劉露露 曲俊杰 潘鳳英 孫大運(yùn) 郭澤西 尹玲
摘要:【目的】分析預(yù)測葡萄霜霉菌糖基水解酶(Glycoside hydrolases,GHs)基因家族,為深入研究GHs基因在葡萄霜霉菌致病過程中的作用機(jī)理提供理論依據(jù)?!痉椒ā坷肧ignalP 5.0 Server、Cluster W、MEGA 6.0和MEME等生物信息學(xué)相關(guān)軟件對已發(fā)表的葡萄霜霉菌全基因組60個(gè)GHs基因的基本特征、基因組分布特點(diǎn)及其編碼蛋白保守基序、結(jié)構(gòu)域和亞細(xì)胞定位等進(jìn)行生物信息學(xué)分析?!窘Y(jié)果】葡萄霜霉菌60個(gè)GHs基因編碼的蛋白長度在128~774 aa,且大部分集中在200~500 aa,其中53個(gè)蛋白具有信號肽,蛋白質(zhì)分子量在14.90~85.45 kD,理論等電點(diǎn)(pI)在3.85~10.39;這些基因在基因組中分布不均勻,其中有27個(gè)GHs基因存在串聯(lián)重復(fù)和成簇聚集分布現(xiàn)象,數(shù)目最多的3個(gè)GHs家族(GH131、GH17和GH6)集中分布在7個(gè)scaffold中;序列比對和系統(tǒng)發(fā)育進(jìn)化樹分析發(fā)現(xiàn),串聯(lián)重復(fù)和成簇聚集分布的GHs基因處于同一個(gè)分支中;motif富集分析發(fā)現(xiàn)3個(gè)不同的motif,且motif2在葡萄霜霉菌GH6、GH17和GH131等3個(gè)家族基因中保守,結(jié)構(gòu)域分析推測大部分GHs家族基因均參與細(xì)胞壁的生物過程;亞細(xì)胞定位預(yù)測結(jié)果表明,有53個(gè)GHs蛋白定位于細(xì)胞外,3個(gè)定位在細(xì)胞質(zhì)內(nèi),4個(gè)定位于線粒體上。【結(jié)論】葡萄霜霉菌在侵染寄主的過程中可能會(huì)分泌多種GHs酶類來破壞細(xì)胞壁的結(jié)構(gòu),以幫助其在寄主植物中成功定殖。
關(guān)鍵詞: 葡萄霜霉菌;糖基水解酶;分泌蛋白;生物信息學(xué)
中圖分類號: S432.1;S436.631.1? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2021)05-1229-09
Abstract:【Objective】Analyzed and predicted the glycoside hydrolases (GHs) gene family of Plasmopara viticola, and conducted bioinformatics analysis to provide theoretical basis for in-depth study of the molecular mechanism of GHs gene in pathogenicity of downy mildew.【Method】This study used SignalP 5.0 Server, Cluster W, MEGA6.0, MEME and other bioinformatics-related softwares to analyze the basic characteristics and the encoded proteins, genome distribution characteristics, conserved motifs, structural domains and subcellular location? of the 60 GHs genes of the published whole genome of P. viticola.【Result】The protein sizes encoded by 60 GHs genes of P. viticola were between 128 and 774 aa, and most of them were concentrated between 200 and 500 aa. Among them, 53 proteins had signal peptides, and the molecular mass of the protein was between 14.90 and 85.45 kD. The theoretical isoelectric points(pI) was between 3.85 and 10.39. These genes were unevenly distributed in the genome. Twenty-seven of them had tandem repeats and clustering distribution, and the 3 GHs families(GH131, GH17 and GH6) with the largest number were concentrated in 7 scaffolds. Moreover, sequence alignment and phylogenetic tree analysis found that these tandem repeats and clusters of GHs genes were in the same phylogenetic tree branch. The motif enrichment analysis found 3 different motifs, and motif2 was conserved in GH6, GH17 and GH131 family genes of P. viticola. The domain analysis speculated that most GHs family genes were involved in the biological process of the cell wall. The subcellular localization prediction results showed that there were 53 GHs proteins located extracellular, 3 localized in the cytoplasm, and 4 localized on the mitochondria. 【Conclusion】The results of bioinformatics analysis show that during the process of infecting the host, P. viticola may secrete a variety of GHs enzymes to destroy the structure of the cell wall and help it successfully colonize the host plant. This will cla-rify the function of the GHs family genes encoded by P. viticola and the molecular mechanism of pathogenicity.
Key words: Plasmopara viticola; glycoside hydrolase; secreted protein; bioinformatics
Foundation item: National Natural Science Foundation of China(31860493); Bagui Young Scholars Special Fund of Guangxi(2019); Basic Research Project of Guangxi Academy of Agricultural Sciences(Guinongke 2019M06,2020YM 129)
0 引言
【研究意義】葡萄霜霉病是危害葡萄生長的第一大卵菌病害,該病傳播快、發(fā)病重、毀滅性強(qiáng),可通過侵染葉片、嫩莖、卷須及花序等綠色組織而嚴(yán)重影響葡萄的產(chǎn)量和品質(zhì)(Gessler et al.,2011;閆思遠(yuǎn)等,2020)。葡萄霜霉菌(Plasmopara viticola)是該病的致病菌,屬于專性寄生活體營養(yǎng)型卵菌(Fr?bel and Zyprian,2019)。在侵染寄主植物的過程中,病原菌通過分泌碳水化合物活性酶(Carbohydrateactive enzymes,CAZymes)用于降解植物的細(xì)胞壁,以利于自身的入侵、定殖和營養(yǎng)供給(Ronald and Visser,2001),這些酶包括果膠酶(Pectinase)、多聚半乳糖醛酸酶(Polygalacturonase,PG)、糖基水解酶(Glycoside hydrolases,GHs)、纖維素酶(Cellulase)和葡聚糖酶(Dextranase)。已有研究表明,植物病原菌在侵染寄主的過程中會(huì)分泌多種GHs酶類來破壞細(xì)胞壁的結(jié)構(gòu),而且GHs酶譜與病原菌寄生類型密切相關(guān)(陳相永等,2014)。因此,深入分析葡萄霜霉菌全基因組GHs基因家族的特征,可為后期研究GHs基因在霜霉菌致病過程中的作用提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】2002年,Brunner等從馬鈴薯晚疫病菌(Phytophthora infestans)中分離純化出85 kD的β-葡萄糖苷酶/木糖苷酶(BGX1),這是第一個(gè)在公共數(shù)據(jù)庫中存放的來源于卵菌的糖基水解酶,屬于糖苷水解酶家族30(GH30),之后對植物卵菌糖基水解酶的研究進(jìn)展較緩慢。近10年來,隨著多種植物致病卵菌基因組測序的完成,大量的GHs基因通過生物信息學(xué)手段被預(yù)測出來,但對其具體功能的研究尚處于起步階段,遠(yuǎn)少于細(xì)菌和真菌中對此類酶類的研究(Tyler et al.,2006;Haas et al.,2009;Baxter et al.,2010;Lévesque et al.,2010;Sharma et al.,2015)。水稻紋枯病菌(Rhizoctonia solani)的內(nèi)切葡聚糖酶(EG1)可作為一種激發(fā)子,大豆疫霉(P. sojae)分泌的GH12蛋白XEG1以及黃萎病菌(Verticillium dahliae)產(chǎn)生的2個(gè)GH12蛋白VdEG1和VdEG3均可作為病原相關(guān)分子模式(Pathogen associated molecular patterns,PAMPs)來觸發(fā)寄主的免疫反應(yīng)(Ma et al.,2015a;Ma et al.,2015b,2017;Gui et al.,2017)。此外,病原菌對宿主的毒力也需要GHs的參與,灰霉菌(Botrytis cinerea)xyn11A基因的敲除會(huì)導(dǎo)致灰霉菌毒力下降(Brito et al.,2006),寄生疫霉(P. parasitica)GH10家族的2種木聚糖酶ppxyn1和ppxyn2沉默可降低病原體對煙草和番茄的毒力(Lai and Liou,2018),禾谷絲禾菌(R. cerealis)木聚糖酶RcXYN1是禾谷絲禾菌感染小麥的主要致病因素之一(Lu et al.,2020),這些GHs在病原體感染過程中均發(fā)揮著至關(guān)重要的作用?!颈狙芯壳腥朦c(diǎn)】前期本團(tuán)隊(duì)完成了葡萄霜霉菌的全基因組測序,并預(yù)測出60個(gè)GHs基因,但未對這些GHs基因進(jìn)行系統(tǒng)分析?!緮M解決的關(guān)鍵問題】根據(jù)前期鑒定的GHs基因結(jié)果,利用生物信息學(xué)軟件分析這些GHs基因的基本特征、基因組分布特點(diǎn)及其編碼蛋白保守基序、結(jié)構(gòu)域和亞細(xì)胞定位等,以期為深入研究GHs基因在葡萄霜霉菌致病過程中的作用機(jī)理提供理論依據(jù)。
1 材料與方法
1. 1 基因組來源
葡萄霜霉菌GHs家族基因編碼的蛋白氨基酸序列來自于本課題組2017年發(fā)布的葡萄霜霉菌基因組分析得到的60個(gè)GHs(Yin et al.,2017)。
1. 2 理化特性分析和蛋白信號肽預(yù)測
利用BioXM 2.6預(yù)測GHs家族60個(gè)GHs基因編碼的蛋白分子量和理論等電點(diǎn)(pI)。利用SignalP 5.0 Server(http://www.cbs.dtu.dk/services/SignalP/)在線分析軟件對蛋白氨基酸序列進(jìn)行信號肽預(yù)測。
1. 3 基因組分布分析
根據(jù)基因組注釋的gff文件,提取GHs家族基因的注釋信息,統(tǒng)計(jì)其在基因組中的位置信息及scaffold分布情況,分析其串聯(lián)重復(fù)及基因組集中成簇分布的情況。
1. 4 蛋白氨基酸序列比對和系統(tǒng)發(fā)育進(jìn)化樹構(gòu)建
先使用Cluster W對蛋白氨基酸序列進(jìn)行聯(lián)配,再利用MEGA 6.0中的Neighbor-joining法構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,bootstrap值為1000。
1. 5 保守基序和結(jié)構(gòu)域分析
保守基序和保守結(jié)構(gòu)域分析是挖掘蛋白功能結(jié)構(gòu)的主要方式之一。利用MEME(http://meme-suite.org)分析蛋白的保守基序,motif設(shè)置為3,motifs寬度設(shè)置為6~50。使用NCBI CD-Search工具鑒定蛋白的保守結(jié)構(gòu)域或功能單位。
1. 6 亞細(xì)胞定位分析
先根據(jù)信號肽分析結(jié)果去除蛋白序列的信號肽部分,然后利用在線WoLF PSORT軟件(https://wolfpsort.hgc.jp/)對剩余的序列進(jìn)行亞細(xì)胞定位分析。
2 結(jié)果與分析
2. 1 葡萄霜霉菌GHs家族60個(gè)GHs基因的基本情況
對GHs家族60個(gè)GHs基因編碼的蛋白理化性質(zhì)分析發(fā)現(xiàn),60個(gè)GHs基因編碼蛋白長度為128~774 aa,且大部分(45個(gè))集中在200~500 aa,蛋白分子量在14.90~85.45 kD,pI在3.85~10.39(表1和表2)。
利用SignalP 5.0 Server在線軟件對60個(gè)GHs基因進(jìn)行信號肽預(yù)測,結(jié)果(表1)顯示,只有來自GH19、GH23、GH102和GH109等4個(gè)家族的蛋白不具有信號肽,其他家族的53個(gè)蛋白均具有信號肽序列,長度在16~27 aa。
2. 2 基因組分布分析結(jié)果
分析了60個(gè)GHs基因在基因組上的分布情況,結(jié)果(表3)發(fā)現(xiàn)60個(gè)基因在基因組中的分布并不均勻,有45%(27個(gè))的基因存在串聯(lián)重復(fù)和成簇聚集分布現(xiàn)象,集中分布在基因組的11個(gè)scaffold中。特別是數(shù)目最多的3個(gè)家族GH131、GH17和GH6,分別有8、6和7個(gè)基因集中分布在7個(gè)scaffold中。表3中標(biāo)注黃色高亮的基因是與通過Orthomcl基因家族聚類結(jié)果一致的相關(guān)基因,而Orthomcl中同一個(gè)家族的基因是通過基因的多拷貝而形成。
2. 3 序列比對和系統(tǒng)發(fā)育進(jìn)化樹分析結(jié)果
從序列比對和系統(tǒng)發(fā)育進(jìn)化樹分析中可發(fā)現(xiàn),在基因組中串聯(lián)重復(fù)和成簇聚集分布的GHs基因均處于同一個(gè)分支中(圖1)??赡苷f明以串聯(lián)重復(fù)和成簇分布為特點(diǎn)的基因多拷貝對GHs家族的基因數(shù)目增多和GHs家族基因進(jìn)化起到關(guān)鍵作用。
2. 4 蛋白保守基序和結(jié)構(gòu)域分析結(jié)果
motif富集分析發(fā)現(xiàn)3個(gè)不同的motif,其中具有信號肽的GH6、GH17和GH131家族蛋白均存在motif2(YRTNLKKAIAFLNKNAWAEJYLDLGYWEI)(圖2),而其他GHs家族蛋白中并無特征性motif,說明motif2在葡萄霜霉菌GH6、GH17和GH131等3個(gè)家族蛋白中保守。
保守結(jié)構(gòu)域分析結(jié)果(表4)發(fā)現(xiàn),最大的3個(gè)GHs家族GH6、GH17和GH131中,GH6家族蛋白有6個(gè)結(jié)構(gòu)域,分別為Glyco_hydro_6 super family、DedD super family、gliding_GltJ super family、Herpes_BLLF1 super family、PRK13042 super family和rad23 super family,研究表明卵菌腐霉菌(Pythium)GH6家族蛋白具有作用于卵菌細(xì)胞壁的相關(guān)功能,因其均具有與細(xì)胞壁相關(guān)的結(jié)構(gòu)域(Lévesque et al.,2010),真菌稻瘟病菌(Magnaporthe oryzae)GH6家族的纖維素酶對病菌的毒力有一定貢獻(xiàn)(Van Vu et al.,2012),而葡萄霜霉菌GH6家族的3個(gè)蛋白均具有信號肽,其中有10個(gè)定位于細(xì)胞外,推測葡萄霜霉菌GH6家族蛋白可能分泌到細(xì)胞外靶向作用于植物的細(xì)胞壁;GH17家族蛋白有3個(gè)結(jié)構(gòu)域,其中結(jié)構(gòu)域Glyco_hydro super family也存在于GH72家族,番茄葉霉病病原褐孢霉(Cladosporium fulvum)GH17家族中的CfGH17-1蛋白具有1,3-β-葡聚糖酶活性,其可靶向宿主細(xì)胞壁以去除糖分子從而幫助真菌在宿主中的生長和繁殖(Kmen et al.,2019),葡萄霜霉菌GH17家族中9個(gè)蛋白均具有信號肽,并且均定位于細(xì)胞外,其中可能有靶向細(xì)胞壁從而在卵菌中發(fā)揮重要作用的基因;GH131家族蛋白有1個(gè)結(jié)構(gòu)域,為GH131_N super family,其是在灰蓋鬼傘菌(Coprinopsis cinerea)糖基水解酶家族131蛋白(GH131A)中發(fā)現(xiàn)的N末端結(jié)構(gòu)域,對β-葡聚糖具有雙功能外切-β-1,3-/-1,6和內(nèi)切-β-1,4活性(Jiang et al.,2013),且有研究表明,真菌可分泌GH131家族蛋白從而破壞植物細(xì)胞壁結(jié)構(gòu),幫助真菌定殖在植物組織中(Anasontzis et al.,2019),推測葡萄霜霉菌GH131家族GH蛋白也可能具有該功能。除了最大的3個(gè)家族外,其他的一些GHs家族也有相關(guān)報(bào)道,其中,產(chǎn)紫青霉菌(Penicillium purpurogenum)分泌的GH30家族木聚糖酶對阿拉伯木聚糖和葡萄糖醛酸木聚糖均有活性(Espinoza and Eyzaguirre,2018),GH28家族蛋白的結(jié)構(gòu)域參與細(xì)胞壁或膜的生物過程(Yadav and Yadav,2012),在細(xì)胞壁代謝過程中發(fā)揮重要作用,并且具有信號肽;GH19家族蛋白的結(jié)構(gòu)域?yàn)閏hitinase_GH19和Lyz-like super family,其可編碼幾丁質(zhì)酶,第1個(gè)在真菌和微孢子蟲中報(bào)道的GH19家族的幾丁質(zhì)酶是NbchiA,推測其可能參與極管穿過孢子壁的過程(Han et al.,2016)。據(jù)此推測葡萄霜霉菌在侵染寄主的過程中可能會(huì)通過分泌多種GHs酶類來破壞細(xì)胞壁的結(jié)構(gòu),以幫助其在寄主植物中成功定殖。
2. 5 亞細(xì)胞定位分析結(jié)果
利用WoLF PSORT對GHs蛋白進(jìn)行亞細(xì)胞定位分析,結(jié)果(表4)發(fā)現(xiàn),有53個(gè)GHs蛋白分泌到細(xì)胞外(Extracellular),其中有3個(gè)來自GH102家族和GH19家族的蛋白雖無信號肽序列(表1),但也定位到細(xì)胞外,可能通過其他的分泌途徑分泌到胞外;其余7個(gè)GHs蛋白中有3個(gè)定位在細(xì)胞質(zhì)(Cytoplasmic)內(nèi),4個(gè)定位于線粒體(Mitochondrial)上。
3 討論
在自然界中,植物與病原菌一直進(jìn)行著動(dòng)態(tài)競賽,植物通過物理屏障、先天性免疫或生理生化機(jī)制等多層次的防御來抵抗病原菌的侵襲;而病原菌則可通過多種多樣的致病因子進(jìn)入植物體內(nèi),幫助其抑制植物的免疫反應(yīng),從而達(dá)到致病的目的。植物細(xì)胞壁是病原菌入侵植物的第一道屏障,為了穿透植物細(xì)胞壁而實(shí)現(xiàn)在宿主體內(nèi)定殖,病原菌會(huì)分泌多種細(xì)胞壁降解酶類來分解植物細(xì)胞壁,其中,糖基水解酶是較重要的一種。根據(jù)預(yù)測結(jié)構(gòu)和序列的相似性,CAZy數(shù)據(jù)庫將GHs基因分為167個(gè)家族(Turbe-Doan et al.,2019),其中GH5、 GH6、GH12和GH45是最常見的4個(gè)家族。已有研究表明,GHs基因數(shù)量與病原菌的生活方式密切相關(guān)(陳相永等,2014)。本研究葡萄霜霉菌基因組測序數(shù)據(jù)中,預(yù)測出60個(gè)GHs基因,屬于15個(gè)GHs家族,其中數(shù)量較多的是GH6、GH17和GH131家族。在啤酒花霜霉菌(Pseudoperonospora humuli)中有61種CAZymes,黃瓜霜霉病菌(P. cubensis)中有39種CAZymes(Purayannur et al.,2020),爬山虎霜霉菌(Plasmopara muralis)中有115個(gè)GHs基因(Dussert et al.,2019),擬南芥霜霉菌(Hyaloperonospora arabidopsidis)中有100個(gè)GHs基因(Baxter et al.,2010)。在半活體營養(yǎng)型疫霉基因組中含有166~216個(gè)GHs基因,其中GH1、GH3和GH5是最大的家族(Adhikari et al.,2013)。由此可見,活體營養(yǎng)的霜霉菌分泌的CAZymes及GHs基因數(shù)量與半活體的疫霉菌相比極大減少,這可能有利于病原菌在抑制植物免疫的同時(shí),可最大程度地汲取寄主植物體內(nèi)的營養(yǎng),更有利于其存活。
病原菌在侵染寄主植物的過程中分泌多種類型的GHs酶來應(yīng)對細(xì)胞壁的不同多糖組分。除GH6、GH17和GH131家族外,葡萄霜霉菌中還存在GH3、GH5、GH7、GH19、GH23、GH28、GH30、GH32、GH43、GH72、GH102和GH109家族。GH7家族蛋白主要存在于真菌中,在細(xì)菌或古細(xì)菌中尚未被發(fā)現(xiàn)(Payne et al.,2015)。GH7家族蛋白廣泛存在于植物病原卵菌和真菌中,大豆疫霉分泌的PsGH7a廣泛存在于植物病原卵菌和真菌中,其缺失造成大豆疫霉毒力顯著下降(Tan et al.,2020)。GH3和GH5是疫霉基因組中最大的家族,可能參與纖維素降解(Brouwer et al.,2014)。GH12和GH31家族蛋白與木葡聚糖降解有關(guān)(Zerillo et al.,2013),但葡萄霜霉菌基因組與終極腐霉(Pythium ultimum)基因組一樣均缺失了GH12家族(Lévesque et al.,2010)。雖然目前對于卵菌GHs蛋白在致病過程中的功能研究尚少,但根據(jù)已有的研究推測,葡萄霜霉菌GHs家族蛋白可能在侵染寄主的過程中參與降解寄主細(xì)胞壁,進(jìn)而幫助其侵入定殖,發(fā)揮毒力。因此,后續(xù)將對3個(gè)較大的GHs家族蛋白在葡萄霜霉菌致病過程中的生物學(xué)功能進(jìn)行研究。
4 結(jié)論
通過生物信息學(xué)分析葡萄霜霉菌全基因組60個(gè)GHs基因的基本特征、基因組分布特點(diǎn)及其編碼保守基序、結(jié)構(gòu)域和亞細(xì)胞定位的結(jié)果,推測葡萄霜霉菌在侵染寄主的過程中可能會(huì)分泌多種GHs酶類來破壞細(xì)胞壁的結(jié)構(gòu),幫助其在寄主植物中成功定殖,這將為闡明葡萄霜霉菌編碼的GHs家族基因功能和致病分子機(jī)制等提供理論依據(jù)。
參考文獻(xiàn):
陳相永,陳捷胤,李蕾,包郁明,孔志強(qiáng),戴小楓. 2014. 植物致病真菌寄生類型與胞外糖基水解酶家族分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),33(3):640-648. doi:10.13417/j.gab. 033.000640. [Chen X Y,Chen J Y,Li L,Bao Y M,Kong Z Q,Dai X F. 2014. The analysis of plant pathogenic fungi lifestyles and extracellular glycoside hydrolases families[J]. Genomics and Applied Biology,33(3):640-648.]
閆思遠(yuǎn),王小利,杜娟,顧沛雯. 2020. 葡萄霜霉病菌環(huán)介導(dǎo)等溫?cái)U(kuò)增檢測體系的建立[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),54(6):995-1001. doi:10.16445/j.cnki.1000-2340.2020.06.011. [Yan S Y,Wang X L,Du J,Gu P W. 2020. Development of LAMP detection system for Plasmopara viticola[J]. Journal of Henan Agricultural University,54(6):995-1001.]
Adhikari B N,Hamilton J P,Zerillo M M,Tisserat N,Levesque A,Buell C R. 2013. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes[J]. PLos One,8(10):e75072. doi:10.1371/journal.pone. 0075072.
Anasontzis G E,Lebrun M H,Haon M,Champion C,Kohler A,Lenfant N,Martin F,Connel R,Riley R,Grigoriev I,Henrissat B,Bernard H,Berrin J,Rosso M. 2019. Broad-specificity GH131 β-glucanases are a hallmark of fungi and oomycetes that colonize plants[J]. Environmental Microbiology,21(8):2724-2739. doi:10.1111/1462-2920.14596.
Baxter L,Tripathy S,Ishaque N,Boot N,Cabral A,Kemen E,Thines M,F(xiàn)ong A ,Anderson R,Badejoko W,Eddy P B,Boore J L,Chibucos M C,Coates M,Dehal P,Delehaunty K,Dong S,Downton P,Dumas B,F(xiàn)abro G,F(xiàn)ronick C,F(xiàn)uerstenberg S I,F(xiàn)ulton L,Gaulin E,Govers F,Hughes L,Humphray S,Jiang R H Y,Judelson H,Kamoun S,Kyung K,Meijer H,Minx P,Morris P,Nelson J,Phuntu-mart V,Qutob D,Rehmany A,Cardoso A R,Ryden P,Alalibo T T,David S,Wang Y,Win J,Wood J,Clifton S W,Rogers J,Ackerveken G D,Jones J D G,McDowell J M,Beynon J,Tyler B M. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome[J]. Science,330(6010):1549-1551. doi:10. 1126/science.1195203.
Brito N,Espino J J,González C. 2006. The endo-β-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea[J]. Molecular Plant-Microbe Interactions,19(1):25-32. doi:10.1094/MPMI-19-0025.
Brouwer H,Coutinho P M,Henrissat B,Vries R P. 2014. Carbohydrate-related enzymes of important Phytophthora plant pathogens[J]. Fungal Genetics and Biology,72:192- 200. doi:10.1016/j.fgb.2014.08.011.
Brunner F,Wirtz W,Rose J K C,Darvill A G,Govers F,Scheel D,Thorsten N. 2002. A β-glucosidase/xylosidase from the phytopathogenic oomycete,Phytophthora infestans[J]. Phytochemistry,59(7):689-696. doi:10.1016/S0031-9422(02)00045-6.
Dussert Y,Mazet I D,Couture C,Gouzy J,Piron M C,Kuchly C,Bouchez O,Rispe C,Mestre P,Delmotte F. 2019. A high-quality grapevine downy mildew genome assembly reveals rapidly evolving and lineage-specific putative host adaptation genes[J]. Genome Biology and Evolution,11(3):954-969. doi:10.1093/gbe/evz048.
Espinoza K,Eyzaguirre J. 2018. Identification,heterologous expression and characterization of a novel glycoside hydrolase family 30 xylanase from the fungus Penicillium purpurogenum[J]. Carbohydrate Research,468:45-50. doi: 10.1016/j.carres.2018.08.006.
Fr?bel S,Zyprian E M. 2019. Colonization of different grapevine tissues by Plasmopara viticola—A histological study[J]. Frontiers in Plant Science,10:951. doi:10.3389/fpls. 2019.00951.
Gessler C,Pertot I,Perazzolli M. 2011. Plasmopara viticola:A review of knowledge on downy mildew of grapevine and effective disease management[J]. Phytopathologia Mediterranea,50(1):3-44.
Gui Y J,Chen J Y,Zhang D D,Li N Y,Li T G,Zhang W Q,Wang X Y,Short D P G,Li L,Guo W,Kong Z Q,Bao Y M,Subbarao? K V,Dai X F. 2017. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding modu-le 1[J]. Environmental Microbiology,19(5):1914-1932. doi:10.1111/1462-2920.13695.
Haas B J,Kamoun S,Zody M C,Kamoun S,Zody M C,Jiang R H Y,Handsaker R E,Cano L M,Grabherr M,Kodira C D,Raffaele S,Alalibo T T,Bozkurt T O,Ah-Fong A M,Alvarado L,Anderson V L,Armstrong M R,Avrova A,Baxter L,Beynon J,Boevink P C,Bollmann S R,Bos J,Bulone V,Cai G H,Cakir C,Carrington J C,Chawner M,Conti L,Costanzo S,Ewan R,F(xiàn)ahlgren N,F(xiàn)ischbach M A,F(xiàn)ugelstad J,Gilroy E M,Gilroy E M,Gnerre S,Green P J,Grenville-Briggs L J,Griffith J,Grunwald N J,Horn K,Horner N R,Hu C H,Huitema E,Jeong D H,Jones A M,Jones J D G,Jones R W,Karlsson E K,Kunjeti S G,Lamour K,Liu Z,Ma L,Maclean D,Chibucos M C,McDoanld H,McWalters J,Meijer H J G,Morgan W,Morris P F,Munro C,Neill K,Ospina-Giraldo M,Pinzon A,Pritchard L,Ramsahoye B,Ren Q,Restrepo S,Roy S,Sadanandom A,Savidor A,Schornack S,Schwartz D C,Schumann U D,Schwessinger B,Seyer L,Sharpe T,Silvar C,Song J,Studholme D J,Sykes S,Thines M,Vonedervoort P J I,Phuntumart V,Wawra S,Weide R,Win J,Young C,Zhou S,F(xiàn)ry W,Meyers B C,West P,Ristaino J,Govers F,Birch P R J,Whisson S C,Judelson H S,Nusbaum C. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans[J]. Nature,461(7262):393-398. doi:10.1038/nature08358.
Han B,Zhou K,Li Z H,Sun B,Ni Q,Meng X Z,Pan G Q,Li C F,Long M X,Li T,Zhou C Z,Li W F,Zhou Z Y. 2016. Characterization of the first fungal glycosyl hydrolase family 19 chitinase(NbchiA) from Nosema bombycis(Nb)[J]. Journal of Eukaryotic Microbiology,63(1):37-45. doi:10.1111/jeu.12246.
Jiang T,Chan H C,Huang C H,Ko T P,Huang T Y,Liu J R,Guo R T. 2013. Substrate binding to a GH131 β-glucanase catalytic domain from Podospora anserina[J]. Biochemical & Biophysical Research Communications,438(1):193-197. doi:10.1016/j.bbrc.2013.07.051.
Kmen B,Bachmann D,Wit P J G M D. 2019. A conserved GH17 glycosyl hydrolase from plant pathogenic Dothideomycetes releases a DAMP causing cell death in tomato[J]. Molecular Plant Pathology,20(12):1710-1721. doi:10.1111/mpp.12872.
Lai M W,Liou R F. 2018. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica[J]. Current Genetics,64(4):931-943. doi:10.1007/s00294-018-0814-z.
Lévesque C A,Brouwer H,Cano L,Hamilton J P,Holt C,Huitema E,Raffaele S,Robideau G P,Thines M,Win J,Zerillo M M,Beakes G W,Boore J,Busam D,Dumas B,F(xiàn)erriera S,F(xiàn)uerstenberg S I,Gachon C M,Gaulin E,Govers F,Briggs L G,Horner N,Hostetler J,Jiang R H,Johnson J,Krajaejun T,Lin H,Merjer H J,Barry M,Paul M,Phuntmart V,Puiu D,Shetty J,Stajich J E,Tripathy S,Wawra S,West P ,Whitty B R,Countinho P M,Henrissat B,Martin F,Thomas P D,Tyler B M,Vries R P,Kamoun S,Yandell M,Tisserat N,Buell C R. 2010. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire[J]. Genome Biology,11(7):R73. doi:10.1186/gb-2010-11-7-r73.
Lu L,Liu Y W,Zhang Z Y. 2020. Global characterization of GH10 family xylanase genes in Rhizoctonia cerealis and functional analysis of xylanase RcXYN1 during fungus infection in wheat[J]. International Journal of Molecular Sciences,21(5):1812. doi:10.3390/IJMS21051812.
Ma Y A,Han C,Chen J Y,Li H Y,He K,Liu A X,Li D C. 2015a. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity[J]. Molecular Plant Pathology,16(1):14-26. doi:10.1111/mpp.12156.
Ma Z C,Song T Q,Zhu L,Ye W W,Wang Y,Shao Y Y,Dong S M,Zhang Z G,Dou D L,Zheng X B,Tyler B M,Wang Y C. 2015b. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP[J]. The Plant Cell,27(7):2057-2072. doi:10.1105/TPC.15.00390.
Ma Z C,Zhu L,Song T Q,Wang Y,Zhang Q,Xia Y Q,Qiu M,Lin Y C,Li H Y,Liang K,F(xiàn)ang Y F,Ye W W,Wang Y,Dong S M,Zheng X B,Tyler B M,Wang Y C. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor[J]. Science,355(6326):710-714. doi:10.1126/science.aai7919.
Payne C M,Knott B C,Mayes H B,Hansson H,Himmel M,Sandgren M,Stahlberg J,Beckham G. 2015. Fungal cellulases[J]. Chemical Reviews,115(3):1308-1448. doi:10. 1021/cr500351c.
Purayannur S,Cano L M,Bowman M J,Childs K L,Gent D H,Quesada-Ocampo L M. 2020. The effector repertoire of the hop downy mildew pathogen Pseudoperonospora humuli[J]. Frontiers in Genetics,11:910. doi:10.3389/fgene.2020.00910.
Ronald P V,Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides[J]. Microbiology and Molecular Biology Reviews,65(4):497-522. doi:10.1128/MMBR.65.4.497-522.2001.
Sharma R,Xia X,Cano L M,Evangelisti E,Kemen E,Judelson H,Oome S,Sambles C,Hoogen D J V D,Kitner M,Klein J,Meijer H J G,Spring O,Win J,Zipper R,Bode H,Govers F,Kamoun S,Schornack S,Studholme D,Ackerveken G V,Thines M. 2015. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora[J]. BMC Genomics,16(1):741. doi:10.1186/s12864-015-1904-7.
Tan X W,Hu Y Y,Jia Y L,Hou X Y,Xu Q,Han C,Wang Q Q. 2020. A conserved glycoside hydrolase family 7 cellobiohydrolase PsGH7a of Phytophthora sojae is required for full virulence on soybean[J]. Frontiers in Microbiology,11:1285. doi:10.3389/FMICB.2020.01285.
Turbe-Doan A,Record E,Lombard V,Kumar R,Lezasseur A,Henrissat B,Garron M. 2019. Trichoderma reesei dehydrogenase,a pyrroloquinoline quinone-dependent member of auxiliary activity family 12 of the carbohydrate-active enzymes database:Functional and structural characterization[J]. Applied and Environmental Microbiology,85(24):e00964-19. doi:10.1128/AEM.00964-19.
Tyler B M,Tripathy S,Zhang X,Dehal P,Jiang R H,Aerts A,Arredondo F D,Baxter L,Douda B,Beynon J L,Chapman J,Damasceno C M B,Dorrance A E,Dou D,Dickerman A W,Dubchak I L,Garbelotto M,Gijzen M,Gordon S G,Govers F,Grunwald N J,Huang W,Ivors K L,Jonesn R W,Kamoun S,Krampis K,Lamour K H,Lee M K,McDonald W H,Medina M,Meijer H J G,Nordberg E K,Maclean D J,Giraldo M D O,Morris P F,Phuntumart V,Putnam N H,Rash S,Rose J K C,Sakihama Y,Salamoy A A,Savidor A,Scheuring C F,Smith B M,Sobral B W S,Terry A,Alalibo T A T,Win J,Xu Z Y,Zhang H B,Grigoriev I V,Rokhsar D S,Boore J L. 2006. Phytophthora genome sequences uncover evolutio-nary origins and mechanisms of pathogenesis[J]. Science,313(5791):1261-1266. doi:10.1126/science.1128796.
Van Vu B,Itoh K,Nguyen Q B,Tosa Y,Nakayashiki H. 2012. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae[J]. Molecular Plant-Microbe Interactions,25(9):1135-1141. doi:10.1094/MPMI-02-12-0043-R.
Yadav S,Yadav D. 2012. In silico characterization of bacterial,fungal and plant polygalacturonase protein sequences[J]. Online Journal of Bioinformatics,13(2):246-259.
Yin L,An Y,Qu J,Li X,Zhang Y,Dry I,Wu H,Lu J. 2017. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism[J]. Scientific Reports,7:46553. doi:10.1038/srep46553.
Zerillo M M,Adhikari B N,Hamilton J P,Buell C R,Levesque C A,Tisserat N. 2013. Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation[J]. PLoS One,8(9):e72572. doi:10.1371/journal.pone.0072572.
(責(zé)任編輯 麻小燕)