• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Life Histories on Genome Size Variation in Squamata

    2021-09-27 11:25:36ChuanCHENLongJINYingJIANGandWenboLIAO
    Asian Herpetological Research 2021年3期

    Chuan CHEN ,Long JIN ,Ying JIANG and Wenbo LIAO*

    1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education),China West Normal University,Nanchong 637009,Sichuan,China

    2Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City,China West Normal University,Nanchong 637009,Sichuan,China

    3Institute of Eco-adaptation in Amphibians and Reptiles,China West Normal University,Nanchong 637009,Sichuan,China

    Abstract Genome size changes significantly among taxonomic levels,and this variation is often related to the patterns shaped by the phylogeny,life histories and ecological factors.However,there are mixed evidences on the main factors affecting molecular evolution in animals.In this study,we used phylogenetic comparative analysis to investigate the evolutionary rate of genome size and the relationships between genome size and life histories (i.e.,hatchling mass,clutch size,clutches per year,age at sexual maturity,lifespan and body mass) among 199 squamata species.Our results showed that the evolutionary rate of genome size in Lacertilia was significantly faster than Serpentes.Moreover,we also found that larger species showed larger hatchling mass,more clutches per year and clutch size and longer lifespan.However,genome size was negatively associated with clutch size and clutches per year,but not associated with body mass we looked at.The findings suggest that larger species do not possess the evolution of large genomes in squamata.

    Keywords genome size,body mass,evolutionary rate,life histories

    1.Introduction

    Genome sizes vary considerably across taxa in organisms(Cavalier-Smith,1978;Bennett and Leitch,2005;Lynch and Walsh,2007).This can be driven by the stochastic genetic and/or genomic processes associated with spontaneous deletions and/or insertions,polyploidization,prolonged tandem repeats length,transposable elements number and genetic drift,but can be also shaped by natural selection (Ogata

    et al

    .,1996;Petrov,2001;Sun

    et al

    .,2012;Lynch,2011;Whitney and Garland,2010).In particular,genome size variations are mainly explained by two important mechanisms including the duplication events and the proliferations of noncoding elements (Neiman

    et al

    .,2015).Establishing the association between genome size variation and organismal complexity has puzzled many evolutionary biologists and as such remains a classic problem in biology (Gregory,2005a).Previous studies across taxa have revealed positive associations between genome size and cell size,nucleus size,developmental time,nutrient requirements,tissue differentiation,life cycle complexity and body size (Vinogradov,1997;Olmo and Morescalchi,1978;Gregory,2005a;Gregory,2001;Gregory and Johnston,2008;Guignard

    et al

    .,2016).These positive associations have been suggested to be consequences of both the cytoplasm from more efficient mRNA transport and larger cells necessitating larger genomes based on structural causes (Cavalier-Smith,1985).Smaller cells for instance,usually divide faster and have a higher metabolic rate,evidenced by a negative correlation between metabolic rates and DNA amounts in mammals and birds (Hughes and Hughes,1995;Vinogradov,1995;Gregory,2002a;Hughes and Piontkivska,2005).However,a potential correlation which still needs to be explored between cell volume and genome size is body size(Gregory

    et al

    .,2000).Body size variation is often determined either by cell size and cell number,or both combination in organisms (Hessen

    et al

    .,2013;Koz?owski

    et al

    .,2003).For plants and animals,genome size displays a positive association with cell size (Gregory

    et al

    .,2000;Bennett,1987;Gregory,2005b).In addition,this correlation can be often linked to ecological factors.For example,genome size exhibits a positive association with body size in some invertebrates (e.g.,amphipods,copepods,crustaceans) due to low metabolic rate and temperatures in cold waters (Rees

    et al

    .,2008;Angilletta

    et al

    .,2004;Timofeev,2001;Jeffery

    et al

    .,2016;Leinaas

    et al

    .,2016).Genome size variation in frogs is indirectly affected by temperature and humidity as a result of its influence on the time of premetamorphic development (Liedtke

    et al

    .,2018).In birds,mitochondrial and nuclear of substitution rate in coding sequences reveal weak negative associations between the ratio of nonsynonymous and synonymous substitution rate and age at sexual maturity,lifespan and body mass associated with environmental factors (Weber

    et al

    .,2014;Lanfear

    et al

    .,2010;Nabholz

    et al

    .,2013),but it is not always the case (Figuet

    et al

    .,2017).Squamata constitutes the class of vertebrates with a small genome size due to a lower fraction of transposable elements and shorter introns (Organ

    et al

    .,2007).However,this may be a misconception caused by overlooking GC-rich regions,which are often hard to access (Botero-Castro,2017).Ploidy variations does not provide a major power of variation in genome size,and the whole-genome duplication events is not reported during the amniote evolutionary process in squamata (Van de Peer

    et al

    .,2009).Squamata mainly consists of two suborders(e.g.,Lacertilia and Serpentes) and displays complex life histories with prolonged developmental periods (hatching time),which likely constrains the variation of genome size because of a negative correlation between genome size and development time in invertebrates (Wyngaard

    et al

    .,2005).

    To examine the selective mechanisms underlying genome size variation in squamata,we first estimated the evolutionary rates of genome size between Lacertilia and Serpentes in squamata.We also expanded our extent to which genome size can be considered as a determinant of life histories by investigating the relationships between variation in genome size and life histories among 199 squamata species.We tested whether larger bodies can promote evolution of larger genomes.

    2.Materials and Methods

    2.1

    .

    Data collection

    The genome size of 199 squamata species was collected from genome size database (http://www.genomesize.com) (supplementary Information:Table S1).We extracted data on genome size for squamata species for which information on life histories can be found (see below),and obtain their average

    C

    -value.We used average values of genome size when more than one measurement per species was available.To avoid possible errors due to several methods being used to quantify genome size (Hardie

    et al

    .,2002),we used parallel analyses on a subset of genome size.We confirmed species names using the NCBI taxonomy database,and collapsed/pruned all synonyms from the phylogenetic tree.We rebuilt the phylogenetic tree using time-calibrated molecular phylogeny by Pyron

    et al

    .(2013) (Figure 1) and examined difference in the evolutionary rate of genome size between Lacertilia and Serpentes.Finally,we compiled information on hatching time,hatchling mass,clutch size per year,clutch size and body mass (see details in De Smet,1981;Feldman

    et al

    .,2016;Allen

    et al

    .,2017) and age at sexual maturity,lifespan from the AnAge databases (https://genomics.senescence.info/species/)(supplementary Information:Table S1).

    2.2.Statistical analyses

    The complementary approaches were used to evaluate the evolution rate of genome size for three suborders.For each suborder,we assessed phylogenetic signal using the

    phylosig

    function in the package of

    phytools

    in RStudio v.3.1.2 (Revell,2012).We then used the Blomberg’s

    K

    (Blomberg

    et al

    .,2003) in which genome size variation comparing on a null model is assumed genome size evolution under Brownian motion (BM) model.We also used the Pagel’s

    λ

    (Pagel,1999)in which phylogenetic signal is estimated on the basis of the phylogenetic dependence of genome size.

    K

    =1 indicated genome size evolved as expected under a BM model,while

    K

    > 1or

    K

    < 1 indicated less or more phylogenetic signal than expected under a BM model,respectively.We used Blomberg’s

    K

    and Pagel’s

    λ

    to estimate the phylogenetic signal and found qualitatively similar results (Table S2).We used the

    fitContinuous

    function in the R package-

    Geiger

    (Harmon

    et al

    .,2008) to compare genome size evolution on the basis of Brownian motion,Ornstein-Uhlenbeck and Early-burst models between the two suborders.Following the suggestions by Simmons and Fitzpatrick (2016),BM model of genome size evolution was regarded to be the best model due to small sample size.Moreover,to compare differences in evolutionary rate of genome size between the two suborders,we modified a likelihood method where a phylogeny can directly compare on the Brownian evolutionary rate (

    σ

    ) of genome size (Adams,2013).To examine associations between genome size and life histories,we used the phylogenetic generalized least squares models where the phylogenetic structure of the model residuals was considered in the

    caper

    package (Orme

    et al

    .,2012;Huang

    et al

    .,2020).We used phylogenetic scaling parameter

    λ

    to estimate the phylogenetic influence on the associations between genome size and life histories based on a maximumlikelihood approach (Pagel,1999).The scale of

    λ

    -values ranges from zero (i.e.,phylogenetic independence) to one (i.e.,complete phylogenetic non-independence) (Freckleton

    et al

    .,2002;Mai

    et al

    .,2019)

    .

    We log-transformed life histories to linearize associations and used the phylogenetic tree of squamata species to correct for phylogenetic dependence (Mai

    et al

    .,2020).To test the associations between body mass and life histories,we treated body mass as response variable,hatchling mass,clutches per year,clutch size,age at sexual maturity and lifespan as predictor variables using the multivariate phylogenetic generalized least squares.To test whether genome size exhibited a association with body mass,we treated body mass as predictor variable,genome size as response variable,and hatchling mass,clutches per year,clutch size and lifespan as covariates using the multivariate phylogenetic generalized least squares.

    3.Results

    The average value of genome size was 2.11 pg,ranging from 1.19 to 3.93 pg among 199 species of squamata.Genome size in Lacertilia tended to be larger than that in Serpentes (Figure 2).The evolutionary rate of genome size in Lacertilia was faster than that in Serpentes (Table S3).

    Figure 1 The phylogenetic tree of the 199 species of squamata used in the comparative analysis.

    Figure 2 Genome size difference between Lacertilian and Serpentes for 199 species of squamata.

    The multivariate phylogenetic generalized least squares model indicated that body mass was positively associated with hatchling mass,clutches per year,clutch size and lifespan among 199 species of squamata (Table 1) .The genome size was not associated with body mass when the effects of hatchling mass,clutches per year,clutch size and lifespan were removed(Table 2).We also found negative correlations between genome size and clutch size or clutches per year (Table 2).

    For Serpentes in particular,body mass was positively and significantly associated with hatchling mass and clutch size,but not with clutches per year,age at sexual maturity and lifespan using the multivariate phylogenetic generalized least squares model (Table S4).However,there was no association between genome size and body mass when removing the hatchling mass and clutch size effects (Table S5).For Lacertilia,body mass was significantly associated with hatchling mass,clutches per year,clutch size and lifespan (Table S4).When the influences of hatchling mass,clutches per year,clutch size and lifespan were removed,we found no association between genome size variation and body mass (Table S5).

    Table 1 The associations between body mass and life histories across 199 species of squamata.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    Table 2 The associations between genome size and life histories across 199 species of squamata.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    4.Discussion

    Our results showed that genome size evolution in Lacertilia evolved significantly faster than that in Serpentes among 199 species of squamata.We found positive correlations between body mass and hatchling mass,clutches per year,clutch size,and lifespan.However,genome size was not associated with body mass when correcting for the effects of part life histories.For Lacertilia and Serpentes,genome size did not show a association with body mass.

    Differences in transposable element accumulation rates in animals experienced may lead to substantial variation in genome size among species (Chalopin

    et al

    .,2015;Gibbs

    et al

    .,2004).For example,a number of DNA obtained by transposable element accumulation with strong changes among lineages,are counteracted by loss of DNA on the basis of large segmental deletion in birds (Kapusta

    et al

    .,2017).For 199 species of squamata,the rate of transposable element accumulation can also explain the marked variation in genome size,ranging from 1.19 to 3.93 pg.The evolutionary history of genome size in amphibians has been one of gradual,time-dependent variation (Brownian motion;Liedtke

    et al

    .,2018).In this study,evolutionary modelfitting showed that genomes in Lacertilia and Serpentes evolved under a shared processes of Brownian motion.The common ancestor of extant squamata was predicted to have similar size in genome in Lacertilia and Serpentes.We inferred that genome size in squamata evolved gradually as a function of time(Brownian motion).Herein we found that the evolutionary rate of genome size in Lacertilia evolved faster than Serpentes.Palaeontological data and genomic evidence display a similar pattern (Pyron

    et al

    .,2013).There are evidences that phylogeny is likely to promote the influences of genome duplications and transposons on genome size evolution in animals (mammals:Tang

    et al

    .,2019;insects:Alfsnes

    et al

    .,2017).For example,genome size is phylogenydependent when

    λ

    > 0.9 in all life-history traits is reported in mammals (Tang

    et al

    .,2019).However,phylogeny displays a weak correlation with genome size in crustaceans (Alfsnes

    et al

    .,2017).Likewise,there is a weak association between genome size and phylogeny among 240 species of birds when

    λ

    ≤ 0.564 is recorded in all life-history traits (Yu

    et al

    .,2020).We found that genome size was not associated with phylogeny,suggesting that the phylogeny did not a strong power in driving transposons and duplications of genome in squamata.Genome size variation can be explained by the more mechanistic and/or short period effects which is regarded as the proximate causes.Moreover,the evolutionary powers (i.e.,selection),regarding as the ultimate causes,can also explain the genome size variation (Hessen

    et al

    .,2013;Alfsnes

    et al

    .,2017;Yu

    et al

    .,2020).For birds,variations in genome size are positively related to the length of developmental period (Kapusta

    et al

    .,2017;Yu

    et al

    .,2020),providing evidence for the associations between life histories and genome size evolution.Indeed,genome size displays markedly and directly effects on cell size and cell replication rate (Gregory,2002b),so larger genomes are expected to be positively correlated with larger egg size and smaller clutch size.However,large datasets have indicated that variations in genome size are not associated with offspring number and size in mammals (Tang

    et al

    .,2019) and life history complexity of amphibians (Liedtke

    et al

    .,2018).In this study,there were negative correlations between genome size variation and life histories such as clutch size and clutches per year in squamata,suggesting that less offspring number or larger offspring size can promote evolution of larger genomes.Body mass is positively associated with genome size in vertebrates (Liedtke

    et al

    .,2018;Tang

    et al

    .,2019;Yu

    et al

    .,2020)and invertebrates (Gregory

    et al

    .,2000;McLaren

    et al

    .,1989;Hessen and Persson,2009;Alfsnes

    et al

    .,2017).Such positive associations between cell size and genome size (Gregory,2005a;McLaren and Marcogliese,1983) have indicated that variations in body size among the related species can partly respond to variation in cell size (Hessen

    et al

    .,2013).Indeed,genome size exhibits positively correlations with body mass in birds and mammals (Tang

    et al

    .,2019;Yu

    et al

    .,2020).Across 199 species of squamata,there were not associations between genome size and body mass,suggesting that diversity in genome size was not response of variation in cell size.

    In conclusion,we illustrated the relationships between genome size and life histories in squamata.The hatching time,hatchling mass,clutch size per year and clutch size cannot shaped the genome size variation,and species with larger bodies did not possess larger genomes in squamata.Our future research would need more species to reveal the relationships between genome size evolution and life histories.

    Acknowledgements

    We thank C.L.MAI and J.P.YU to help the data collected.Financial support was provided by the National Natural Sciences Foundation of China (31 772451;31970393) and the Science and Technology Youth Innovation Team of Sichuan Province (2019JDTD0012).

    Appendix

    Table S1 TSpecies,body mass (g),genome size (pg),hatchling mass (g),clutch size,clutches per year among 199 species of squamata from the references of De Smet (1981),Feldman et al.(2016),Allen et al.(2017),and age at sexual maturity (years) and lifespan (years) from AnAge (https://genomics.senescence.info/species/).

    (Continued Table S1)

    (Continued Table S1)

    (Continued Table S1)

    References for Table S1

    Allen W.L.,Street S.E.,Capellini I.2017.Fast life-history traits promote invasion success in amphibians and reptiles.Ecol Lett,20(2):222-230

    De Smet W.H.O.1981.The nuclear Feulgen-DNA content of the vertebrates (especially reptiles),as measured by fluorescence cytophotometry,with notes on the cell and chromosome size.Acta Zool Pathol Antverp,76(1):119-167

    Feldman A.,Sabath N.,Pyron R.A.,Mayrose I.,Meiri S.2016.Body sizes and diversification rates of lizards,snakes,amphisbaenians and the tuatara.Glob Ecol Biogeogr,25(2):187-197

    Table S2 Evaluation of phylogenetic signal in genome size examined.

    Table S3 Comparison of model parameters and fit for each suborder examined under Brownian motion,Ornstein-Uhlenbeck and Early-burst evolutionary models.

    Table S4 Associations between body mass and life histories for the two suborders in squamata using phylogenetic generalized least squares models.Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    Table S5 Associations between genome size and life histories in squamata using phylogenetic generalized least squares models.Phylogenetic scaling parameters (superscripts following λ denoteP-values of likelihood ratio tests against models with λ=0 and λ=1,respectively).

    亚洲精品国产av成人精品| 亚洲成色77777| 亚洲黑人精品在线| 久久久精品国产亚洲av高清涩受| 黄色a级毛片大全视频| 男人爽女人下面视频在线观看| 自线自在国产av| 国产不卡av网站在线观看| 成年美女黄网站色视频大全免费| 亚洲人成电影免费在线| 黑人欧美特级aaaaaa片| 九色亚洲精品在线播放| 精品视频人人做人人爽| 在线看a的网站| 亚洲国产av影院在线观看| 天堂8中文在线网| 日韩 亚洲 欧美在线| 少妇精品久久久久久久| 久久人妻熟女aⅴ| 亚洲欧美成人综合另类久久久| 亚洲情色 制服丝袜| 亚洲国产av新网站| 免费一级毛片在线播放高清视频 | 黄色毛片三级朝国网站| 成人国产一区最新在线观看 | 欧美日韩国产mv在线观看视频| 丝袜在线中文字幕| 美女高潮到喷水免费观看| 久久性视频一级片| 久久精品久久精品一区二区三区| 国产一级毛片在线| 国产欧美日韩精品亚洲av| 国产精品国产三级专区第一集| 国产男女内射视频| 久热爱精品视频在线9| 男女无遮挡免费网站观看| 黄频高清免费视频| 爱豆传媒免费全集在线观看| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 日本a在线网址| 99热网站在线观看| 免费在线观看视频国产中文字幕亚洲 | 丁香六月欧美| 精品人妻一区二区三区麻豆| 久久人妻熟女aⅴ| 成人国语在线视频| 五月天丁香电影| 无遮挡黄片免费观看| 天天添夜夜摸| 视频区图区小说| 亚洲色图综合在线观看| 三上悠亚av全集在线观看| 99re6热这里在线精品视频| 嫁个100分男人电影在线观看 | 一本一本久久a久久精品综合妖精| 日韩人妻精品一区2区三区| 中文字幕色久视频| 成年人午夜在线观看视频| 国产免费又黄又爽又色| 久久精品国产亚洲av高清一级| 一本综合久久免费| 国产欧美日韩综合在线一区二区| 国产麻豆69| 中文欧美无线码| 亚洲视频免费观看视频| 欧美日韩综合久久久久久| 国产在线免费精品| 色精品久久人妻99蜜桃| 亚洲美女黄色视频免费看| 亚洲人成电影免费在线| 七月丁香在线播放| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区国产| 国产成人系列免费观看| 国产精品 国内视频| 免费不卡黄色视频| 五月天丁香电影| 黑人巨大精品欧美一区二区蜜桃| 国产伦理片在线播放av一区| 一区在线观看完整版| 午夜久久久在线观看| 欧美日韩精品网址| 免费少妇av软件| 久久久久精品人妻al黑| av福利片在线| 亚洲情色 制服丝袜| 亚洲精品在线美女| 18禁国产床啪视频网站| 美女主播在线视频| 一级毛片女人18水好多 | 中文字幕另类日韩欧美亚洲嫩草| 国产一区亚洲一区在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲熟女毛片儿| 国产91精品成人一区二区三区 | 女人高潮潮喷娇喘18禁视频| 精品免费久久久久久久清纯 | 免费在线观看视频国产中文字幕亚洲 | 日日爽夜夜爽网站| 妹子高潮喷水视频| 亚洲第一青青草原| 久久精品久久久久久噜噜老黄| 中文字幕最新亚洲高清| 一边摸一边抽搐一进一出视频| 一个人免费看片子| 国产有黄有色有爽视频| 国产成人啪精品午夜网站| 久久精品国产综合久久久| 亚洲精品国产区一区二| 欧美黑人欧美精品刺激| 婷婷色综合大香蕉| 亚洲,一卡二卡三卡| 欧美日韩亚洲高清精品| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 菩萨蛮人人尽说江南好唐韦庄| 日本猛色少妇xxxxx猛交久久| 国产成人啪精品午夜网站| 午夜久久久在线观看| 男女边吃奶边做爰视频| 美国免费a级毛片| 午夜福利影视在线免费观看| 男人爽女人下面视频在线观看| 999精品在线视频| 久久久久久久国产电影| 欧美精品高潮呻吟av久久| 亚洲精品一二三| 亚洲,欧美精品.| 国产淫语在线视频| 天天添夜夜摸| 大陆偷拍与自拍| 亚洲人成77777在线视频| 天堂中文最新版在线下载| 成年美女黄网站色视频大全免费| 视频在线观看一区二区三区| 91国产中文字幕| 成人黄色视频免费在线看| 波多野结衣一区麻豆| 欧美人与性动交α欧美精品济南到| 18禁裸乳无遮挡动漫免费视频| 久久免费观看电影| 看免费成人av毛片| 赤兔流量卡办理| 中文精品一卡2卡3卡4更新| 色视频在线一区二区三区| 久久人人爽人人片av| netflix在线观看网站| 水蜜桃什么品种好| 一本综合久久免费| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频| 日本欧美视频一区| 精品免费久久久久久久清纯 | 国产伦人伦偷精品视频| 中文欧美无线码| 男女高潮啪啪啪动态图| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区| 飞空精品影院首页| 午夜福利,免费看| 在线看a的网站| 叶爱在线成人免费视频播放| 永久免费av网站大全| 亚洲av成人精品一二三区| 美女扒开内裤让男人捅视频| 国产高清国产精品国产三级| 午夜福利影视在线免费观看| 在现免费观看毛片| 久热爱精品视频在线9| 18禁观看日本| 在线亚洲精品国产二区图片欧美| 国产亚洲一区二区精品| 欧美亚洲日本最大视频资源| 婷婷色av中文字幕| 秋霞在线观看毛片| 黄色 视频免费看| 精品人妻一区二区三区麻豆| 亚洲av成人不卡在线观看播放网 | 亚洲欧美激情在线| 欧美黑人欧美精品刺激| 亚洲精品乱久久久久久| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 男女下面插进去视频免费观看| 久久久久久久久免费视频了| 女人爽到高潮嗷嗷叫在线视频| 国产成人一区二区三区免费视频网站 | 成人影院久久| 国产精品一区二区在线不卡| 午夜日韩欧美国产| 久久人人爽人人片av| 国产精品久久久久久精品古装| 欧美 亚洲 国产 日韩一| 久久影院123| 久久久久久久久免费视频了| 十分钟在线观看高清视频www| 成人亚洲精品一区在线观看| 老汉色av国产亚洲站长工具| 日本av免费视频播放| 老司机午夜十八禁免费视频| 熟女少妇亚洲综合色aaa.| 午夜日韩欧美国产| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久午夜乱码| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| 欧美激情高清一区二区三区| 99精品久久久久人妻精品| 制服人妻中文乱码| 日韩免费高清中文字幕av| 99久久人妻综合| 大型av网站在线播放| 夫妻午夜视频| 精品亚洲成国产av| 久久99精品国语久久久| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 无限看片的www在线观看| 国产精品久久久av美女十八| 如日韩欧美国产精品一区二区三区| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 久久久亚洲精品成人影院| 制服人妻中文乱码| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 一区二区日韩欧美中文字幕| 国产一区二区三区av在线| 老司机深夜福利视频在线观看 | 在线av久久热| 激情视频va一区二区三区| 叶爱在线成人免费视频播放| 十分钟在线观看高清视频www| 免费看av在线观看网站| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 亚洲,欧美精品.| 各种免费的搞黄视频| 欧美日韩av久久| 久热这里只有精品99| 欧美亚洲 丝袜 人妻 在线| av在线播放精品| 久久久精品免费免费高清| 欧美成狂野欧美在线观看| 一边摸一边抽搐一进一出视频| 黄片小视频在线播放| 国产97色在线日韩免费| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费| 国产精品一区二区免费欧美 | 一区福利在线观看| 成人黄色视频免费在线看| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 纯流量卡能插随身wifi吗| 午夜福利免费观看在线| 一级毛片女人18水好多 | 一边亲一边摸免费视频| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 高潮久久久久久久久久久不卡| 欧美在线黄色| 汤姆久久久久久久影院中文字幕| 五月天丁香电影| 国产伦理片在线播放av一区| 午夜久久久在线观看| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 久久国产精品人妻蜜桃| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| 午夜福利影视在线免费观看| 黑丝袜美女国产一区| 高清av免费在线| 超碰97精品在线观看| 亚洲成色77777| 国产激情久久老熟女| 韩国高清视频一区二区三区| 18在线观看网站| 欧美国产精品一级二级三级| 欧美在线黄色| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 男的添女的下面高潮视频| 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 两人在一起打扑克的视频| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频 | 啦啦啦 在线观看视频| 桃花免费在线播放| 久久人人97超碰香蕉20202| 天天操日日干夜夜撸| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| 日韩中文字幕视频在线看片| 亚洲av综合色区一区| 天天躁夜夜躁狠狠久久av| 国产av国产精品国产| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 国产高清videossex| 男女无遮挡免费网站观看| 制服诱惑二区| 美女视频免费永久观看网站| 久久99一区二区三区| 一本久久精品| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 国产又爽黄色视频| 99热国产这里只有精品6| 999精品在线视频| 久久精品国产亚洲av高清一级| 午夜91福利影院| 蜜桃在线观看..| www.精华液| 欧美+亚洲+日韩+国产| 国产熟女午夜一区二区三区| 国产精品99久久99久久久不卡| 高清黄色对白视频在线免费看| 久久精品久久精品一区二区三区| 日韩,欧美,国产一区二区三区| av又黄又爽大尺度在线免费看| 丁香六月天网| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 人成视频在线观看免费观看| 亚洲一区中文字幕在线| 成人亚洲欧美一区二区av| 啦啦啦视频在线资源免费观看| 亚洲精品久久成人aⅴ小说| 色综合欧美亚洲国产小说| 久久久久久人人人人人| 亚洲av欧美aⅴ国产| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 国产色视频综合| 一级毛片女人18水好多 | 国产一区二区三区av在线| 建设人人有责人人尽责人人享有的| 国产av精品麻豆| 午夜日韩欧美国产| 黄色视频不卡| 国产av国产精品国产| 人妻 亚洲 视频| av网站在线播放免费| 91字幕亚洲| 国产成人av教育| 久久久久国产精品人妻一区二区| 久久天躁狠狠躁夜夜2o2o | 交换朋友夫妻互换小说| av国产久精品久网站免费入址| 老司机影院毛片| 亚洲国产精品一区三区| 国产欧美日韩精品亚洲av| 亚洲欧洲日产国产| 亚洲精品久久成人aⅴ小说| 七月丁香在线播放| www.自偷自拍.com| 国产色视频综合| 久久久久久免费高清国产稀缺| 国产成人精品无人区| 亚洲一区中文字幕在线| 肉色欧美久久久久久久蜜桃| 国产精品久久久久成人av| 亚洲成人国产一区在线观看 | 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 水蜜桃什么品种好| 电影成人av| 欧美国产精品va在线观看不卡| 中文字幕人妻丝袜制服| 好男人视频免费观看在线| 大陆偷拍与自拍| 久久青草综合色| 国产一区二区激情短视频 | netflix在线观看网站| 午夜福利,免费看| 欧美久久黑人一区二区| 尾随美女入室| 日日夜夜操网爽| 欧美变态另类bdsm刘玥| 9色porny在线观看| 久久久欧美国产精品| 亚洲欧洲日产国产| 亚洲国产成人一精品久久久| 99热网站在线观看| 亚洲第一av免费看| 一本色道久久久久久精品综合| 日本欧美视频一区| 两人在一起打扑克的视频| 一个人免费看片子| 两人在一起打扑克的视频| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 日本wwww免费看| 国产成人欧美| 免费不卡黄色视频| 成人国产一区最新在线观看 | 国产视频一区二区在线看| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 中文字幕人妻丝袜制服| 日韩 亚洲 欧美在线| 免费观看av网站的网址| 欧美日韩精品网址| 国产欧美亚洲国产| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| netflix在线观看网站| 性色av乱码一区二区三区2| 99国产精品99久久久久| 亚洲欧美精品自产自拍| 丰满少妇做爰视频| av网站免费在线观看视频| netflix在线观看网站| 国产三级黄色录像| 人妻人人澡人人爽人人| 色网站视频免费| 亚洲精品日本国产第一区| 黄频高清免费视频| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 青草久久国产| 亚洲图色成人| 成年人黄色毛片网站| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| 婷婷成人精品国产| 精品一区二区三区四区五区乱码 | 亚洲欧美一区二区三区黑人| 大片免费播放器 马上看| 精品免费久久久久久久清纯 | 国产亚洲欧美在线一区二区| 9色porny在线观看| 午夜福利在线免费观看网站| 色婷婷久久久亚洲欧美| 欧美精品一区二区大全| 亚洲精品国产区一区二| 国产精品一国产av| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 精品人妻一区二区三区麻豆| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 黄片播放在线免费| 蜜桃在线观看..| 高清不卡的av网站| 中文字幕人妻丝袜制服| 婷婷色综合www| 日韩av在线免费看完整版不卡| 一边摸一边抽搐一进一出视频| 在线观看免费日韩欧美大片| 亚洲熟女毛片儿| 日本一区二区免费在线视频| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 国产精品久久久av美女十八| 777米奇影视久久| 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 亚洲国产中文字幕在线视频| 欧美日本中文国产一区发布| 亚洲国产最新在线播放| 国产熟女欧美一区二区| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 天天躁夜夜躁狠狠躁躁| 99热国产这里只有精品6| 好男人电影高清在线观看| 婷婷丁香在线五月| av欧美777| 看免费av毛片| 中文字幕人妻丝袜一区二区| 夜夜骑夜夜射夜夜干| 国产黄色免费在线视频| 国产亚洲av高清不卡| 女警被强在线播放| 亚洲av在线观看美女高潮| 自拍欧美九色日韩亚洲蝌蚪91| tube8黄色片| 制服人妻中文乱码| 亚洲av电影在线进入| av国产久精品久网站免费入址| 亚洲国产欧美一区二区综合| 日韩 亚洲 欧美在线| 欧美日韩一级在线毛片| 国产野战对白在线观看| 一级片'在线观看视频| 99国产精品免费福利视频| 一级毛片女人18水好多 | 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 男人爽女人下面视频在线观看| 一级片免费观看大全| 久久久久久久大尺度免费视频| 黄色片一级片一级黄色片| 一区福利在线观看| 国产99久久九九免费精品| 久久精品人人爽人人爽视色| 亚洲精品一卡2卡三卡4卡5卡 | 国产熟女欧美一区二区| 又紧又爽又黄一区二区| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 成人国语在线视频| 国产淫语在线视频| 久久 成人 亚洲| 国产成人精品无人区| 亚洲五月色婷婷综合| 久久这里只有精品19| 国产日韩欧美亚洲二区| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲 | 成在线人永久免费视频| 午夜福利影视在线免费观看| 国产色视频综合| 国产一级毛片在线| 国产亚洲欧美精品永久| www.av在线官网国产| 午夜日韩欧美国产| 汤姆久久久久久久影院中文字幕| 久久久久久久国产电影| 国产精品亚洲av一区麻豆| 一本一本久久a久久精品综合妖精| 亚洲精品久久午夜乱码| cao死你这个sao货| 成年av动漫网址| e午夜精品久久久久久久| 国产一卡二卡三卡精品| 黄色怎么调成土黄色| 亚洲七黄色美女视频| 欧美日韩黄片免| 国产成人av教育| 国产欧美日韩一区二区三 | 视频区图区小说| 国产成人系列免费观看| 国产99久久九九免费精品| 精品久久久久久久毛片微露脸 | 激情五月婷婷亚洲| 日韩视频在线欧美| 国产欧美亚洲国产| 美女扒开内裤让男人捅视频| 丁香六月天网| 2018国产大陆天天弄谢| 美女中出高潮动态图| 久久久精品94久久精品| av视频免费观看在线观看| 黑人猛操日本美女一级片| 999久久久国产精品视频| 免费不卡黄色视频| www.自偷自拍.com| 18禁裸乳无遮挡动漫免费视频| 99久久人妻综合| 一本—道久久a久久精品蜜桃钙片| 在线观看人妻少妇| 国产激情久久老熟女| 两个人免费观看高清视频| 午夜免费鲁丝| 免费看不卡的av| 青春草亚洲视频在线观看| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 首页视频小说图片口味搜索 | 国产欧美日韩一区二区三 | 91九色精品人成在线观看| 成人亚洲欧美一区二区av| 久久久久网色| 日韩制服骚丝袜av| 亚洲国产看品久久| 国产免费一区二区三区四区乱码| 一区二区三区精品91| 自线自在国产av| 精品第一国产精品| 国产成人精品久久二区二区91| 建设人人有责人人尽责人人享有的| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 一区二区av电影网| 国产在线观看jvid| 国产一区二区 视频在线| 色网站视频免费| 欧美乱码精品一区二区三区| 最近最新中文字幕大全免费视频 | 国产精品二区激情视频| 老司机在亚洲福利影院| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,欧美,日韩| 国产精品99久久99久久久不卡| 色婷婷av一区二区三区视频| 国产主播在线观看一区二区 | 电影成人av| 国产无遮挡羞羞视频在线观看| 国产亚洲午夜精品一区二区久久| 久久国产精品大桥未久av| 97精品久久久久久久久久精品| 狂野欧美激情性xxxx|