• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      廚余與園林廢物共堆肥過程氮素轉(zhuǎn)化及損失

      2021-09-02 12:57:38薛晶晶李彥明常瑞雪彭糧歡
      關(guān)鍵詞:銨態(tài)氮廚余硝態(tài)

      薛晶晶,李彥明,常瑞雪,王 玨,彭糧歡

      廚余與園林廢物共堆肥過程氮素轉(zhuǎn)化及損失

      薛晶晶,李彥明※,常瑞雪,王 玨,彭糧歡

      (中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,農(nóng)田土壤污染防控與修復(fù)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100193)

      為獲得適用于廚余垃圾與園林廢物的共堆肥工藝,采用密閉式好氧堆肥,在含水率75%和通風(fēng)量0.2 L/(kg·min)的條件下,以廚余垃圾和園林廢物為研究對象,探討了兩者干物質(zhì)質(zhì)量比為4∶1(N1)、3∶1(N2)和2∶1(N3)時(shí)對發(fā)酵溫度、pH值、C/N、GI、氨氣、全氮、有機(jī)氮、銨態(tài)氮與硝態(tài)氮等的影響,以期揭示二者共堆肥過程中氮素的轉(zhuǎn)化與損失規(guī)律。結(jié)果表明,在廚余垃圾與園林廢物共堆肥過程中,兩者為2∶1時(shí),不但升溫速度快,有效提高了反應(yīng)過程的最高發(fā)酵溫度,高達(dá)63.4 ℃,無害化程度徹底,而且初始C/N較適宜,在第21天實(shí)現(xiàn)了完全腐熟狀態(tài),加速了發(fā)酵進(jìn)程;N3較N1、N2處理分別減少了30.30%、12.96%的全氮損失與7.8%、15.71%的氨氣揮發(fā)損失,有效促進(jìn)銨態(tài)氮向有機(jī)氮和硝態(tài)氮轉(zhuǎn)化,氮素?fù)p失最小。因此,廚余垃圾與園林廢物為2∶1時(shí),更利于促進(jìn)二者協(xié)同發(fā)酵處理,為提升共堆肥產(chǎn)品氮素養(yǎng)分含量提供理論支持。

      堆肥;氨揮發(fā);氮素轉(zhuǎn)化;氮素?fù)p失;廚余垃圾;園林廢物

      0 引 言

      中國城鎮(zhèn)化的快速發(fā)展致使生活垃圾清運(yùn)量逐年增加,年清運(yùn)量已高達(dá)2.3億t,其中,部分城鎮(zhèn)的廚余垃圾占比高達(dá)76%[1]。近年來,城鎮(zhèn)綠化面積也在快速增加,綠化養(yǎng)護(hù)產(chǎn)生的園林垃圾約4000萬t/a,且綜合利用率尚不足10%,大量棄置的園林廢物亦然成為城鎮(zhèn)火災(zāi)隱患[2]。堆肥化是世界范圍內(nèi)資源化利用有機(jī)固體廢棄物的重要途徑[3],廚余垃圾游離態(tài)脂肪含量豐富、高水高鹽等特性使其極易酸敗變質(zhì),污染環(huán)境[4],難以單獨(dú)好氧堆肥處理[5];園林廢物單獨(dú)堆肥也異常困難,但二者的生化特性正好互補(bǔ)[6-7]。因此,構(gòu)建適用于二者協(xié)同處理的共堆肥工藝,有助于同步實(shí)現(xiàn)兩種廢棄物的資源化利用,促進(jìn)中國城鎮(zhèn)的可持續(xù)發(fā)展。

      此外,由于廚余垃圾中蛋白質(zhì)含量較高,且這類物質(zhì)在堆肥發(fā)酵過程極易分解轉(zhuǎn)換為游離銨,進(jìn)而以氨揮發(fā)的形式造成氮素?fù)p失[8],研究表明廚余垃圾堆肥過程的氮素?fù)p失可高達(dá)60%,降低堆肥產(chǎn)品的肥料價(jià)值[9-10]。將二者進(jìn)行共堆肥,不但可有效改善廚余垃圾的物理結(jié)園林廢物富含纖維素、半纖維素、木質(zhì)素等高含碳物質(zhì),構(gòu),而且還能降低堆肥過程氨揮發(fā),減少氮素?fù)p失[11]。

      目前還鮮見廚余垃圾與園林廢物協(xié)同處理共堆肥的報(bào)道。為此,本文以廚余垃圾和園林廢物為研究對象,通過揭示二者共堆肥過程的氮素轉(zhuǎn)化和損失規(guī)律,以期為今后城鎮(zhèn)廚余垃圾與園林廢物共堆肥處理提供理論依據(jù)。

      1 材料與方法

      1.1 供試材料

      廚余垃圾取自中國農(nóng)業(yè)大學(xué)西校區(qū)食堂;園林廢物(包括修剪廢草和落葉)取于中國農(nóng)業(yè)大學(xué)西校區(qū)垃圾轉(zhuǎn)運(yùn)站;分別將廚余和園林垃圾粉碎至≤2 mm后備用,供試物料的理化性質(zhì)如表1所示。

      表1 供試物料的理化性質(zhì)

      1.2 堆肥操作與試驗(yàn)設(shè)計(jì)

      先將修剪廢草和銀杏樹葉按照1∶1(干物質(zhì)質(zhì)量比)混合均勻后,即為園林廢物;之后再將園林廢物與廚余垃圾按照比例進(jìn)行混合,混合均勻后將自制密閉式堆肥模擬反應(yīng)器(專利號:202023234710.0)的發(fā)酵罐裝滿(圖 1),連接好管路后,開啟裝置。廚余垃圾與園林廢物的混合質(zhì)量比設(shè)置為4∶1(N1)、3∶1 (N2)和2∶1(N3),混合物料的含水率設(shè)置為75%,容重為0.35kg/L,每個(gè)處理裝填的干物料量相同,通風(fēng)量設(shè)置為0.2 L/(kg·min),發(fā)酵周期設(shè)置為28d。

      1.3 樣品采集與分析方法

      在堆肥的第0、3、7、14、21、28天進(jìn)行翻堆操作和樣品采集。每次采集樣品不少于150g,所取樣品分為2份處理,一份置于-20 ℃冰箱中保存?zhèn)溆?,用于pH值、發(fā)芽率指數(shù)、硝態(tài)氮、銨態(tài)氮等指標(biāo)測定;另一份樣品用于風(fēng)干總有機(jī)碳、總氮等指標(biāo)測定。

      溫度:采用Pt100溫度傳感器和自動溫度記錄儀進(jìn)行數(shù)據(jù)采集,采集頻率為30 min記錄1次;氨氣:采用硼酸吸收法[11];pH值和電導(dǎo)率:按照固液比1∶10浸提樣品,在室溫條件下放入恒溫振蕩器中,以200 r/min水平密閉震蕩30 min,靜置2 h,提取上清液作為浸提液,分別將校準(zhǔn)過的pH計(jì)電極和EC計(jì)電極插入浸提液;發(fā)芽率指數(shù)(Germination Index,GI):在培養(yǎng)皿內(nèi)墊一張濾紙,加入5 mL提取的浸提液浸濕濾紙,均勻放入10粒飽滿的水蘿卜()種子,25 ℃下培養(yǎng)48 h后測定發(fā)芽率和根長,每個(gè)樣品做3次重復(fù),同時(shí)以蒸餾水作空白試驗(yàn)[12];銨態(tài)氮和硝態(tài)氮:稱取5 g堆肥樣品于三角瓶內(nèi),加入2 mol/L KCl 50 mL,震蕩30 min,過濾取上清液,用流動分析儀測定;總有機(jī)碳和總氮的測定參照有機(jī)肥測定標(biāo)準(zhǔn)方法(NY 525-2012);灰分:樣品烘干后經(jīng)550℃灼燒4 h。

      1.4 計(jì)算方法

      根據(jù)物質(zhì)守恒與氮素平衡原理,堆肥氮素?fù)p失的計(jì)算公式如下[13]:

      Loss=100-100[12)/(21)] (1)

      式中Loss為堆肥過程中氮素?fù)p失率,%;12為堆肥初始和最終的灰分質(zhì)量分?jǐn)?shù),%;12為堆肥初始和最終的總氮濃度,g/kg。

      氨揮發(fā)占氮素?fù)p失比例的計(jì)算公式如下[14]:

      =[(1/TN)×(N分子量/NH3分子量)]×100% (2)

      式中為氨揮發(fā)占氮素?fù)p失的比例,%;1為氨揮發(fā)總量,g;TN為初始物料的含氮總量,g。

      N2O等其他的氮素?fù)p失量為氮素?fù)p失總量與氨揮發(fā)總量的差值。

      應(yīng)用Office Excel和SPSS 20.0進(jìn)行數(shù)據(jù)處理與圖表制作。

      2 結(jié)果與分析

      2.1 基礎(chǔ)理化指標(biāo)

      各處理的溫度變化如圖2a所示,N1、N2和N3的溫度均呈現(xiàn)先上升后下降的趨勢。NH3的揮發(fā)主要發(fā)生在高溫期,且溫度越高,NH3揮發(fā)量越大。當(dāng)溫度大于60 ℃時(shí),NH3多以氣體的形式揮發(fā),造成嚴(yán)重的氮素?fù)p失[13]。N2、N3處理超過50 ℃的時(shí)間分別為12、13 d,均達(dá)到國家堆肥無害化標(biāo)準(zhǔn)的要求(GB7959-2012),而N1處理達(dá)50 ℃以上的時(shí)間僅維持了7 d,與N2、N3處理差異顯著(<0.05),這可能是由于廚余垃圾占比大,油脂附著在物料表面的含量高,其充當(dāng)一層隔膜,阻礙了與空氣的充分接觸,進(jìn)而減弱反應(yīng)強(qiáng)度,延遲升溫[15],N3處理升溫最快且最先達(dá)到峰值溫度63.4 ℃,N1處理升溫緩慢,在第9天左右達(dá)到最高溫度,僅為59.6 ℃。3個(gè)處理60 ℃以上的持續(xù)時(shí)間時(shí)間分別為0、2和3 d,表明隨著園林廢物比例增加,能縮短升溫時(shí)間,延長高溫期時(shí)長,加速堆肥發(fā)酵進(jìn)程。

      pH值作為影響氮素?fù)p失的重要因素之一,會隨著堆肥有機(jī)物的降解而發(fā)生變化,主要通過影響物料液相中銨離子與氨的平衡來影響氨氣的揮發(fā)[16-17]。堆肥起始時(shí),各處理pH值均在4.5以下,偏酸性環(huán)境,第7天,N1、N3處理的pH值由4.6迅速增加至7左右,而N2在第7天時(shí),pH值仍舊保持酸性,直到第14天才增加至8,這必然影響微生物對有機(jī)質(zhì)的降解,因此很可能是造成N2處理高溫期(圖2b)滯后的重要原因,但較低的pH能在一定程度上抑制NH3的揮發(fā),減少氮素?fù)p失。Godwin的研究表明,當(dāng)pH值小于9時(shí),NH3的揮發(fā)量與pH值呈正相關(guān)[18]。堆肥后期,三個(gè)處理的pH值變化趨勢相似,最終均維持在8.2左右,方差分析表明3個(gè)處理的pH值之間無顯著性差異(>0.05)。

      堆肥過程中C/N變化趨勢如圖2c所示,堆肥初期,N1、N2、N3處理的C/N分別為17.72、20.59和22.92,C/N較低時(shí),會導(dǎo)致大量有機(jī)氮向氣態(tài)氨轉(zhuǎn)化,并以NH3形式揮發(fā)[18],繼而造成嚴(yán)重的氮素?fù)p失;雖然有機(jī)碳也會被微生物分解礦化,但是含碳氮有機(jī)物的分解礦化合成并不同步,因此各處理C/N在整個(gè)堆肥過程中均呈下降趨勢,堆肥結(jié)束時(shí),N3處理的C/N顯著高于N2和N1處理(<0.05),表明隨著園林廢物占比的增多,碳素的損失小于氮素?fù)p失,C/N上升。

      發(fā)芽指數(shù)是評價(jià)有機(jī)固體廢棄物經(jīng)堆肥化處理后產(chǎn)物對植物是否具有生物毒性及其產(chǎn)品是否腐熟的重要指標(biāo)。如圖2d所示,隨著堆肥發(fā)酵時(shí)間的增加,各處理的GI值均呈現(xiàn)上升的趨勢。N3處理的GI值在第9和21天分別率先超過60%和80%,表明廚余與園林廢物按適宜比例協(xié)同處理共堆肥工藝,可有效縮短堆肥物料的腐熟時(shí)間。堆肥結(jié)束時(shí),三個(gè)處理的GI值分別為75.77%,81.54%和84.50%。N2、N3處理均達(dá)到完全腐熟的標(biāo)準(zhǔn)(>80%),而N1僅達(dá)到基本腐熟的標(biāo)準(zhǔn)(>60%),這說明堆肥產(chǎn)物中穩(wěn)定腐殖質(zhì)的含量會隨著含有高木質(zhì)纖維素園林廢物占比的增加而增加[19]。因此,采用堆肥化處理廚余垃圾時(shí),其比例不建議高于初始混合物料的80%。

      2.2 氨氣排放速率和累積排放量

      各處理氣態(tài)NH3的排放速率與累積排放量如圖3a、3b所示。NH3揮發(fā)的高峰期為堆肥過程的第8~20天,此階段各處理氨的排放速率有較大差異,N1、N2、N3處理的最大排放速率分別為2.15,1.41和1.59 g/d,N3因高溫期提前,于第9天率先達(dá)到峰值,與達(dá)到發(fā)酵高溫(圖2a)的時(shí)間相吻合;而N1排放峰值最大,排放速率顯著(<0.05)大于N2、N3處理,與N1處理堆肥后期pH值(圖2b)較大密切相關(guān),N1處理高NH3排放速率必然會造成高NH3釋放累積量(13.29 g/kg),這是由多重因素所決定的,一方面,N1處理園林廢物占比少,初始C/N低,可供消耗的碳素較少,氮素相對過剩且無法被微生物利用時(shí),部分氮素就會轉(zhuǎn)化成游離NH3并大量逸出。另一方面,氨揮發(fā)與氮素轉(zhuǎn)化密切相關(guān)。堆肥初期,有機(jī)氮在高pH值條件下,經(jīng)過氧化作用可轉(zhuǎn)化為游離NH3,造成N1處理有機(jī)氮含量的迅速下降[19-21],隨著有機(jī)質(zhì)的降解,部分有機(jī)氮礦化為NH3(液)并結(jié)合H+,進(jìn)而形成NH4+,進(jìn)而提高液相底物的pH值[22],這是導(dǎo)致N1處理銨態(tài)氮含量峰值(圖4c)與pH值(圖2b)均較高的原因。當(dāng)NH3(液)持續(xù)轉(zhuǎn)移到水和氣相的界面,且NH3/NH4+的pKa超過9.25時(shí),便會以NH3(氣)的形式揮發(fā)[23]。到堆肥后期,各處理的硝態(tài)氮含量相對初始時(shí)降低(圖4d),表明各處理的硝化作用被抑制,致使NH4+未能在亞硝化細(xì)菌和硝化細(xì)菌的作用下轉(zhuǎn)化為NO3-[24],Al-Jabi等[25]通過在食品廢物堆肥中添加富含硝化微生物的腐熟堆肥,強(qiáng)化銨的硝化作用,使NH3揮發(fā)降低36%。因此,強(qiáng)化NH3/NH4+的微生物同化作用或添加強(qiáng)化硝化作用的外源改良劑,均可促進(jìn)物料中無機(jī)氮向有機(jī)氮轉(zhuǎn)化,降低氨氣揮發(fā),減少氮素?fù)p失。

      2.3 堆肥過程不同氮素形態(tài)的轉(zhuǎn)化

      堆肥過程中全氮的變化情況如圖4a所示,第0天時(shí),因含氮量高的廚余垃圾占比不同致使N3

      有機(jī)氮的變化如圖4b所示,N1、N2和N3處理初始有機(jī)氮分別為32.15、28.22和24.81 g/kg,占總氮的93.24%、90.73%和85.86%,表明在堆肥初期有機(jī)氮在堆體中占據(jù)絕對優(yōu)勢,微生物將無機(jī)氮合成有機(jī)氮的速率小于有機(jī)氮經(jīng)過氧化作用轉(zhuǎn)化為無機(jī)氮的速率,致使三個(gè)處理有機(jī)氮含量均呈下降趨勢,N1處理下降幅度最大,因廚余垃圾占比大、含水率高,堆體局部厭氧致使部分有機(jī)氮進(jìn)入滲濾液造成損失[22]。之后隨著堆肥高溫期的到來及氧化作用的加強(qiáng),N2、N3處理有機(jī)氮含量逐步降低。堆肥后期,N1、N2、N3處理的有機(jī)氮含量均呈上升趨勢,一方面可能是因?yàn)椴糠窒鯌B(tài)氮被微生物吸收利用,通過細(xì)胞質(zhì)合成作用生成有機(jī)氮所造成的[22];另一方面,銨態(tài)氮與碳源代謝的中間產(chǎn)物α-酮戊二酸在谷氨酸合成酶的作用下也會生成有機(jī)氮[21]。堆肥結(jié)束時(shí)三個(gè)處理有機(jī)氮含量分別為23.37、26.21、27.73 g/kg,處理之間性差異不顯著(>0.05)。

      圖4 全氮、有機(jī)氮、銨態(tài)氮和硝態(tài)氮隨時(shí)間變化

      Jiang等[28]研究表明氨氣的揮發(fā)和有機(jī)氮的礦化是影響銨態(tài)氮濃度的主要因素。如圖4c所示,銨態(tài)氮含量隨堆肥發(fā)酵進(jìn)程均呈現(xiàn)先上升后下降的趨勢,N1、N2、N3處理分別在第14、14和7天達(dá)到最大值6.08、5.87、5.94 g/kg,堆肥前期,由于有機(jī)氮的礦化導(dǎo)致銨態(tài)氮含量增加,這段時(shí)間稱為銨態(tài)氮的積累期。隨后N3最先下降且速率最快,與N1、N2差異顯著(<0.05),這與N3升溫最快且最先達(dá)到最高溫度(圖2a)有關(guān)。第21~28天,伴隨著有機(jī)物降解速率和氨氣揮發(fā)速率的減緩,各處理的銨態(tài)氮含量也逐漸減緩并趨于穩(wěn)定,反應(yīng)結(jié)束時(shí),N1、N2、N3處理的銨態(tài)氮含量分別降低了58.44%、53.82%、82.39%。硝態(tài)氮含量如圖4d所示,堆肥初期,N3的硝態(tài)氮含量最高(1.65 g/kg),其余處理的硝態(tài)氮含量則介于 1.04~1.14 g/kg之間,區(qū)別于N1處理平緩下降,N2、N3處理均呈現(xiàn)短暫的上升趨勢,這可能是由于園林廢物占比的增多使得堆體的厭氧區(qū)域相對較少,反硝化作用被抑制,硝態(tài)氮含量有所增加[22],堆肥后期隨著物料降解、堆料顆粒變小以及孔隙度的降低,反硝化作用大于硝化作用,部分硝態(tài)氮轉(zhuǎn)化為有機(jī)氮,含量不斷降低[23]。堆肥結(jié)束時(shí),各處理間硝態(tài)氮的濃度無明顯差異(>0.05),分別為0.06、0.12、0.23 g/kg。

      2.4 氮素平衡及物料損失

      堆肥過程中氮素?fù)p失主要包括氨揮發(fā)、滲濾液中的離子態(tài)氨氮、硝氮以及氣態(tài)NOX等,氮素平衡和物料損失如表2所示,各處理氨揮發(fā)占總氮素?fù)p失的比例分別為63.33%、65.66%、70.59%;由于在該研究中監(jiān)測到的N2O排放量較少,故而將其合并到了其他N損失的部分。前人的研究表明廚余垃圾堆肥中由NOX排放造成的氮素?fù)p失僅占氮素?fù)p失的4%左右,滲濾液中氮素占總氮損失可達(dá)18.8%[29];由此可見氨揮發(fā)是堆肥過程氮素?fù)p失的主要途徑。N3和N2較N1處理減少了30.30%和12.96%的全氮損失與7.8%和15.71%的氨揮發(fā)。表明園林廢物占比量的增加不僅對NH3減排起到一定的促進(jìn)作用,還有效降低離子態(tài)氮素的流失,還能提高堆肥產(chǎn)品的養(yǎng)分含量。減量化是固體廢棄物進(jìn)行堆肥化處理的主要目的之一,堆肥前后的物料質(zhì)量變化可以直觀地反映其減量化效果。N3與N1、N2處理差異顯著(<0.05),可能是因?yàn)镹3處理的堆體結(jié)構(gòu)與好氧狀態(tài)較好,提高了微生物活性[30],促進(jìn)了有機(jī)物轉(zhuǎn)化,所以N3處理高溫持續(xù)時(shí)間和所達(dá)到的最高溫度(圖2a)均優(yōu)于N1、N2處理。

      表2 氮素平衡及物料損失

      3 結(jié) 論

      1)綜上可知,隨著廚余垃圾比例的降低和園林廢物比例的上升,有利于改善堆體結(jié)構(gòu),促進(jìn)有機(jī)物轉(zhuǎn)化,減少氨揮發(fā)。廚余垃圾與園林廢物協(xié)同堆肥處理比例為2∶1時(shí),發(fā)酵溫度可高達(dá)63.4 ℃,21 d可達(dá)到完全腐熟,減量化效果明顯。

      2)兩者協(xié)同處理共堆肥可解決它們單獨(dú)處理發(fā)酵難、效率低、氮素?fù)p失嚴(yán)重等難題,有助于銨態(tài)氮向有機(jī)氮和硝態(tài)氮轉(zhuǎn)化,減少氨氣排放和氮素?fù)p失,提升堆肥產(chǎn)品品質(zhì),增加肥料價(jià)值,為現(xiàn)代化城鎮(zhèn)綠色高質(zhì)量發(fā)展提供支撐。

      [1] 楊娜,邵立,何品晶.我國城市生活垃圾組分含水率及特征分析[J].中國環(huán)境科學(xué),2018,38(3):1033-1038.

      Yang Na, Shao Li, He Pinjing. Analysis of water content and characteristics of municipal solid waste in China[J]. China Environmental Science, 2018, 38(3): 1033-1038. (in Chinese with English abstract)

      [2] 劉瑜,戚智勇,趙佳穎,等. 我國城市園林廢棄物及其資源化利用現(xiàn)狀[J]. 再生資源與循環(huán)經(jīng)濟(jì),2020(8):38-44.

      Liu Yu, Qi Zhiyong, Zhao Jiaying, et al. Current situation of urban garden waste and its resource utilization in China[J]. Recycling Research, 2020(8): 38-44. (in Chinese with English abstract)

      [3] Awasthi M K, Wang Q, Awasthi S K, et al. Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting[J]. Bioresource Technology, 2017, 247: 970-979.

      [4] 炊春萌,李保國,劉莉,等. 餐廚垃圾厭氧發(fā)酵研究進(jìn)展[J]. 食品與發(fā)酵科技,2020(4):60-64.

      Chui Chunmeng, Li Baoguo, Liu Li, et al. Research progress on anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences and Technology, 2020(4): 60-64. (in Chinese with English abstract)

      [5] Xu F Q, Li Y Y, Ge X M, et al. Anaerobic digestion of food waste: Challenges and opportunities[J]. Bioresource Technology, 2017, 247: 1047-1058.

      [6] Chen M L, Huan Y M, Liu H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326-335.

      [7] 劉敏茹,郭華芳,林鎮(zhèn)榮. 園林綠化廢棄物聯(lián)合餐廚垃圾好氧堆肥的“推流”工藝及應(yīng)用研究[J]. 環(huán)境工程,2016,34(s1):743-746.

      Liu Minru, Guo Huafang, Lin Zhenrong. Research on “Push flow” technology and application of landscaping waste combined with kitchen waste aerobic composting[J]. Environmental Engineering, 2016, 34(s1): 743-746. (in Chinese with English abstract)

      [8] 楊延梅. 通風(fēng)量對廚余堆肥氮素轉(zhuǎn)化及氮素?fù)p失的影響[J]. 環(huán)境科學(xué)與技術(shù),2010,33(12):1-4.

      Yang Yanmei. Effect of ventilation rate on nitrogen conversion and nitrogen loss of kitchen waste composting[J]. Environmental Science & Technology, 2010, 33(12): 1-4. (in Chinese with English abstract)

      [9] 楊延梅,楊志峰,張相鋒,等. 底物含氮量對廚余堆肥氮素轉(zhuǎn)化及其損失的影響研究[J].環(huán)境科學(xué)學(xué)報(bào),2017,27(6):993-999.

      Yang Yanmei, Yang Zhifeng, Zhang Xiangfeng, et al. Effect of substrate nitrogen content on nitrogen conversion and loss of kitchen waste composting[J]. Acta Scientiae Circumstantiae, 2017, 27(6): 993-999. (in Chinese with English abstract)

      [10] Zhang H Y, Li G X, Gu J, et al. Influence of aeration on Volatile Sulfur Compounds (VSCs) and NH3emissions during aerobic composting of kitchen waste[J]. Waste Management, 2016, 58: 369-375.

      [11] 張玉冬,張紅玉,顧軍,等. 通風(fēng)量對廚余垃圾堆肥過程中H2S和NH3排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(7):1371-1377.

      Zhang Yudong, Zhang Hongyu, Gu Jun, et al. Influence of ventilation rate on H2S and NH3emission during composting of kitchen waste[J]. Journal of Agro-Environment Science, 2015, 34(7): 1371-1377. (in Chinese with English abstract)

      [12] Micha?owski T, Asuero A G. New approaches in modeling carbonate alkalinity and total alkalinity[J]. Critical Reviews in Analytical Chemistry, 2012, 42(3): 220-244.

      [13] Paredes C, Roig A, Bernal M P, et al. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes[J]. Biology and Fertility of Soils, 2000, 11(11): 6235-6248.

      [14] 陳是吏. 低碳氮比雞糞堆肥溫室氣體和 NH3排放規(guī)律影響研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2017.

      Chen Shili. Study on the Influence of Greenhouse Gas and NH3Emission Law of Low Carbon Nitrogen Ratio Chicken Manure Composting[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

      [15] 賈軍濤. 易腐垃圾連續(xù)式好氧生物轉(zhuǎn)化工藝構(gòu)建[D]. 北京:中國農(nóng)業(yè)大學(xué),2019.

      Jia Juntao. Construction of Continuous Arobic Biotransformation Process for Perishable Garbage[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)

      [16] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.

      [17] Wang X, Selvam A, Wong J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217: 227-232.

      [18] Godwin C M, Whitaker E A, Cotner J B. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria[J]. Ecology, 2017, 98(3): 820-829.

      [19] 常瑞雪,王騫,甘晶晶,等. 易降解有機(jī)質(zhì)含量對黃瓜秧堆肥腐熟和氮損失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):231-237.

      Chang Ruixue, Wang Qian, Gan Jingjing, et al. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 231-237. (in Chinese with English abstract)

      [20] Zhang H J, Matsuto, Toshihiko. Mass and element balance in food waste composting facilities[J]. Waste Management, 2010, 30(8/9): 1477-1485.

      [21] 周海瑛,邱慧珍,楊慧珍,等. C/N比對好氧堆肥中NH3揮發(fā)損失和含氮有機(jī)物轉(zhuǎn)化的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2020(2):69-77.

      Zhou Haiying, Qiu Huizhen, Yang Huizhen, et al. Effect of C/N ratio on NH3volatilization loss and nitrogen organic conversion in aerobic composting[J]. Agricultural Research in the Arid Areas, 2020(2): 69-77. (in Chinese with English abstract)

      [22] 楊延梅. 易利用碳的添加對廚余堆肥氮素轉(zhuǎn)化與氮素?fù)p失的影響[J]. 安徽農(nóng)業(yè)科學(xué),2011,39(32):19831-19833.

      Yang Yanmei. Effect of easy use of carbon on nitrogen conversion and nitrogen loss of kitchen waste composting[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19831-19833. (in Chinese with English abstract)

      [23] Wang S G, Zeng Y. Ammonia emission mitigation in food waste composting: A review[J]. Bioresource Technology, 2018, 248: 13-19.

      [24] Chan M T, Selvam A, Wong J W C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment[J]. Bioresource Technology, 2016, 200: 838-844.

      [25] Al-Jabi L F, Halalsheh M M, Badarneh D M. Conservation of ammonia during food waste composting[J]. Environmental Technology, 2008, 29(10): 1067-1073.

      [26] 李赟,袁京,李國學(xué),等. 輔料添加對廚余垃圾快速堆肥腐熟度和臭氣排放的影響[J]. 中國環(huán)境科學(xué),2017,37(3):1031-1039.

      Li Yuan, Yuan Jing, Li Guoxue, et al. Effect of supplementary material addition on fast composting degree and odor emission of kitchen waste[J]. China Environmental Science2017, 37(3): 1031-1039. (in Chinese with English abstract)

      [27] Jiang L, Ma L, Sui Y, et al. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants[J]. Journal of Hazardous of Materials, 2010, 184(1/2/3): 337-344.

      [28] Jiang T, Schuchardt F, Li G X, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. Journal of Environmental Science, 2011, 23(10): 1754-1760.

      [29] 楊帆,歐陽喜輝,李國學(xué),等. 膨松劑對廚余垃圾堆肥 CH4、N2O 和 NH3排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):226-233.

      Yang Fan, Ouyang Xihui, Li Guoxue, et al. Effects of leavening agent on CH4, N2O and NH3emissions from kitchenwaste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 226-233. (in Chinese with English abstract)

      [30] 郭秋月,常瑞雪,孫霞,等. 初始物料水溶性有機(jī)碳含量對番茄秧堆肥進(jìn)程的影響[J]. 中國蔬菜,2018(5):42-47.

      Guo Qiuyue, Chang Ruixue, Sun Xia, et al. Effect of initial water-soluble organic carbon content on composting process of tomato seedlings[J]. China Vegetables, 2018(5): 42-47. (in Chinese with English abstract)

      Nitrogen transformation and loss during co-composting of kitchen and garden wastes

      Xue Jingjing, Li Yanming※, Chang Ruixue, Wang Jue, Peng Lianghuan

      (,,100193,)

      A large amount of kitchen and garden wastes is ever increasing, with the rapid development of urbanization in China. Kitchen waste is characterized by rich free fat content, high water and salt content. The inappropriate pore structure and organic composition can inhibit the organic degradation during aerobic composting, thereby leading to nitrogen loss in the form of ammonia volatilization. Garden waste is rich in cellulose, hemicellulose, lignin, and high-carbon substances, particularly hard to be degraded directly. Alternatively, a co-composting of kitchen and garden wastes can improve the physicochemical characters to make the mixed materials more suitable for composting. Therefore, the current work aims to investigate the co-composting feasibility of kitchen and garden wastes. The ratios of kitchen and garden wastes were set as 4∶1 (N1), 3∶1 (N2), and 2∶1 (N3) (dry weight basis). A 28-day experiment was conducted in the self-developed closed system of aerobic composting. The total material weight, the moisture content, and the aeration rate of composting mixtures were 2.5kg, 75%, and 0.2L/(kg·min), respectively. Some indexes were recorded during the process, including the fermentation temperature, pH, C/N, Germination Index (GI), NH3and cumulative emissions, total N, organic N, ammonium N, and nitrate nitrogen. The specific rule was revealed to the nitrogen transformation and ammonia volatilization loss. The results showed that the temperature increased faster than other treatments, when the ratio of kitchen and garden waste was 2∶1 (N3), indicating the highest fermentation temperature (63.4℃). Meanwhile, the GI in N3 treatment exceeded 80% on the 21stday, meaning that the fermentation was significantly accelerated. The GI values of three treatments at the end of the process were 75.77%, 81.54%, and 84.50%, respectively. The products in the N2 and N3 treatment reached the standard of complete decomposing (>80%), while, those in the N1 only met the standard of basic decomposing (>60%). Therefore, a strong recommendation was given that the proportion of kitchen waste should not be higher than 80% of materials in the process of waste co-composting. The total nitrogen content decreased in the N1 and N2 treatment, whereas, it increased in the N3 fermentation. A high pH of products was obtained, due mainly to the fact that part of organic nitrogen was converted into ammonium nitrogen. The total nitrogen loss in N3 was the lowest at the end of composting, especially lower than that in the N1 and N2 by 30.30% and 12.96%, respectively. The nitrogen transformation demonstrated that the high fraction of garden waste reduced the NH3emission and the loss of ionic nitrogen, thereby promoting the conversion of ammonium nitrogen to organic nitrogen and nitrate nitrogen, indicating a higher nitrogen content in compost products. An optimal ratio of kitchen waste to garden waste was 2∶1, indicating the treatment is feasible. The co-fermentation of kitchen and garden wastes can greatly contribute to the reduction of nitrogen loss. The finding can provide potential theoretical support to the co-composting for kitchen and garden wastes.

      composting; ammonia emission; nitrogen transformation; nitrogen loss; kitchen waste; garden waste

      10.11975/j.issn.1002-6819.2021.10.023

      X705

      A

      1002-6819(2021)-10-0192-06

      薛晶晶,李彥明,常瑞雪,等. 廚余與園林廢物共堆肥過程氮素轉(zhuǎn)化及損失[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):192-197.doi:10.11975/j.issn.1002-6819.2021.10.023 http://www.tcsae.org

      Xue Jingjing, Li Yanming, Chang Ruixue, et al. Nitrogen transformation and loss during co-composting of kitchen and garden wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 192-197. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.023 http://www.tcsae.org

      2021-01-19

      2021-04-22

      “十三五”國家重點(diǎn)研發(fā)計(jì)劃課題任務(wù)書:易腐有機(jī)固廢多組份協(xié)同好氧降解轉(zhuǎn)化技術(shù)及裝備(2018YFC1901000)

      薛晶晶,研究方向?yàn)閺U棄物處理與資源化。Email:xjj_0602@126.com

      李彥明,副教授,博士生導(dǎo)師,研究方向?yàn)閺U棄物處理與資源化。Email:liym@cau.edu.cn

      猜你喜歡
      銨態(tài)氮廚余硝態(tài)
      廚余垃圾特性及預(yù)分選處理技術(shù)
      廈門科技(2021年4期)2021-11-05 06:50:30
      不同質(zhì)地土壤銨態(tài)氮吸附/解吸特征
      廚余垃圾變廢為寶 有機(jī)肥市場方興未艾
      不同鹽堿化土壤對NH+4吸附特性研究
      不同廚余垃圾發(fā)酵效果比較
      低C/N比污水反硝化過程中亞硝態(tài)氮累積特性研究
      有機(jī)質(zhì)對城市污染河道沉積物銨態(tài)氮吸附-解吸的影響*
      廚余垃圾的命運(yùn)
      銨態(tài)氮營養(yǎng)下水稻根系分泌氫離子與細(xì)胞膜電位及質(zhì)子泵的關(guān)系
      硝態(tài)氮供應(yīng)下植物側(cè)根生長發(fā)育的響應(yīng)機(jī)制
      潮州市| 义马市| 仙桃市| 柳江县| 东兰县| 平塘县| 南康市| 岱山县| 平泉县| 香港| 寻乌县| 长沙市| 广河县| 岑巩县| 南安市| 修水县| 蒙城县| 石河子市| 海南省| 云阳县| 石林| 开平市| 龙胜| 汾西县| 师宗县| 瑞昌市| 潮安县| 虎林市| 剑阁县| 罗田县| 金坛市| 那曲县| 武陟县| 铜梁县| 九寨沟县| 广宁县| 寿阳县| 二连浩特市| 尼玛县| 邻水| 饶阳县|