearrangements.DNA Res,11:115-125

    Table S2 Summary of taxonomic groups used in this study,including GenBank accession numbers

    Continued Table S2

    References

    Castoe T.A.,de Koning A.P.J.,Kim H.M.,Gu W.,Noonan B.P.,Naylor G.,Jiang Z.,Parkinson C.L.,Pollock D.D.2009.Evidence for an ancient adaptive episode of convergent molecular evolution.Proc Natl Acad Sci USA,106(22):8986-8991

    Chen N.,Zhao S.2009.New progress in snake mitochondrial gene rearrangement.Mitochondrial DNA,20(4):69-71

    Dong S.,Kumazawa Y.2005.Complete mitochondrial DNA sequences of six snakes:phylogenetic relationships and molecular evolution of genomic features.J Mol Evol,61(1):12-22

    Douglas D.A,Jank A.,Arnason U.2006.A mitogenomic study on the phylogenetic position of snakes.Zool Scr,35(6):545-558

    Hall J.B.,Cobb V.A.,Cahoon A.B.2013.The complete mitochondrial DNA sequence ofCrotalus horridus(timber rattlesnake).Mitochondrial DNA,24(2):94-96

    Han X.,Zhao S.,Xu C.2015.Sequence and organization of the complete mitochondrial genome of theUssuri mamushi(Gloydius ussuriensis).Mitochondrial DNA A,27:2617-2618

    He M.,Feng J.,Zhao E.2010.The complete mitochondrial genome of the Sichuan hot-spring keel-back (Thermophis zhaoermii;Serpentes:Colubridae) and a mitogenomic phylogeny of the snakes.Mitochondrial DNA,21(1):8-18

    Huang X.,Zhang L.,Pan T.,Zhang B.2014.Mitochondrial genome ofProtobothrops dabieshanensis(Squamata:Viperidae:Crotalinae).Mitochondrial DNA,25(5):337-338

    Jang K.H.,Hwang U.W.2011.Complete mitochondrial genome of the black-headed snakeSibynophis collaris(Squamata,Serpentes,Colubridae).Mitochondrial DNA,22(4):77-79

    Jiang Z.J.,Castoe T.A.,Austin C.C.,Burbrink F.T.,Herron M.D.,McGuire J.A.,Parkinson C.L.,Pollock D.D.2007.Comparative mitochondrial genomics of snakes:extraordinary substitution rate dynamics and functionality of the duplicate control region,BMC Evol Biol,7:123

    Li E.,Feng D.,Yan P.,Xue H.,Chen J.,Wu X.2014.The complete mitochondrial genome ofOocatochus rufodorsatus(Reptilia,Serpentes,Colubridae).Mitochondrial DNA,25(6):449-450

    Li E.,Sun F.,Zhang R.,Chen J.,Wu X.2016.The complete mitochondrial genome of the striped-tailed rat-snake,Orthriophis taeniurus(Reptilia,Serpentes,Colubridae).Mitochondrial DNA,27(1):599-600

    Liu P.,Zhao W.2015.The complete mitochondrial genome of the Amur rat-snakeElaphe schrenckii(Squamata:Colubridae).Mitochondrial DNA A,27(4):2529-2530

    Liu P.,Zhao W.2016.Sequencing and analysis of the complete mitochondrial genome ofElaphe anomala(Squamata:Colubridae).Mitochondrial DNA A,27(6):2742-2743

    Mulcahy D.G.,Macey J.R.2009.Vicariance and dispersal form a ring distribution in nightsnakes around the Gulf of California.Mol Phylogenet Evol,53(2):537-546

    Mulcahy D.G.,Marúnez-Gómez J.E.,Aguirre-León G.,Cervantes-Pasqualli J.A.,Zug G.R.2014.Rediscovery of an endemic vertebrate from the remote Islas Revillagigedo in the Eastern Pacific Ocean:the Clarión nightsnake lost and found.PLoS ONE,9(5):e97682

    Oh D.J.,Han S.H.,Kim B.S.,Yang K.S.,Kim T.W.,Koo K.S.,Chang M.H.,Oh H.S.,Jung Y.H.2015.Mitochondrial genome sequence ofSibynophis chinensis(Squamata,Colubridae).Mitochondrial DNA,26(2):315-316

    Qian L.,Wang H.,Yan J.,Pan T.,Jiang S.,Rao D.,Zhang B.2018.Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.BMC Genomics,19:354

    Singchat W.,Areesirisuk P.,Sillapaprayoon S.,Muangmai N.,Srikulnath K.2019.Complete mitochondrial genome of Siamese cobra (Naja kaouthia) determined using next-generation sequencing.Mitochondrial DNA B,4(1):577-578

    Song T.,Zhang C,,Zhang L.,Huang X.,Hu C.,Xue C.,Zhang B.2015.Complete mitochondrial genome ofTrimeresurus albolabris(Squamata:Viperidae:Crotalinae).Mitochondrial DNA,26(2):291-292

    Sun F.H.2017.Revealing the complete mitochondrial genome ofThermophis baileyiWall,1907 (Reptilia:Colubridae) through the nextgeneration sequencing.Mitochondrial DNA B,2(2):391-392

    Sun H.,Li E.,Sun L.,Yan P.,Xue H.,Zhang F.,Wu X.2017.The complete mitochondrial genome of the greater green snakeCyclophiops major(Reptilia,Serpentes,Colubridae).Mitochondrial DNA B,2(1):309-310

    Wan R.,Liu S.,Xu Q.,Yue B.,Zhang X.2016.The complete mitochondrial genome of theElaphe perlacea(Squamata:Colubridae).Mitochondrial DNA,27(1):12-13

    Wang X.H.2014.Systematics ofOligodon ningshaanensisYuan,1983 and primary study on its malacophagous behaviour.Doctoral Dissertation,Chengdu Institute of Biology,Chinese Academy of Sciences (In Chinese with English abstract)

    Xu C.,Mu Y.,Kong Q.,Xie G.,Guo Z.,Zhao S.2016a.Sequencing and analysis of the complete mitochondrial genome ofElaphe davidi(Squamata:Colubridae).Mitochondrial DNA A,27(4):2383-2384

    Xu C.,Xie F.,Liu Y.,Zhao S.,Wang Y.,Ma T.,Zhao T.2015a.Sequencing and analysis of the complete mitochondrial genome ofGloydius saxatilis(Squamata:Viperidae:Crotalinae).Mitochondrial DNA A,27(4):2361-2362

    Xu C.,Zhao S.,Han X.2016b.Sequence and organization of the complete mitochondrial genome ofHebius vibakari ruthvenifrom China.Mitochondrial DNA A,27(4):2661-2662

    Xu C.,Zhao S.,Li C.,Dou H.2015b.The complete mitochondrial genome ofGloydius intermedius(Squamata:Viperidae:Crotalinae) from China.Mitochondrial DNA,27(4):2373-2374

    Yan J.,Li H.,Zhou K.2008.Evolution of the mitochondrial genome in snakes:Gene rearrangements and phylogenetic relationships.BMC Genomics,9:569-569

    Yan L.,Geng Z.,Yan P.,Wu X.2016.The complete mitochondrial genome ofElaphe bimaculata(Reptilia,Serpentes,Colubridae).Mitochondrial DNA A,27(2):1285-1286

    Zhou B.,Ding C.,Duan Y.,Hui G.2016.The complete mitochondrial genome sequence ofPtyas mucosus.Mitochondrial DNA B,1(1):193-194

    Table S3 Best-fit models and partitioning schemes selected by PartitionFinder 2.

    Table S4 Structure traits of the mitochondrial DNA complete control region (D-loop,CR) in Psammophis lineolatus and seven snake species of the family Elapidae.

    Continued Table S4

    Continued Table S4

    熟妇人妻久久中文字幕3abv| 国产 一区精品| 九九久久精品国产亚洲av麻豆| 久久久久久大精品| 国产成人aa在线观看| 老女人水多毛片| 日韩国内少妇激情av| 亚洲av中文av极速乱| 久久久久久久久久黄片| 最近手机中文字幕大全| 国产av一区在线观看免费| 精品少妇黑人巨大在线播放 | 成人三级黄色视频| 激情 狠狠 欧美| 国产精品美女特级片免费视频播放器| 亚洲在线观看片| 成年版毛片免费区| 一区福利在线观看| 少妇猛男粗大的猛烈进出视频 | 久久99热这里只有精品18| 观看美女的网站| 精品无人区乱码1区二区| 成人美女网站在线观看视频| 简卡轻食公司| 蜜桃亚洲精品一区二区三区| 天天一区二区日本电影三级| eeuss影院久久| 欧美性猛交╳xxx乱大交人| 国产精品一区www在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久久国产网址| 国产一区二区在线观看日韩| 免费搜索国产男女视频| 亚洲国产精品国产精品| 国产精品1区2区在线观看.| 免费观看a级毛片全部| 国产一区二区三区在线臀色熟女| 日韩一区二区三区影片| 免费一级毛片在线播放高清视频| 亚洲精品亚洲一区二区| 色哟哟·www| 午夜精品在线福利| av在线老鸭窝| 悠悠久久av| 深夜精品福利| av女优亚洲男人天堂| 国产在线精品亚洲第一网站| 悠悠久久av| 99在线人妻在线中文字幕| 久久九九热精品免费| 国产乱人偷精品视频| 免费av不卡在线播放| 久久精品久久久久久噜噜老黄 | 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区| 性色avwww在线观看| 国产精品永久免费网站| 成人特级黄色片久久久久久久| 国产精品久久久久久精品电影| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久久免| av在线亚洲专区| 日本五十路高清| a级毛片免费高清观看在线播放| 午夜爱爱视频在线播放| 日韩一区二区视频免费看| av在线蜜桃| av又黄又爽大尺度在线免费看 | 日韩一区二区三区影片| 岛国毛片在线播放| 久久久久久久久大av| 国产精品久久视频播放| 国产成人a区在线观看| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 能在线免费看毛片的网站| 高清在线视频一区二区三区 | 国产精品久久久久久亚洲av鲁大| 观看美女的网站| 极品教师在线视频| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 亚洲最大成人手机在线| 嘟嘟电影网在线观看| 国产v大片淫在线免费观看| 直男gayav资源| 久久人妻av系列| 国产又黄又爽又无遮挡在线| 久久这里有精品视频免费| 两性午夜刺激爽爽歪歪视频在线观看| .国产精品久久| 欧美一区二区精品小视频在线| 搡女人真爽免费视频火全软件| 卡戴珊不雅视频在线播放| 精品久久久久久成人av| av.在线天堂| 黑人高潮一二区| 午夜精品在线福利| 少妇的逼水好多| 神马国产精品三级电影在线观看| av视频在线观看入口| 久久精品国产亚洲av天美| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 春色校园在线视频观看| 99热精品在线国产| 男女啪啪激烈高潮av片| а√天堂www在线а√下载| 成熟少妇高潮喷水视频| 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 久久精品国产99精品国产亚洲性色| 国产探花极品一区二区| 免费av毛片视频| 男插女下体视频免费在线播放| av在线老鸭窝| 日本与韩国留学比较| 国产黄色小视频在线观看| 99久国产av精品| 成年版毛片免费区| 男女边吃奶边做爰视频| 国产精品久久久久久久久免| 成人亚洲欧美一区二区av| 在线免费观看的www视频| 在线免费十八禁| 亚洲欧美成人精品一区二区| 久久亚洲精品不卡| 亚洲国产精品成人久久小说 | 天美传媒精品一区二区| 国产精品麻豆人妻色哟哟久久 | 国产老妇女一区| 欧美精品国产亚洲| 久久精品夜色国产| 伦理电影大哥的女人| 丰满的人妻完整版| 欧美xxxx性猛交bbbb| 中国美白少妇内射xxxbb| 成人三级黄色视频| 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频| 成人国产麻豆网| 插阴视频在线观看视频| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| а√天堂www在线а√下载| 国产乱人偷精品视频| 麻豆久久精品国产亚洲av| 久久久久久久久大av| 久久亚洲精品不卡| 久久久久久久久久久丰满| 亚洲一区二区三区色噜噜| 成年女人看的毛片在线观看| 此物有八面人人有两片| 黑人高潮一二区| 亚洲av第一区精品v没综合| 成人午夜高清在线视频| 男人的好看免费观看在线视频| 久久精品久久久久久久性| 国产精品永久免费网站| 熟妇人妻久久中文字幕3abv| 日韩av不卡免费在线播放| 一区福利在线观看| 观看美女的网站| 免费搜索国产男女视频| 免费在线观看成人毛片| 亚洲欧美日韩高清在线视频| 久久鲁丝午夜福利片| 国产蜜桃级精品一区二区三区| 男插女下体视频免费在线播放| 赤兔流量卡办理| 国产 一区精品| 久久久久九九精品影院| 伊人久久精品亚洲午夜| 久久精品影院6| 日韩一区二区三区影片| 亚洲欧美精品自产自拍| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 久久99蜜桃精品久久| 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 中文欧美无线码| 性色avwww在线观看| 中文字幕av在线有码专区| 男人舔女人下体高潮全视频| 久久午夜亚洲精品久久| 亚洲成av人片在线播放无| 男人舔女人下体高潮全视频| 麻豆乱淫一区二区| 三级经典国产精品| 中文字幕熟女人妻在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱| 性插视频无遮挡在线免费观看| 国产色婷婷99| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 亚洲国产精品合色在线| 深夜精品福利| 亚洲图色成人| 中文字幕av成人在线电影| 69人妻影院| 真实男女啪啪啪动态图| 五月伊人婷婷丁香| 久久精品国产亚洲网站| 日本黄色视频三级网站网址| 日本免费a在线| 久久精品国产鲁丝片午夜精品| 久久精品人妻少妇| 国产成人影院久久av| 国产成人午夜福利电影在线观看| 色综合亚洲欧美另类图片| 精品无人区乱码1区二区| 波野结衣二区三区在线| 亚洲精品国产成人久久av| 高清毛片免费看| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 久久久精品大字幕| 边亲边吃奶的免费视频| 色综合亚洲欧美另类图片| 免费无遮挡裸体视频| 国产精品1区2区在线观看.| 最好的美女福利视频网| 亚洲欧洲日产国产| 春色校园在线视频观看| 精品99又大又爽又粗少妇毛片| 麻豆一二三区av精品| 日本-黄色视频高清免费观看| 久久精品国产亚洲av香蕉五月| 成年女人永久免费观看视频| 久久九九热精品免费| 国产成人精品一,二区 | 麻豆国产97在线/欧美| 1024手机看黄色片| av黄色大香蕉| 国产精品久久久久久久电影| 亚洲国产欧洲综合997久久,| 亚洲精品影视一区二区三区av| 99精品在免费线老司机午夜| 我的女老师完整版在线观看| 午夜福利成人在线免费观看| 国产午夜精品久久久久久一区二区三区| 久久国内精品自在自线图片| 三级经典国产精品| 中国国产av一级| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 国产69精品久久久久777片| 精品一区二区三区人妻视频| 99国产精品一区二区蜜桃av| 国产免费男女视频| a级毛片免费高清观看在线播放| 级片在线观看| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 亚洲国产精品国产精品| 国产不卡一卡二| 日韩 亚洲 欧美在线| 亚洲av二区三区四区| 日韩强制内射视频| 午夜视频国产福利| 国产男人的电影天堂91| 中文字幕人妻熟人妻熟丝袜美| 精品人妻视频免费看| 1024手机看黄色片| 精品不卡国产一区二区三区| 欧美激情在线99| kizo精华| 精品久久久久久久久av| 男女那种视频在线观看| 久久婷婷人人爽人人干人人爱| 国产69精品久久久久777片| 男的添女的下面高潮视频| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 国产视频首页在线观看| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| 亚洲精品亚洲一区二区| 国产美女午夜福利| 午夜福利高清视频| 简卡轻食公司| 寂寞人妻少妇视频99o| 欧美zozozo另类| 国产伦理片在线播放av一区 | 国产在视频线在精品| 日韩中字成人| 一级av片app| 日韩一本色道免费dvd| 久久久久九九精品影院| 白带黄色成豆腐渣| av在线播放精品| 91狼人影院| 亚洲成人久久爱视频| 搞女人的毛片| 深爱激情五月婷婷| 国产伦理片在线播放av一区 | 丝袜喷水一区| www.色视频.com| 久久精品国产亚洲网站| 欧美又色又爽又黄视频| 精品无人区乱码1区二区| 亚洲成人久久性| 亚洲精品国产av成人精品| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 亚洲性久久影院| 91久久精品国产一区二区三区| 久久久a久久爽久久v久久| 看非洲黑人一级黄片| 麻豆乱淫一区二区| 人人妻人人澡欧美一区二区| 精品无人区乱码1区二区| 欧美精品一区二区大全| 日韩亚洲欧美综合| 国产一级毛片七仙女欲春2| 欧美成人a在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日本免费a在线| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 18+在线观看网站| 99在线人妻在线中文字幕| 日本一本二区三区精品| 在线免费观看的www视频| 国内久久婷婷六月综合欲色啪| 91av网一区二区| 麻豆精品久久久久久蜜桃| ponron亚洲| 国产亚洲精品久久久com| 亚洲av二区三区四区| 丝袜美腿在线中文| 岛国毛片在线播放| 夜夜爽天天搞| 精品少妇黑人巨大在线播放 | 极品教师在线视频| eeuss影院久久| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 中文字幕制服av| www日本黄色视频网| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区 | 最后的刺客免费高清国语| 欧美最新免费一区二区三区| 亚洲va在线va天堂va国产| 一级黄色大片毛片| 国产精华一区二区三区| 我的老师免费观看完整版| 一本久久中文字幕| 欧美三级亚洲精品| 国内精品宾馆在线| 一进一出抽搐gif免费好疼| 国产老妇伦熟女老妇高清| 欧美三级亚洲精品| 在线免费十八禁| 国产高潮美女av| 久久久色成人| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 身体一侧抽搐| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 国产69精品久久久久777片| 久久人人精品亚洲av| 国产69精品久久久久777片| 亚洲欧美精品专区久久| 色视频www国产| 久久99精品国语久久久| 国产69精品久久久久777片| 亚洲乱码一区二区免费版| 日本撒尿小便嘘嘘汇集6| 只有这里有精品99| 如何舔出高潮| 午夜a级毛片| 人妻久久中文字幕网| 男女下面进入的视频免费午夜| 亚洲人成网站在线播| 日韩中字成人| 尤物成人国产欧美一区二区三区| 黄片无遮挡物在线观看| 久久国内精品自在自线图片| 国产伦一二天堂av在线观看| 亚洲成人中文字幕在线播放| 亚洲va在线va天堂va国产| 人人妻人人看人人澡| 国产精品,欧美在线| 一本一本综合久久| 午夜精品一区二区三区免费看| 国产高潮美女av| 床上黄色一级片| 日韩视频在线欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91在线精品国自产拍蜜月| 干丝袜人妻中文字幕| 日本熟妇午夜| 我的女老师完整版在线观看| 亚洲成人久久爱视频| 国产色爽女视频免费观看| 在线观看66精品国产| 亚洲无线在线观看| 国产探花在线观看一区二区| 亚洲美女视频黄频| 亚洲久久久久久中文字幕| 色综合亚洲欧美另类图片| 国产 一区 欧美 日韩| 亚洲一级一片aⅴ在线观看| 亚洲在线自拍视频| 色哟哟·www| 日韩在线高清观看一区二区三区| 69人妻影院| 网址你懂的国产日韩在线| 亚洲精品影视一区二区三区av| 美女脱内裤让男人舔精品视频 | 国内精品一区二区在线观看| 欧美成人a在线观看| 国产精品久久久久久久电影| 国产精品一区www在线观看| 日韩一本色道免费dvd| 国产视频内射| 日韩中字成人| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 国产亚洲精品av在线| 日本爱情动作片www.在线观看| 九草在线视频观看| 一本久久中文字幕| 日韩av不卡免费在线播放| 成年免费大片在线观看| 国产高清激情床上av| 丝袜喷水一区| 久久久久久久午夜电影| 国产精品乱码一区二三区的特点| 六月丁香七月| 国产女主播在线喷水免费视频网站 | 男插女下体视频免费在线播放| 女的被弄到高潮叫床怎么办| 欧美+亚洲+日韩+国产| 中国国产av一级| 又爽又黄a免费视频| 国产三级中文精品| 亚洲最大成人手机在线| 亚洲欧美精品自产自拍| 免费搜索国产男女视频| 国产精品久久久久久久电影| 九草在线视频观看| 偷拍熟女少妇极品色| 真实男女啪啪啪动态图| 亚洲综合色惰| 国产亚洲av片在线观看秒播厂 | 国产精品三级大全| 国产日韩欧美在线精品| 国产精品一区二区三区四区久久| 又爽又黄a免费视频| 高清日韩中文字幕在线| 99久久人妻综合| 亚洲av.av天堂| 晚上一个人看的免费电影| 波多野结衣高清无吗| 国产亚洲av嫩草精品影院| 国产高清不卡午夜福利| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 亚洲aⅴ乱码一区二区在线播放| 国产白丝娇喘喷水9色精品| 免费搜索国产男女视频| 欧美最新免费一区二区三区| 欧美xxxx黑人xx丫x性爽| 中文亚洲av片在线观看爽| 毛片女人毛片| 精品熟女少妇av免费看| 日本欧美国产在线视频| 欧美精品一区二区大全| 最近的中文字幕免费完整| 日韩av不卡免费在线播放| 麻豆乱淫一区二区| 日韩欧美精品v在线| 成熟少妇高潮喷水视频| 成人国产麻豆网| 日韩欧美国产在线观看| 深夜精品福利| 成人综合一区亚洲| 哪里可以看免费的av片| 可以在线观看毛片的网站| 色综合站精品国产| 国产av麻豆久久久久久久| 国产av不卡久久| 99精品在免费线老司机午夜| 色综合站精品国产| 精品久久久久久久人妻蜜臀av| 国产一区二区亚洲精品在线观看| 99热精品在线国产| 哪个播放器可以免费观看大片| 日本色播在线视频| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| 久久久成人免费电影| 欧美成人精品欧美一级黄| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线 | 美女高潮的动态| av免费观看日本| 内地一区二区视频在线| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 2021天堂中文幕一二区在线观| 99热全是精品| 午夜福利在线在线| 国产视频内射| 亚洲乱码一区二区免费版| 国产单亲对白刺激| 国产真实伦视频高清在线观看| 麻豆精品久久久久久蜜桃| 亚洲乱码一区二区免费版| 如何舔出高潮| 久久精品国产清高在天天线| 精品人妻一区二区三区麻豆| 婷婷六月久久综合丁香| 一级av片app| 久久99蜜桃精品久久| 午夜激情福利司机影院| 亚洲精品自拍成人| 日韩一区二区三区影片| 久久99蜜桃精品久久| 免费看av在线观看网站| av免费观看日本| 99久国产av精品| 亚洲国产欧洲综合997久久,| 伊人久久精品亚洲午夜| 久久久久网色| 色噜噜av男人的天堂激情| 99精品在免费线老司机午夜| 丝袜美腿在线中文| 大型黄色视频在线免费观看| 午夜精品国产一区二区电影 | 国产一级毛片在线| 国产成人精品婷婷| 国产精品一区二区三区四区免费观看| 久久久色成人| 国产不卡一卡二| 免费一级毛片在线播放高清视频| 亚洲精品影视一区二区三区av| 男人舔奶头视频| 亚洲图色成人| 成人漫画全彩无遮挡| 亚洲国产高清在线一区二区三| 性欧美人与动物交配| 在线免费观看的www视频| 熟妇人妻久久中文字幕3abv| 国产片特级美女逼逼视频| 美女大奶头视频| 天堂网av新在线| 女人十人毛片免费观看3o分钟| 日本免费一区二区三区高清不卡| 99久久人妻综合| 听说在线观看完整版免费高清| 人体艺术视频欧美日本| 久久久国产成人精品二区| 99热只有精品国产| 国产伦理片在线播放av一区 | av黄色大香蕉| 国产精品,欧美在线| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 18+在线观看网站| 久久韩国三级中文字幕| 亚洲成人久久性| 久久精品久久久久久久性| 99热网站在线观看| 日本在线视频免费播放| 人人妻人人澡欧美一区二区| 国产91av在线免费观看| 日韩制服骚丝袜av| 啦啦啦观看免费观看视频高清| 国国产精品蜜臀av免费| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区四区激情视频 | 日本免费a在线| 亚洲色图av天堂| 午夜免费激情av| 1000部很黄的大片| 免费在线观看成人毛片| 五月伊人婷婷丁香| 国产亚洲av片在线观看秒播厂 | 欧美变态另类bdsm刘玥| 一级二级三级毛片免费看| 人体艺术视频欧美日本| 亚洲精品456在线播放app| 亚洲av成人av| 夫妻性生交免费视频一级片| 欧美3d第一页| 国产成人精品婷婷| av福利片在线观看| 国产单亲对白刺激| 亚洲国产欧美人成| 极品教师在线视频| 色综合站精品国产| 欧美三级亚洲精品| 欧美高清性xxxxhd video| 国产视频首页在线观看| 天堂中文最新版在线下载 | 亚洲精品久久久久久婷婷小说 | 搞女人的毛片| 最近2019中文字幕mv第一页|