• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transcriptome Sequencing Provides Evidence of Genetic Assimilation in a Toad-Headed Lizard at High Altitude

    2021-09-27 11:25:44WeizhaoYANGTaoZHANGZhongyiYAOXiaolongTANGandYinQI
    Asian Herpetological Research 2021年3期

    Weizhao YANG ,Tao ZHANG ,Zhongyi YAO ,Xiaolong TANG and Yin QI*

    1Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

    2Department of Biology,Lund University,Lund 22362,Sweden

    3Institute of Biochemistry and Molecular Biology,School of Life Science,Lanzhou University,Lanzhou 730000,Gansu,China

    Abstract Understanding how organisms adapt to the environment is a compelling question in modern evolutionary biology.Genetic assimilation provides an alternative hypothesis to explain adaptation,in which phenotypic plasticity is first triggered by environmental factors,followed by selection on genotypes that reduce the plastic expression of phenotypes.To investigate the evidence of genetic assimilation in a high-altitude dweller,the toad-headed agama Phrynocephalus vlangalii,we conducted a translocation experiment by moving individuals from high-to low-altitude environments.We then measured their gene expression profiles by transcriptome sequencing in heart,liver and muscle,and compared them to two low-altitude species P.axillaris and P.forsythii.The results showed that the general expression profile of P.vlangalii was similar to its viviparous relative P.forsythii,however,the differentially expressed genes in the liver of P.vlangalii showed a distinct pattern compared to both the lowaltitude species.In particular,several key genes (FASN,ACAA2 and ECI2) within fatty acid metabolic pathway were no longer differentially expressed in P.valgnalii,suggesting the loss of plasticity for this pathway after translocation.This study provides evidence of genetic assimilation in fatty acid metabolism that may have facilitated the adaptation to high-altitude for P.vlangalii.

    Keywords genetic assimilation,gene expression,plasticity,Phrynocephalus vlangalii

    1.Introduction

    Elucidating the mechanisms of adaptation is a compelling question in modern evolutionary biology (Rose,2001;Smith and Eyre-Walker,2002).In the past decades,a “mutation-first evolution” model was widely accepted to explain the process of adaptation,in which mutations linked to fit phenotypes are under natural selection,resulting in changes in phenotype frequencies,and ultimately,adaptation (Carroll,2008).However,a “plasticity-first evolution” model has also been proposed in which phenotypic plasticity is first triggered by environmental factors,followed by selection on genotypes influencing the plastic expression of phenotypes through genetic accommodation (Moczek

    et al

    .,2011;Jones and Robinson,2018).Genetic assimilation is a special case of such process,where the initially plastic phenotypes are gradually fixed,leading to reduced phenotypic plasticity and only adaptive phenotypes,even without environmental stimuli (Waddington,1953;Pigliucci,2006).Although a number of studies have shown evidence of genetic assimilation,such as cases in

    Drosophila melanogaster

    (Dworkin,2005;Ghalambor

    et al

    .,2010) and

    Spea bombifrons

    (Levis and Pfennig,2019),the role of genetic assimilation in adaptive evolution remains unclear and controversial.Gene expression profiles provide an excellent tool to investigate genetic assimilation in evolution.In general,phenotypic plasticity springs from environmentally sensitive regulation of gene expression,which alters the profiles of gene expression (Colinet and Hoffmann,2012;Beaman

    et al

    .,2016).As plastic phenotypes may evolve in response to selection with increased or decreased levels of plasticity,the gene expression associated with the phenotypes may evolve as well (Renn and Schumer,2013).Thus,variable patterns of gene expression mirror the evolution of phenotypic plasticity.In the case of genetic assimilation,plastically expressed genes in response to the environment may finally become fixed (Scoville and Pfrender,2010;Renn and Schumer,2013).Previous studies that have used gene expression profiles as a tool to investigate the pattern of genetic assimilation have mainly focused on eurociality in the honeybee (Toth

    et al

    .,2007;Bloch and Grozinger,2011);host specialization in

    Drosophila

    (Matzkin

    et al

    .,2006;Matzkin,2012);and character displacement in spadefoot toads (Levis

    et al

    .,2017).Toad-headed agamas (genus

    Phrynocephalus

    ) at the Qinghai-Tibetan Plateau (Huey,1982;Zhao

    et al

    .,1982) provide an excellent model system to study genetic assimilation.As true dwellers of high-altitude environments,as high as 5 300 m above sea level (a.s.l),this group has experienced a long-term adaptive evolution under several extreme stressors,including hypobaric hypoxia,low ambient temperatures,and strong UV radiation (Scheinfeldt and Tishkoff,2010;Cheviron and Brumfield,2011).Phylogenetic studies indicated that a total of six high-altitude species in this genus formed a monophyletic viviparous clade,including another low-altitude species,

    P.forsythii

    (Figure 1A;Guo

    et al

    .,2002;Guo and Wang,2007;Wang

    et al

    .,2014).

    Figure 1 Translocation experiment and transcriptome sequencing.A:The phylogenetic relationship among Phrynocephalus axillaris,P.forsythii,and P.vlangalii.The red branch indicates the viviparous high-altitude clade leading to P.vlangalii.B:Principal component analysis (PCA) plot for gene expression profiles.C:Heatmap for gene expression profiles among P.vlangalii samples.D,E,and F:Heatmap for gene expression profiles among the three species for heart,liver,and muscle,respectively.In all the comparisons,P.vlangalii was clustered with P.forsythii,consistent with their phylogenetic relationship.

    High-altitude toad-headed agamas have evolved a series of characteristics that underline their adaptations to extremely high-altitude environments.At DNA sequence level,a couple of genes have been identified with signature of positive selection associated with energy metabolism and DNA repair(Yang

    et al

    .,2014;Yang

    et al

    .,2015;Sun

    et al

    .,2018).Accordingly,physiological studies revealed that,compared to low-altitude species,high-altitude toad-headed agamas may have decreased basal metabolic rate and increased the utilization of nutrients(e.g.fatty acid) to balance the energy budget (Tang

    et al

    .,2013;Li

    et al

    .,2016;Zhang

    et al

    .,2018),which is a common strategy for high-altitude adaptation for ectothermic vertebrates (Cooper

    et al

    .,2002;Li

    et al

    .,2016).On the other hand,low-altitude toadheaded agamas exhibited the same direction of plastic response to highland environments (e.g.Tang

    et al

    .,2013).Qi

    et al.

    (unpublished) have conducted an experiment by translocating two low-altitude species

    P.axillaris

    (oviparous) and

    P.forsythii

    (viviparous) to highland environments and measured their transcriptomic,metabolomic,and behavioral responses.The two species showed a similar pattern,in which significantly plastic change occurred for core genes and metabolites within fatty acid metabolic pathway.However,whether the same plasticity still exists in high-altitude agamas remains unknown.For other taxa,several species have shown loss of plasticity while adapting to high-altitudes due to genetic assimilation,such as

    Alnum glutinosa

    (Kort

    et al

    .,2016),and montane butterfly

    Colias eriphyle

    (Kingsolver and Buckley,2017).Therefore,to investigate if toadheaded lizards have experienced the loss of plasticity at highaltitudes could provide new evidence of genetic assimilation in high-altitude adaptation for ectotherms.Here,we present a study to investigate the gene expression profiles and plasticity of a high-altitude species Qinghai toadheaded agama (

    P.vlangalii

    ).This species inhabits in Qinghai-Tibetan Plateau at altitudes ranging from 2000 to 4600 a.s.l.(Zhao

    et al

    .,1999).We implemented a translocation experiment by moving

    P.vlangalii

    individuals from high-to low-altitude environment and measured the gene expression profiles for three organ tissues -heart,liver,and muscle,to investigate the plastic changes in gene expression.In addition,we compared

    P.vlangalii

    to two low-altitude species,

    P.axillaris

    (oviparous) and

    P.forsythii

    (viviparous),and revealed the pattern of expression plasticity for

    P.vlangalii

    that may indicate whether genetic assimilation has contributed to theadaptation to high-altitude environmentfor this species.

    2.Materials and Methods

    2.1.Ethical approval

    All applicable international,national,and/or institutional guidelines for the care and use of animals were strictly followed.All animal sample collection protocols complied with the current laws of China.The sampling and experiment in this study were carried out with permission(Number 2017005) from the Ethical Committee for Animal Experiments in Chengdu Institute of Biology,Chinese Academy of Sciences.

    2.2.Translocation experiment

    A total of 12 male adults of

    P.vlangalii

    were sampled from Zoige,Sichuan Province of China,at an altitude of 3 400 meters a.s.l.All samples were randomly and evenly assigned into an ‘origin group’ and ‘translocation group’.For the origin group,we measured their morphological traits and then performed euthanasia using decapitation and collected tissues of heart,liver,and muscle,by preserved in RNA later (Invitrogen,USA) in the field.For the translocation group,we moved the individuals to a workstation in Chengdu City,Sichuan Province of China,with an altitude of 650 meters a.s.l.All individuals had been kept in an outdoor enclosure similar to their native environment for six weeks to make the individuals acclimate to translocation environment.Then,the same procedure was conducted for the translocation group to collect tissue samples.To alleviate the potential bias stimulated by the environment,the field sites were standardized in three aspects:1) sand obtained from the origin sites of

    P.vlangalii

    to the translocation site as substrate;2) mealworms were provided as food every three days for both sites;and 3) fishing net above enclosures to reduce the risks of bird predation.

    2.3.Transcriptome sequencing

    Total RNA was extracted from each tissue sample according to TRIzol protocols(Invitrogen,USA).Transcriptome sequencing was implemented on Illumina HiSeq 2500 platform with paired-end 150 base pair (bp) by Novogene (Beijing,China).Sequence data were deposited in NCBI Short Reads Archive (SRA) with BioProject accession number PRJNA718616.Raw sequence reads were first cleaned by removing the adapter sequences and low-quality base calls using a Novogene pipeline.Trimmomatic v0.35(Bolger

    et al

    .,2014) was used to trim the reads with LEADING:3,TRAILING:3,SLIDINGWINDOW:4:5,MINLEN:70,and default parameters.We checked for reads quality before and after filtering with FASTQC version 0.11.8 (Andrews,2010).One individual with all three types of tissues (E1,K1,and Q1;details in Table S1) was used for

    de novo

    assembly of transcriptome via Trinity v2.8.4 after

    in silico

    read normalization (Grabherr

    et al

    .,2011;Haas

    et al

    .,2013).We then used kallisto version 0.44.0 (Bray

    et al

    .,2016) to quantify the abundance of the assembly and build the transcripts expression matrices.Assembled transcripts with ‘transcripts per million transcripts’ (TPM) less than three were filtered to generate the final assembly for each species.To compare to other two low-altitude species

    P.axillaris

    and

    P.forsythii

    (Qi

    et al

    .,unpublished),a best reciprocal hit (BRH)method was applied to identify 1:1:1 orthologous sequences among the three species (Camacho

    et al

    .,2009).

    2.4.Differential expression analysis

    The clean reads for each sample were mapped against the

    P.vlangalii

    transcriptome assembly by using STAR version 2.6 (Dobin

    et al

    .,2013).The number of reads matched to the same transcripts was counted by HTSeq-count tool with the ‘union’ resolution mode (Anders

    et al

    .,2015).The overall similarity among tissue samples was measured by Euclidean distance and visualized by clustering heatmap through ‘pheatmap’ package after regularized log transformation (rlog) of normalized counts via DESeq2 version 1.20 (Love

    et al

    .,2014).Principal component analysis (PCA) was also used to assess the relationship among different samples.Differentially expressed genes (DEGs) were estimated through generalized linear models in edgeR package version 3.22.5(Robinson

    et al

    .,2010;McCarthy

    et al

    .,2012).We adopted a strict criterion to identify DEGs,with fold-value ≥ 2 and adjusted

    P

    -value (FDR) < 0.05.Functional annotation was performed by mapping the transcripts against the UniProtKB/Swiss-Prot database (release“2018_08”) with blast hits E-value cut-off greater than 10.For those transcripts with annotation information,functional over-representations of DEGs were performed using the clusterProfiler package (Yu

    et al

    .,2012) in R with annotation to GO category and KEGG pathway database.The minimum number of genes required for each test of a given category was 5.All tests were corrected by false discovery rate (FDR).To compare the plastic pattern with

    P.axillaris

    and

    P.forsythii

    for genes associated with fatty acid metabolism,we also checked the expression profiles of 12 diagnostic genes (Table S2),which showed differential expression in liver for the two low-altitude species,including key genes regulating the synthesis (Fatty Acid Synthase,FASN) and catabolic process (Acetyl-Coenzyme A Acyltransferase 2,ACAA2,and Enoyl-CoA Delta Isomerase 2,ECI2) of fatty acid.We calculated the absolute fold change of expression from low-to high-altitude for those genes among the three species,and tested the significance of differences by two-tailed Student’s

    t

    test.

    3.Results

    3.1.Transcriptome sequencing

    A total of 44 793 768-70 718 484 raw reads were generated for

    P.vlangalii

    by Illumina sequencing.After filtering,42 722 956-67 578 714 reads were retained.One sample (R6) was excluded from the following analyses due to low quality of sequencing.Overall,36 336 transcripts were obtained with N50 size of 2 232 bp and mean length of 1 093 bp.By BRH method,8 892 orthologous transcripts were identified among

    P.axillaris

    ,

    P.forsythii

    ,and

    P.vlangalii

    .

    3.2.Gene expression profile

    Both principal component analysis (PCA) and clustering analysis demonstrated that each tissue type presented a distinct expression signature and all samples were unambiguously grouped by tissue origin (Figure 1B).Within each tissue,samples were also separated by origin and translocation groups.In addition,samples from heart and muscle expressed closer than from liver,which may reflect that a large part of the heart is composed of cardiac muscle tissue(Figure 1C).By comparing the expression profiles of

    P.vlangalii

    to the other two low-altitude species

    P.axillaris

    and

    P.forsythii

    ,we found that the

    P.vlangalii

    was closer to

    P.forsythii

    in all the three tissues,consistent with their phylogenetic relationship(Figure 1D,E,F).

    3.3.Differential expression analysis

    Given low-altitude samples as reference,a total of 875 differentially expressed genes(DEGs) were identified in the heart for

    P.vlangalii

    ,with 400 down-regulated and 475 up-regulated.Similarly,688 DEGs were identified in muscle,with 345 down-regulated and 343 up-regulated.We identified 1 220 DEGs in liver,the greatest number of DEGs among all three tissues,with 612 downregulated and 608 up-regulated.

    Through functional annotation,we found that no GO category and KEGG pathway was over-represented by DEGs in heart.A total of 41 GO categories and 13 KEGG pathways were identified over-represented by DEGs in liver (Figure S1).Network clustering of the GO categories indicated that most of the categories were associated with monocarboxylic acid metabolic process,which could be linked to antibiotic catabolic process and detoxification (Figure 2A).In muscle,7 GO categories and 1 KEGG were over-represented by DEGs(Figure S2),which were associated with extracellular matrix organization and carbohydrate derivative catabolic process.

    For the 12 diagnostic genes associated with fatty acid metabolism,the absolute fold change of expression in liver of

    P.vlangalii

    was significantly lower (ΔlogFC=0.8300) than that of

    P.axillaris

    (ΔlogFC=2.1298;

    P-value

    =2.84×10) and

    P.forsythii

    (ΔlogFC=1.7397;

    P-value

    =1.31×10),along with no significant difference between the latter two species (

    P-value

    =0.44) (Figure 2B).In addition,none of the key genes FASN,ACAA2 and ECI2 was differentially expressed between low-and high-altitude(Figure 2C).

    4.Discussion

    In this study,we conducted a translocation experiment by moving

    P.vlangalii

    from a high-to low-altitude environment and measured their expression profiles and plasticity via transcriptome sequencing.Our results clearly illustrated that each tissue type of

    P.vlangalii

    presented an unambiguous expression signature,with hundreds of DEGs up-regulated or down-regulated in each tissue,respectively.In comparison to the other two low-altitude species

    P.axillaris

    (oviparous) and

    P.forsythii

    (viviparous),although the expression profile of

    P.vlangalii

    was still closer to

    P.forsythii

    ,DEGs in liver exhibited a distinct pattern from the other two species,with reduced plasticity in expression of genes associated with fatty acid metabolism.A common strategy for ectothermic vertebrates in response to extreme environments at high-altitude is to suppress basal metabolism and increase utilization of nutrients to balance the energy budget (Cooper

    et al

    .,2002;Li

    et al

    .,2016;Zhang

    et al

    .,2018).Tang

    et al.

    (2013) revealed that a high-altitude toadheaded agama,

    P.erythrurus

    ,behaved similarly,with lower mitochondrial respiratory rate but higher fat utilization in liver compared to a low-altitude species

    P.przewalskii

    .Qi

    et al.

    (unpublished) further found that both oviparous (

    P.axillaris

    )and viviparous (

    P.forsythii

    ) species in this genus showed a very similar plastic pattern of gene expression and metabolites associated with fatty acid metabolism in liver by translocating from low-to high-altitude.However,our study suggests that the true high-altitude species

    P.vlangalii

    has a distinct pattern.Although the general expression profile of

    P.vlangalii

    was still closer to

    P.forsythii

    ,consistent with their phylogenetic relationship,DEGs in liver of

    P.vlangalii

    were mostly concentrated in functional categories like monocarboxylic acid metabolic process,antibiotic catabolic process and detoxification.Furthermore,the expression patterns of 12 diagnostic genes associated with fatty acid metabolism,which showed significantly differentially expression in

    P.axillaris

    and

    P.forsythii

    ,illustrated reduced plastic expression in

    P.vlangalii

    ,including key genes FASN,ACAA2,and ECI2.FASN gene encodes an enzyme fatty acid synthase that plays a core role in fatty acid synthesis (Jayakumar

    et al

    .,1995);ACAA2 and ECI2 encode proteins which are key mitochondrial enzymes involved in beta-oxidation,a step in the catabolic process of fatty acid(Abe

    et al

    .,1993;Geisbrecht

    et al

    .,1999).None of these genes were differentially expressed between low-and high-altitude groups for

    P.vlangalii

    ,suggesting no significant difference in fatty acid metabolism after translocation.The result indicated that

    P.vlangalii

    may have lost the capacity of plasticity in fatty acid metabolism due to genetic assimilation.Plasticity in fatty acid metabolism is thought to contribute to maintaining life activities for organisms moving to high altitude (Hammond

    et al

    .,2001;Storz

    et al

    .,2010;Refsnider

    et al

    .,2018).As a true dweller adapted to high altitude,

    P.vlangalii

    may have evolved other traits to trade-off the reduction of capacity for plasticity in fatty acid metabolism,similar to the case of

    P.erythrurus

    (Tang

    et al

    .,2013).However,the detailed mechanism for

    P.vlangalii

    still needs further research.Our study provided special evidence of genetic assimilation that may have facilitated the high-altitude adaptation for

    P.vlangalii

    .Genetic assimilation refers to the process in which initially plastic phenotypes are gradually fixed,leading to reduced phenotypic plasticity and only adaptive phenotypes,even without environmental stimuli (Waddington,1953;Pigliucci,2006).At gene expression level,plastically expressed genes may finally become fixed,given that gene expression mirrors phenotypic plasticity (Scoville and Pfrender,2010;Renn and Schumer,2013).Genetic assimilation provides an alternative hypothesis to explain the mechanism of adaptive evolution,where phenotypic plasticity is first triggered by environmental factors,followed by selection on genotypes influencing the plastic expression of phenotypes (Moczek

    et al

    .,2011;Jones and Robinson,2018).In fact,species such as

    Alnum glutinosa

    (Kort

    et al

    .,2016) and

    Colias eriphyle

    (Kingsolver and Buckley,2017) also showed similar loss of plasticity in adaptation to high-altitude environments,which indicated that the genetic assimilation might be an effective way for organisms to adapt to extreme environments.However,more studies especially on modeling of phenotypic plasticity are still required to elucidate the role of genetic assimilation in adaptation.

    Acknowledgements

    We are grateful to Cuoke,Erga,X.Qiu,Y.Wu,and X.Zhu for logistic assistance in field station,and J.Ramos for English language editing.We have obtained the permits from Zoige National Wetland Nature Reserve,where we have a long-term field research station on ecology and evolution of lizards.This work was supported by National Natural Science Foundation of China (No.31501855) and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) with Grant No.2019QZKK0402.

    Appendix

    Figure S1 Top 20 GO categories over-represented by DEGs in liver.

    Figure S2 GO categories over-represented by DEGs in muscle.

    Table S1 Sample information.

    Table S2 Diagnostic genes associated with fatty acid metabolism.

    久久久色成人| 精品国内亚洲2022精品成人| 亚洲无线观看免费| 亚洲精品日韩在线中文字幕| 国产男人的电影天堂91| 午夜福利在线观看吧| 干丝袜人妻中文字幕| 80岁老熟妇乱子伦牲交| 永久网站在线| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 成人亚洲精品av一区二区| 免费av观看视频| 亚洲精品aⅴ在线观看| 亚洲怡红院男人天堂| 成人午夜高清在线视频| 韩国高清视频一区二区三区| 国产精品不卡视频一区二区| 亚洲激情五月婷婷啪啪| 九色成人免费人妻av| 美女内射精品一级片tv| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| 国产亚洲5aaaaa淫片| 久久人人爽人人爽人人片va| 日本欧美国产在线视频| 十八禁国产超污无遮挡网站| 国产熟女欧美一区二区| 七月丁香在线播放| 男插女下体视频免费在线播放| 亚洲不卡免费看| 日韩,欧美,国产一区二区三区| 91aial.com中文字幕在线观看| av一本久久久久| 国产片特级美女逼逼视频| 在线观看人妻少妇| 熟女电影av网| 亚洲av.av天堂| 欧美成人a在线观看| 女的被弄到高潮叫床怎么办| 日本熟妇午夜| 少妇丰满av| 久久精品久久精品一区二区三区| 亚洲av不卡在线观看| 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 69av精品久久久久久| 国产精品久久久久久久久免| 亚洲欧美日韩东京热| 亚洲成人精品中文字幕电影| 国产精品女同一区二区软件| 啦啦啦啦在线视频资源| 亚洲在久久综合| 97人妻精品一区二区三区麻豆| 搡老妇女老女人老熟妇| 女的被弄到高潮叫床怎么办| h日本视频在线播放| 26uuu在线亚洲综合色| 69人妻影院| 国产单亲对白刺激| 国产一区二区三区综合在线观看 | 在线观看av片永久免费下载| 国国产精品蜜臀av免费| 欧美xxxx性猛交bbbb| 欧美潮喷喷水| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 午夜爱爱视频在线播放| 国产午夜精品一二区理论片| 蜜臀久久99精品久久宅男| or卡值多少钱| 超碰97精品在线观看| 亚洲无线观看免费| av.在线天堂| 日韩伦理黄色片| 国产精品不卡视频一区二区| 99久国产av精品国产电影| 精品久久久久久久久久久久久| 熟妇人妻久久中文字幕3abv| 亚洲av二区三区四区| 欧美最新免费一区二区三区| 久久国产乱子免费精品| 亚洲自偷自拍三级| 成人午夜高清在线视频| a级毛色黄片| 国产亚洲av片在线观看秒播厂 | 身体一侧抽搐| 欧美bdsm另类| 一夜夜www| 亚洲成人一二三区av| 国产欧美日韩精品一区二区| 国产老妇女一区| 国产一区二区三区av在线| 国产精品av视频在线免费观看| 色综合站精品国产| 大片免费播放器 马上看| 午夜精品在线福利| 嫩草影院入口| 超碰av人人做人人爽久久| 免费电影在线观看免费观看| 美女大奶头视频| 日韩欧美 国产精品| 亚洲欧美精品自产自拍| 天堂中文最新版在线下载 | 国产精品一二三区在线看| 精品欧美国产一区二区三| 国产精品久久视频播放| 纵有疾风起免费观看全集完整版 | 搞女人的毛片| 日韩一区二区视频免费看| 伊人久久国产一区二区| 精品久久久久久成人av| 欧美日韩亚洲高清精品| 国产精品伦人一区二区| 韩国高清视频一区二区三区| 亚洲成人一二三区av| 99热这里只有是精品在线观看| 亚洲成人久久爱视频| 一本一本综合久久| 国产成人aa在线观看| 亚洲精品成人av观看孕妇| 水蜜桃什么品种好| 一本一本综合久久| 麻豆成人午夜福利视频| 在现免费观看毛片| 国产精品人妻久久久影院| 亚洲欧洲国产日韩| 国产白丝娇喘喷水9色精品| 搞女人的毛片| 网址你懂的国产日韩在线| 国产精品一区二区三区四区免费观看| 岛国毛片在线播放| 免费无遮挡裸体视频| 人人妻人人澡人人爽人人夜夜 | 黄片无遮挡物在线观看| 国产精品综合久久久久久久免费| 日韩一本色道免费dvd| 2022亚洲国产成人精品| 黄片无遮挡物在线观看| 亚洲欧美成人综合另类久久久| 久久久久久久久大av| 日本wwww免费看| 26uuu在线亚洲综合色| 日韩大片免费观看网站| 99热网站在线观看| av免费在线看不卡| 国内精品美女久久久久久| 永久网站在线| 国内少妇人妻偷人精品xxx网站| 国产精品综合久久久久久久免费| 亚洲精品久久久久久婷婷小说| 久久99精品国语久久久| 国产午夜精品久久久久久一区二区三区| 日产精品乱码卡一卡2卡三| 免费看a级黄色片| 91aial.com中文字幕在线观看| 国产不卡一卡二| 婷婷六月久久综合丁香| 免费不卡的大黄色大毛片视频在线观看 | 搡女人真爽免费视频火全软件| 七月丁香在线播放| 亚洲国产欧美在线一区| 色哟哟·www| 国产精品精品国产色婷婷| av在线播放精品| 天天躁日日操中文字幕| 一级毛片我不卡| 在线免费十八禁| 99热6这里只有精品| 韩国高清视频一区二区三区| 99久国产av精品| 国产一区有黄有色的免费视频 | 高清午夜精品一区二区三区| 国产成人精品久久久久久| 中文字幕av成人在线电影| 哪个播放器可以免费观看大片| 最新中文字幕久久久久| 日韩欧美三级三区| 最近中文字幕高清免费大全6| 亚洲精品日本国产第一区| 三级国产精品片| 成人二区视频| 国产综合懂色| 国产成人午夜福利电影在线观看| www.av在线官网国产| 欧美xxⅹ黑人| 深夜a级毛片| 啦啦啦中文免费视频观看日本| 干丝袜人妻中文字幕| 日韩国内少妇激情av| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 欧美激情在线99| 在现免费观看毛片| 最近的中文字幕免费完整| 国产精品久久久久久精品电影小说 | 国产黄片美女视频| 亚洲伊人久久精品综合| 美女内射精品一级片tv| 免费看av在线观看网站| 可以在线观看毛片的网站| 国产男女超爽视频在线观看| 免费电影在线观看免费观看| 国内精品宾馆在线| 欧美一级a爱片免费观看看| 免费看光身美女| 亚洲成人中文字幕在线播放| av在线蜜桃| 国产一区二区在线观看日韩| 激情 狠狠 欧美| av女优亚洲男人天堂| 日本一本二区三区精品| 亚洲精品aⅴ在线观看| 亚洲av成人av| 2021少妇久久久久久久久久久| 十八禁国产超污无遮挡网站| 天天一区二区日本电影三级| 91久久精品电影网| 在线免费观看的www视频| 18禁在线无遮挡免费观看视频| 极品教师在线视频| 人妻制服诱惑在线中文字幕| 国产不卡一卡二| 少妇猛男粗大的猛烈进出视频 | 秋霞在线观看毛片| 日韩视频在线欧美| av在线亚洲专区| 日韩人妻高清精品专区| 国产精品人妻久久久影院| 丝袜美腿在线中文| 国产精品美女特级片免费视频播放器| 亚洲天堂国产精品一区在线| 美女被艹到高潮喷水动态| 看黄色毛片网站| a级一级毛片免费在线观看| 亚洲在久久综合| 亚洲av中文av极速乱| 日韩大片免费观看网站| 卡戴珊不雅视频在线播放| 国产中年淑女户外野战色| 一级爰片在线观看| 国产高清不卡午夜福利| 免费播放大片免费观看视频在线观看| 搡老乐熟女国产| 国模一区二区三区四区视频| 免费看日本二区| 一级爰片在线观看| 日韩,欧美,国产一区二区三区| 亚洲精品久久久久久婷婷小说| 中文精品一卡2卡3卡4更新| 嫩草影院入口| 久久草成人影院| 国产免费又黄又爽又色| 黄色日韩在线| 精品久久久久久久久亚洲| 久久精品综合一区二区三区| 天美传媒精品一区二区| 最后的刺客免费高清国语| 国产麻豆成人av免费视频| 国产91av在线免费观看| 啦啦啦韩国在线观看视频| 亚洲欧美日韩东京热| 夫妻性生交免费视频一级片| 高清午夜精品一区二区三区| 免费高清在线观看视频在线观看| 欧美精品国产亚洲| 日韩av在线大香蕉| 老司机影院成人| 国产视频内射| 国产大屁股一区二区在线视频| 美女被艹到高潮喷水动态| 国产成人精品福利久久| 你懂的网址亚洲精品在线观看| 国产精品无大码| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产乱人偷精品视频| 国产激情偷乱视频一区二区| 国产白丝娇喘喷水9色精品| 大话2 男鬼变身卡| 亚洲熟女精品中文字幕| 国产综合精华液| 日本一二三区视频观看| 久久久久久久大尺度免费视频| 亚洲欧美日韩东京热| 国产免费福利视频在线观看| 欧美bdsm另类| av一本久久久久| 老司机影院成人| 精品久久久久久久久久久久久| 免费av观看视频| 九九在线视频观看精品| 亚洲自拍偷在线| av又黄又爽大尺度在线免费看| 欧美一区二区亚洲| 日韩欧美精品免费久久| 麻豆乱淫一区二区| 亚洲av成人精品一区久久| 特级一级黄色大片| 国产永久视频网站| 97超视频在线观看视频| 校园人妻丝袜中文字幕| 免费黄色在线免费观看| 中文字幕久久专区| 大话2 男鬼变身卡| 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 一级爰片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国内精品宾馆在线| 久久久久久久大尺度免费视频| 日本熟妇午夜| 自拍偷自拍亚洲精品老妇| 色综合站精品国产| 亚洲精品日本国产第一区| 亚洲av在线观看美女高潮| 十八禁网站网址无遮挡 | 边亲边吃奶的免费视频| 又大又黄又爽视频免费| 国产精品精品国产色婷婷| 大香蕉97超碰在线| 久久久a久久爽久久v久久| 天堂√8在线中文| 91久久精品国产一区二区成人| 色视频www国产| 日日摸夜夜添夜夜添av毛片| 午夜福利高清视频| av又黄又爽大尺度在线免费看| 免费观看无遮挡的男女| 国产乱来视频区| 国产精品不卡视频一区二区| 插逼视频在线观看| 热99在线观看视频| 在线观看美女被高潮喷水网站| a级毛色黄片| 麻豆成人av视频| 国产三级在线视频| 国产黄片视频在线免费观看| 久久久久精品性色| 久久久久久久亚洲中文字幕| 国产免费一级a男人的天堂| 最近最新中文字幕免费大全7| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 免费看a级黄色片| 嫩草影院新地址| 国产在线一区二区三区精| 国产男女超爽视频在线观看| 日韩欧美三级三区| 最近的中文字幕免费完整| 久久久久久久久久成人| eeuss影院久久| 综合色av麻豆| 能在线免费观看的黄片| 小蜜桃在线观看免费完整版高清| 国产黄色免费在线视频| 国产精品精品国产色婷婷| 最近的中文字幕免费完整| 高清视频免费观看一区二区 | 国内精品宾馆在线| 秋霞伦理黄片| 亚洲av国产av综合av卡| 在线观看美女被高潮喷水网站| 女人被狂操c到高潮| 网址你懂的国产日韩在线| 国产av不卡久久| 人妻系列 视频| 成人欧美大片| 国产精品综合久久久久久久免费| 国产黄a三级三级三级人| 五月天丁香电影| 成年女人在线观看亚洲视频 | 国产伦一二天堂av在线观看| 亚洲精品日韩在线中文字幕| 高清av免费在线| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 亚洲av成人av| 国内精品宾馆在线| 真实男女啪啪啪动态图| av天堂中文字幕网| 搡女人真爽免费视频火全软件| 女人十人毛片免费观看3o分钟| 三级毛片av免费| av专区在线播放| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 午夜爱爱视频在线播放| 成人综合一区亚洲| 1000部很黄的大片| 九色成人免费人妻av| 亚洲成人久久爱视频| 成人午夜精彩视频在线观看| 亚洲精品视频女| 国产亚洲91精品色在线| 免费黄色在线免费观看| 99久久九九国产精品国产免费| 国产午夜精品久久久久久一区二区三区| 亚洲av电影在线观看一区二区三区 | 亚洲真实伦在线观看| 高清av免费在线| 成人性生交大片免费视频hd| 尾随美女入室| av免费观看日本| 91精品伊人久久大香线蕉| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 精品久久国产蜜桃| 青春草国产在线视频| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 欧美成人a在线观看| 又黄又爽又刺激的免费视频.| 亚洲欧美精品自产自拍| 国产亚洲91精品色在线| 少妇人妻精品综合一区二区| 中文资源天堂在线| 91av网一区二区| 美女cb高潮喷水在线观看| 青春草视频在线免费观看| 午夜福利在线在线| 日本免费a在线| 久热久热在线精品观看| 一个人看的www免费观看视频| 一级毛片 在线播放| 成人性生交大片免费视频hd| 亚洲,欧美,日韩| 日韩中字成人| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 91久久精品电影网| 青青草视频在线视频观看| av黄色大香蕉| h日本视频在线播放| 欧美另类一区| 直男gayav资源| 国产av在哪里看| 丰满少妇做爰视频| 国产亚洲精品av在线| 亚洲av.av天堂| 久久精品夜色国产| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区 | 国产不卡一卡二| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 久久久色成人| 少妇熟女aⅴ在线视频| 午夜激情久久久久久久| 一级av片app| 成人一区二区视频在线观看| 人人妻人人澡欧美一区二区| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 最新中文字幕久久久久| 国产黄片美女视频| 又大又黄又爽视频免费| 久久国内精品自在自线图片| 中文字幕av在线有码专区| 精品国产三级普通话版| 亚洲精品国产av成人精品| 久久久欧美国产精品| 日本色播在线视频| 亚洲综合精品二区| 亚洲在线自拍视频| 亚洲最大成人中文| 精品一区二区免费观看| 超碰av人人做人人爽久久| 国产精品国产三级国产专区5o| 国产毛片a区久久久久| 亚洲av免费在线观看| 亚洲精品成人av观看孕妇| 黄色配什么色好看| 日韩三级伦理在线观看| 人妻系列 视频| 国产精品.久久久| 亚洲国产欧美在线一区| a级毛色黄片| 日本-黄色视频高清免费观看| 深爱激情五月婷婷| 免费少妇av软件| 亚洲成人中文字幕在线播放| 国产老妇伦熟女老妇高清| www.av在线官网国产| 国产黄a三级三级三级人| 中文字幕制服av| 国产爱豆传媒在线观看| 免费观看无遮挡的男女| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 精品酒店卫生间| 麻豆国产97在线/欧美| 免费黄网站久久成人精品| 男女边摸边吃奶| 国产精品熟女久久久久浪| 久久精品国产亚洲av涩爱| 男女国产视频网站| 极品少妇高潮喷水抽搐| 只有这里有精品99| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 偷拍熟女少妇极品色| 免费观看精品视频网站| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99 | 免费观看的影片在线观看| 岛国毛片在线播放| 一级二级三级毛片免费看| 成人综合一区亚洲| 国产精品一区二区三区四区久久| 亚洲人成网站在线播| 国产av在哪里看| 欧美性猛交╳xxx乱大交人| 亚洲精品中文字幕在线视频 | 九九在线视频观看精品| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 国产老妇女一区| 亚洲熟妇中文字幕五十中出| 国产成人aa在线观看| 久久久欧美国产精品| 亚洲av.av天堂| 午夜精品在线福利| 久久这里有精品视频免费| 街头女战士在线观看网站| 男人和女人高潮做爰伦理| 可以在线观看毛片的网站| freevideosex欧美| 久久6这里有精品| 亚洲欧美成人精品一区二区| 亚洲乱码一区二区免费版| 在线观看免费高清a一片| 成年av动漫网址| 91aial.com中文字幕在线观看| av在线播放精品| 亚洲av在线观看美女高潮| 成人毛片a级毛片在线播放| 亚洲国产欧美在线一区| 免费黄色在线免费观看| 国产午夜精品论理片| 国产成人91sexporn| 91精品国产九色| 你懂的网址亚洲精品在线观看| 一级毛片电影观看| 熟妇人妻不卡中文字幕| 黄片无遮挡物在线观看| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 永久网站在线| 天天躁日日操中文字幕| 亚洲天堂国产精品一区在线| 婷婷色麻豆天堂久久| 一级毛片电影观看| 亚洲人成网站高清观看| 男女边摸边吃奶| 久久精品久久精品一区二区三区| 亚洲美女搞黄在线观看| 国产黄频视频在线观看| 大片免费播放器 马上看| 日韩欧美一区视频在线观看 | av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 久久久久九九精品影院| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久 | 99久久中文字幕三级久久日本| 99久国产av精品| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 日韩一区二区视频免费看| 美女主播在线视频| 好男人在线观看高清免费视频| 国产亚洲精品av在线| 久久久精品94久久精品| 欧美人与善性xxx| 久久久久精品久久久久真实原创| 高清欧美精品videossex| 国产亚洲精品av在线| 国产高清国产精品国产三级 | 卡戴珊不雅视频在线播放| 欧美潮喷喷水| 男人舔女人下体高潮全视频| 国产美女午夜福利| 欧美精品一区二区大全| 国产高清有码在线观看视频| 欧美97在线视频| 亚洲熟妇中文字幕五十中出| 亚洲av不卡在线观看| 九九在线视频观看精品| 综合色丁香网| 亚洲,欧美,日韩| 亚洲自偷自拍三级| 免费看日本二区| 免费观看a级毛片全部| 男人和女人高潮做爰伦理| 一个人看的www免费观看视频| 欧美日韩国产mv在线观看视频 | 亚洲精品乱码久久久久久按摩| 国产高清国产精品国产三级 | 大又大粗又爽又黄少妇毛片口| 亚洲国产av新网站| 少妇人妻精品综合一区二区| 亚洲欧美日韩东京热| 亚洲av一区综合| a级一级毛片免费在线观看| 乱人视频在线观看| 国产高清三级在线| 黄片wwwwww| 亚洲久久久久久中文字幕| 全区人妻精品视频|