• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    泡沫金屬夾芯梁在重復(fù)沖擊下的動態(tài)響應(yīng)*

    2021-07-30 03:28:58郭開嶺余同希李應(yīng)剛
    爆炸與沖擊 2021年7期
    關(guān)鍵詞:撓度塑性面板

    朱 凌,郭開嶺,余同希,李應(yīng)剛

    (1.武漢理工大學(xué)高性能船舶技術(shù)教育部重點實驗室,湖北 武漢 430063;2.武漢理工大學(xué)交通學(xué)院船舶、海洋與結(jié)構(gòu)工程系,湖北 武漢 430063;3.香港科技大學(xué)機械與航空航天工程系,香港 九龍 清水灣 999077)

    船舶與海洋工程裝備在海上航行或作業(yè)過程中,經(jīng)常會遭受重復(fù)沖擊載荷作用,比如貨船在裝載貨物時船底板受到貨物的反復(fù)撞擊,海洋平臺和現(xiàn)代艦船在服役過程中直升機多次降落時對主甲板的反復(fù)撞擊以及冰區(qū)船舶受到浮冰和冰排等的反復(fù)撞擊等。這些反復(fù)碰撞載荷將導(dǎo)致船體結(jié)構(gòu)出現(xiàn)塑性變形累積,最終產(chǎn)生失效破壞,給船舶結(jié)構(gòu)安全帶來嚴重的威脅和極大的挑戰(zhàn)。因此,重復(fù)沖擊問題在船舶與海洋工程領(lǐng)域受到廣泛關(guān)注,是目前研究的熱點。

    為了研究船舶重復(fù)碰撞問題,Zhu[1]結(jié)合理論、數(shù)值和實驗方法對船體板受質(zhì)量塊重復(fù)碰撞響應(yīng)進行了分析,基于有限差分法開發(fā)了數(shù)值程序,預(yù)測了船體板在重復(fù)沖擊載荷作用下的最終撓度。為了進一步研究船體板在重復(fù)沖擊載荷下的動態(tài)力學(xué)行為,Zhu 等[2]對四周剛固矩形板進行了重復(fù)碰撞模型實驗,獲得了船體板最終撓度隨沖擊次數(shù)的變化關(guān)系。隨后,Zhu 等[3-4]對船體結(jié)構(gòu)重復(fù)沖擊問題展開了系列研究,闡明了重復(fù)沖擊過程中的船體板的變形損傷累積機理。

    高性能船舶正朝著大型化、高速化和多樣化的方向發(fā)展,將泡沫金屬夾芯結(jié)構(gòu)應(yīng)用于船舶結(jié)構(gòu)設(shè)計當(dāng)中,可以在實現(xiàn)輕量化設(shè)計的同時提高船舶結(jié)構(gòu)的安全性。當(dāng)泡沫金屬夾芯結(jié)構(gòu)受到重復(fù)沖擊載荷時,前面板會率先出現(xiàn)塑性變形,隨著沖擊次數(shù)的增加,芯層逐漸被壓縮。在多次沖擊作用下,由于大部分沖擊能量被前面板和泡沫金屬吸收,后面板的變形相對較小,即泡沫金屬夾芯結(jié)構(gòu)可以對船體內(nèi)部結(jié)構(gòu)起到很好的保護作用。因此,泡沫金屬夾芯結(jié)構(gòu)在船舶與海洋工程重復(fù)沖擊防護方面具有重要的應(yīng)用前景。

    由于具有優(yōu)良的抗沖擊性能,泡沫金屬夾芯結(jié)構(gòu)已在工程領(lǐng)域得到了廣泛的應(yīng)用。越來越多的學(xué)者開展泡沫金屬及其夾芯結(jié)構(gòu)的動態(tài)力學(xué)行為研究[5-6],研究方法主要為實驗測試、理論分析和數(shù)值仿真。Yu 等[7-8]利用Hopkinson 桿開展了泡沫鋁動態(tài)壓縮實驗,獲得了不同應(yīng)變率下的應(yīng)力應(yīng)變曲線,通過對比發(fā)現(xiàn)泡沫鋁為應(yīng)變率不敏感材料。在此基礎(chǔ)上,進行了靜態(tài)和動態(tài)三點彎曲實驗,對泡沫金屬夾芯梁的動態(tài)響應(yīng)和失效模式進行了對比分析。結(jié)果表明,當(dāng)加載速率較低(小于5 m/s)時,可以用準靜態(tài)實驗來預(yù)測泡沫鋁夾芯梁在動態(tài)加載下的失效模式。為了進一步探究兩端固支夾芯梁在質(zhì)量塊撞擊下的動態(tài)響應(yīng),Tan 等[9]設(shè)計了相應(yīng)的實驗裝置,獲得了質(zhì)量塊的加速度時程曲線,并分析了夾芯梁的失效破壞模式。結(jié)果顯示,在質(zhì)量塊動態(tài)沖擊作用下,泡沫金屬夾芯梁的失效模式以整體彎曲為主。泡沫金屬夾芯梁在脈沖載荷作用下和質(zhì)量塊沖擊作用下的動態(tài)響應(yīng)存在一定的差異。敬霖等[10]、Jing等[11]利用泡沫鋁子彈為撞擊體以模擬脈沖載荷加載,研究了泡沫金屬夾芯梁在脈沖載荷作用下的失效模式。結(jié)果表明,泡沫金屬夾芯結(jié)構(gòu)在脈沖載荷作用下的失效模式主要分為非彈性大變形、面板褶皺、芯層剪切和界面失效。

    材料本構(gòu)模型的建立是開展泡沫金屬夾芯結(jié)構(gòu)力學(xué)行為數(shù)值仿真分析的必要條件。為了建立泡沫金屬材料的本構(gòu)模型,Deshpande等[12]開展了泡沫金屬材料的準靜態(tài)單軸壓縮實驗,在實驗中考慮了靜水壓的影響,獲得了初始屈服面,提出了基于各向同性假設(shè)的可壓縮泡沫金屬材料本構(gòu)模型,即Deshpande-Fleck 材料模型。Deshpande-Fleck 材料模型已經(jīng)嵌入到有限元軟件當(dāng)中,在數(shù)值仿真中等到廣泛使用。Qiu 等[13]基于Deshpande-Fleck 材料模型,建立了數(shù)值仿真模型,研究了兩端固支泡沫金屬夾芯梁在沖擊波載荷作用下的動態(tài)響應(yīng),分析了材料彈性和應(yīng)力強化對結(jié)構(gòu)響應(yīng)的影響。Tilbrook 等[14]在考慮流固耦合作用的情況下,對泡沫金屬夾芯梁在水下爆炸載荷作用下的動態(tài)響應(yīng)進行了研究。Jing 等[15]建立了數(shù)值仿真模型,對梯度泡沫金屬夾芯梁的動態(tài)沖擊響應(yīng)進行了分析,探討了夾芯梁的變形及失效模式、能量吸收特性以及邊界條件的影響,揭示了梯度泡沫金屬夾芯梁動態(tài)沖擊能量耗散機制。

    Qiu 等[16]建立了剛塑性理論模型,基于方形屈服面求解了兩端固支泡沫金屬夾芯梁在局部區(qū)域遭受脈沖載荷作用下的塑性動力響應(yīng),并將理論模型的分析結(jié)果和仿真結(jié)果進行了對比,驗證了理論模型的可靠性。Qin 等[17]基于理想剛塑性假設(shè)建立了理論分析模型,對泡沫金屬夾芯梁在質(zhì)量塊撞擊作用下的塑性動力響應(yīng)進行了分析,基于方形屈服面獲得了無量綱撓度的上下限,理論模型的求解結(jié)果與數(shù)值仿真結(jié)果吻合較好。在此基礎(chǔ)上,Qin 等[18]在理論建模時,考慮了局部凹陷的影響,探討了局部凹陷對泡沫金屬夾芯梁最終撓度以及能量吸收的影響。結(jié)果表明,在理論分析時若不考慮局部凹陷的影響,泡沫金屬夾芯梁的承載能力將被高估。

    由上述分析可知,目前針對泡沫金屬夾芯梁單次沖擊動態(tài)響應(yīng)的研究方法相對成熟,理論模型和數(shù)值仿真方法均可以較準確地預(yù)報夾芯梁的塑性動力響應(yīng)。然而,由于泡沫金屬夾芯梁在遭受重復(fù)沖擊過程中,其變形和失效模式、加卸載剛度、能量吸收特性等均會隨著沖擊次數(shù)的增加而有所變化,無法簡單地用單次沖擊的方法來研究重復(fù)沖擊響應(yīng)。重復(fù)沖擊載荷作用下,泡沫金屬夾芯結(jié)構(gòu)的變形累積機理、能量耗散機制尚不明確,限制了其在船舶與海洋工程中沖擊防護方面的應(yīng)用。因此,非常有必要開展泡沫金屬夾芯結(jié)構(gòu)重復(fù)沖擊動態(tài)力學(xué)行為研究。

    本文中,將基于Deshpande-Fleck 材料模型[12],在Abaqus-Explicit 分析模塊中建立泡沫金屬夾芯梁動態(tài)響應(yīng)彈塑性數(shù)值分析模型,利用重啟動技術(shù)考慮上一次沖擊的殘余變形對下一次沖擊響應(yīng)的影響。分析泡沫金屬夾芯梁的受力狀態(tài)和變形模式,將數(shù)值仿真獲得的最終撓度與實驗結(jié)果進行對比,驗證數(shù)值仿真模型的有效性。隨后,探究重復(fù)加卸載過程中的剛度變化以及面板和芯層的能量分配規(guī)律。最后,分析泡沫金屬夾芯結(jié)構(gòu)的塑性變形能以及回彈能量隨沖擊次數(shù)的變化規(guī)律。

    1 數(shù)值仿真

    1.1 材料屬性

    在仿真中,低碳鋼面板按彈塑性材料模型定義,其中彈性部分定義楊氏模量和泊松比,塑性部分輸入拉伸實驗獲得的塑性應(yīng)力應(yīng)變曲線。泡沫金屬芯層材料采用可壓碎泡沫模型(crushable foam)[12],該模型也被稱為Deshpande-Fleck 模型[12],將泡沫金屬材料簡化為各向同性強化本構(gòu)模型。依據(jù)Deshpande-Fleck 模型[12],對于閉孔泡沫金屬而言,可以假設(shè)彈性泊松比、塑性泊松比、屈服面形狀參數(shù)以及單軸壓縮強度與靜水壓比值。本文中考慮塑性大變形,而不考慮材料失效。低碳鋼和泡沫鋁的塑性應(yīng)力應(yīng)變曲線如圖1所示,其材料力學(xué)性能分別為:低碳鋼密度為7800 kg/m3,楊氏模量為201 GPa,屈服強度為182 MPa,泊松比為0.3;泡沫金屬材料的密度為480 kg/m3,楊氏模量為0.42 GPa,彈性泊松比為0.3,平臺應(yīng)力為10 MPa,塑性泊松比為0,塑性應(yīng)力比為1.73。

    圖1 低碳鋼和泡沫鋁的塑性應(yīng)力應(yīng)變曲線Fig.1 Plastic stress-strain curves of mild steel and aluminum foam

    1.2 有限元模型

    在數(shù)值仿真中可僅建立泡沫金屬夾芯梁中間區(qū)域的幾何模型,即夾芯梁的長度L=150 mm,寬度B=30 mm,芯層厚度為10 mm,上、下面板厚度均為1.0 mm。楔形沖頭的寬度為40 mm,楔形角為60°,倒角半徑R=1.5 mm。

    為提高計算效率,并分析在沖擊區(qū)域產(chǎn)生的局部凹陷情況,需要進行網(wǎng)格局部加密。如圖2所示,網(wǎng)格加密范圍為梁跨中60 mm 區(qū)域,網(wǎng)格尺寸為1 mm,非加密區(qū)的網(wǎng)格尺寸為2.5 mm。夾芯梁厚度方向的網(wǎng)格大小為1 mm,寬度方向網(wǎng)格大小為1.5 mm。沖頭設(shè)為離散剛體,采用四邊形殼單元(R3D4);芯層采用線性縮減積分六面體單元(C3DR8);上、下面板采用四邊形殼單元(S4R)。

    圖2夾芯梁有限元模型Fig.2 The finiteelement model for the sandwich beam

    在仿真中,夾芯梁邊界條件設(shè)置為兩端固支,限制邊界上所有節(jié)點的轉(zhuǎn)動和平移。仿真中限制沖頭的自由度,只保留豎直方向上的位移。沖頭和上面板之間采用面-面接觸(surface-to-surfacecontact),由于摩擦力對能量消耗的貢獻非常小,所以在仿真中忽略摩擦力的影響。在仿真中將楔形沖頭定義為剛性體并賦予質(zhì)量7.884 kg,定義沖頭豎直向下的初始沖擊速度為2.10 m/s,初始沖擊能量為17.4 J。

    在模擬重復(fù)沖擊時,需要考慮到泡沫金屬夾芯梁的加載和卸載過程,因此需要多次對沖頭定義相同的初始沖擊速度。為了滿足上述條件,需要采用多步分析,通過多個分析步來定義每次沖擊的初始沖擊速度,同時每個分析步的時間需要設(shè)置得足夠長,以滿足夾芯梁的變形值達到穩(wěn)定值。每次沖擊之后的變形和應(yīng)力狀態(tài)都是下一次沖擊的初始狀態(tài)。為了與實驗結(jié)果進行對比,在仿真當(dāng)中重復(fù)沖擊次數(shù)設(shè)為10次。本文中所選取的沖擊能量值適中,在仿真過程中不考慮夾芯梁的斷裂破壞。

    1.3 數(shù)值仿真方法驗證

    利用數(shù)值仿真,可以對泡沫金屬夾芯梁重復(fù)沖擊過程進行可視化分析,而數(shù)值仿真的可靠性需要進行對比驗證。

    實驗使用的裝置是Instron9350沖擊試驗機,如圖3(a)所示。Instron9350落體沖擊試驗機,為落地式試驗系統(tǒng),沖擊速度為0.75~24 m/s,最大沖擊質(zhì)量為70 kg,沖擊能量范圍為0.59~1 800 J。與Instron9350沖擊試驗機連接的數(shù)據(jù)采集儀是Das 64K,可實時采集數(shù)據(jù)。力傳感器為應(yīng)變式,其量程為0~90 kN,內(nèi)置于沖頭內(nèi)部,可以監(jiān)測沖頭受到的瞬態(tài)沖擊力。

    實驗所用到的夾具由上夾具和下夾具組成,上、下夾具之間通過螺栓連接,以實現(xiàn)固支邊界條件,夾具的下方與基座相連,如圖3(b)所示。實驗使用楔形沖頭,沖頭通過螺紋與沖擊連桿相連。沖頭首部的楔形角為60°,楔形寬度為50 mm。楔形沖頭的質(zhì)量為7.884 kg,沖擊速度為2.10 m/s,即沖擊能量為17.4 J。

    圖3 實驗裝置Fig.3 Experimental apparent

    仿真和實驗中獲得的泡沫鋁夾芯梁的變形輪廓對比情況如圖4所示。從圖4可以看出,仿真和實驗中均可以觀察到上面板出現(xiàn)整體彎曲和局部凹陷。對于不同沖擊次數(shù),仿真中得到的整體變形、局部凹陷的形狀和大小與實驗中獲得的結(jié)果基本一致,并且塑性鉸的位置也相同。圖5是實驗和仿真的沖擊力時程曲線對比圖。從圖5(a)可以看出,對于第1次沖擊,仿真和實驗的沖擊力隨時間變化趨勢基本一致,沖擊力大小也基本相同。而從圖5(b)可以看出,對于第4次沖擊,仿真當(dāng)中的沖擊力峰值大于實驗,而仿真中的沖擊持續(xù)時間小于實驗。出現(xiàn)上述現(xiàn)象的主要原因是:在實驗當(dāng)中,夾芯梁兩端邊界是由螺栓進行固定的,每次沖擊過程中,螺栓會產(chǎn)生一定彈性變形,即邊界具有一定的彈性;而在仿真當(dāng)中,邊界假設(shè)為兩端固定。因此,實驗當(dāng)中夾芯梁的剛度小于仿真,即仿真的沖擊力峰值大于實驗的,且隨著沖擊次數(shù)的增加,兩者的差距逐漸增加。

    圖4 不同沖擊次數(shù)時夾芯梁最終變形對比Fig.4 Comparison of permanent deflectionsin different impact numbers

    圖5 沖擊力時程曲線對比Fig.5 Comparison of time histories of impact force

    圖6是不同沖擊次數(shù)下夾芯梁的上下面板撓度的仿真結(jié)果和實驗結(jié)果的對比。從圖6可以看出,上下面板的最終撓度均隨著沖擊次數(shù)的增加而不斷增大,而增長速率不斷減小,仿真和實驗的變化規(guī)律基本一致。同時,仿真和實驗的最終撓度值也基本相同,最大偏差僅為5.6%。通過上述分析可知,仿真結(jié)果與實驗結(jié)果吻合較好。因此,可以用非線性有限元方法模擬泡沫金屬夾芯梁遭受質(zhì)量塊重復(fù)沖擊的動態(tài)響應(yīng)過程,并準確的預(yù)測夾芯梁上下面板的變形和最終撓度值。

    圖6 最終撓度的數(shù)值仿真結(jié)果與實驗結(jié)果的對比Fig.6 Comparison of permanent deflections between numerical simulation and impact test

    2 結(jié)果與討論

    2.1 重復(fù)沖擊動態(tài)響應(yīng)

    數(shù)值仿真中可以獲得不同時刻的結(jié)構(gòu)響應(yīng),可以對泡沫金屬夾芯梁重復(fù)沖擊過程進行可視化分析。如圖7所示,隨著沖擊次數(shù)的增加,上、下面板的變形及最終撓度均不斷增大。除了出現(xiàn)整體彎曲變形之外,夾芯梁上面板在沖擊處還會出現(xiàn)局部凹陷。

    圖7 夾芯梁重復(fù)沖擊變形過程Fig.7 Deformation process of the sandwich beam under repeated impacts

    夾芯梁的變形模式和受力狀態(tài)如圖8所示(以第5次沖擊為例)。從圖8可以看出,夾芯梁跨中至邊界間的位移近似呈線性分布。對于上面板而言,分別在沖擊處、局部凹陷兩端、邊界兩端出現(xiàn)塑性鉸。對于下面板而言,分別在夾芯梁跨中、邊界兩端出現(xiàn)塑性鉸。而對于芯層而言,分別在梁跨中和邊界兩端出現(xiàn)塑性鉸,除了塑性彎曲之外,芯層還出現(xiàn)了局部壓縮變形。通過對比可以發(fā)現(xiàn),泡沫金屬夾芯梁上面板和下面板的變形模式存在一定的差異,主要原因是二者的受力狀態(tài)不同。上面板的上表面受到楔形沖頭的集中力作用及芯層的支撐,而下表面則受到芯層的分布力的加載。因為泡沫金屬的壓縮強度比低碳鋼面板小很多,所以上面板在受到質(zhì)量塊沖擊時,其變形是整體彎曲伴隨局部凹陷。而下面板的上表面受到泡沫金屬向下的分布力,發(fā)生整體彎曲變形。

    圖8 泡沫金屬夾芯梁受力和變形情況Fig.8 Stress stateand deformation of the sandwich beam

    重復(fù)沖擊作用下泡沫金屬夾芯梁面板的撓度時程曲線如圖9所示,圖中Dm為最大撓度,Dr為反彈撓度,Dp為最終撓度。從圖9可以看出,對于每次沖擊而言,夾芯梁的變形都可分為3個階段。第1階段,隨著時間的增長,面板撓度不斷增大,直至達到最大值;第2階段,面板的撓度隨著沖擊時間的增長而不斷減小,直至沖頭與上面板分離便不再減?。坏?階段,沖頭與上面板分離之后,夾芯梁發(fā)生彈性振動,因此上、下面板的撓度值在某一范圍內(nèi)微小波動。由于仿真中沒有設(shè)置阻尼,因此彈性振動不會衰減。由于第3階段的時間設(shè)置得較長,因此夾芯梁的受力狀態(tài)基本達到穩(wěn)定,不會對下一次沖擊造成影響。面板撓度增大,夾芯梁處于加載階段,而撓度減小則對應(yīng)于卸載階段。在卸載階段,夾芯梁彈性能釋放,沖頭出現(xiàn)回彈現(xiàn)象。

    圖9 夾芯梁上、下面板中點撓度時程曲線Fig.9 Timehistories of deflections of the front and back faces of the sandwich beam

    為了研究泡沫金屬夾芯梁重復(fù)沖擊加卸載過程,對力位移曲線進行分析。從圖10可以看出,沖擊過程可以分為加載階段和卸載階段,其中加載階段又分為彈性加載段和塑性加載段,卸載段為彈性卸載。在加載階段,彈性加載剛度大于塑性加載剛度。如圖10(a)所示,對于第1次沖擊和第2次沖擊而言,都有塑性加載剛度小于彈性加載剛度,即K12<K11和K22<K21。第1次沖擊的彈性卸載剛度等于第2次沖擊的彈性加載剛度,即K13=K21;而第2次沖擊的卸載剛度大于第1次沖擊的卸載剛度,即K23>K13。從圖10(b)可以看出,上述規(guī)律在重復(fù)沖擊中普遍存在,即在重復(fù)沖擊過程中,夾芯梁的剛度不斷增加。原因主要有兩個方面,一方面是隨著梁變形的增大,梁的中性軸與水平面的夾角增大,因此梁的軸向拉力在豎直方向的分量也增大,導(dǎo)致加載剛度隨著沖擊次數(shù)的增加而增大;另一方面,由于面板材料在塑性屈服之后,會出現(xiàn)應(yīng)變強化,因此塑性加載剛度也會隨著沖擊次數(shù)的增加而增大。

    圖10 沖擊力-位移曲線Fig.10 Force-displacement curves

    2.2 能量吸收與回彈效應(yīng)

    圖11是重復(fù)沖擊作用下泡沫金屬夾芯梁各部分的變形能時程曲線。從圖11可以看出,隨著沖擊次數(shù)的增加,外界輸入能量不斷累積,泡沫金屬夾芯梁各部分所儲存的變形能也相應(yīng)的不斷增加。而對于每次沖擊而言,泡沫金屬夾芯梁各個部分耗散的能量并不相同。

    圖11 泡沫金屬夾芯梁各部分的變形能時程曲線Fig.11 Time historiesof energy absorption for different partsof the metal foam sandwich beam

    圖12是上、下面板和芯層吸收能量與沖擊次數(shù)間的關(guān)系。從圖12可以看出,隨著沖擊次數(shù)的增加,上面板和芯層單次沖擊吸收的能量不斷減小,而下面板吸收的能量則不斷增大,其變化速率不斷減小。對于前幾次沖擊而言,隨著沖擊次數(shù)的增加,芯層局部凹陷不斷增大,整體變形和局部凹陷同時發(fā)生且相互耦合,導(dǎo)致各部分吸收的能量隨著沖擊次數(shù)不斷變化。但是,當(dāng)泡沫金屬壓縮到一定程度之后,夾芯梁的變形模式幾乎只有整體彎曲變形,因此隨著沖擊次數(shù)的增加,面板及芯層單次沖擊吸收的能量保持穩(wěn)定。

    圖12 不同沖擊次數(shù)下夾芯梁各部分的能量吸收Fig.12 Energy absorption for different partsof the metal foam sandwich beam at different impact numbers

    夾芯梁能量的消耗主要分為兩部分,即彈性變形能和塑性變形能。彈性變形能可以恢復(fù),一部分將轉(zhuǎn)化為沖頭的動能,使沖頭以一定的速度反彈;另一部分則轉(zhuǎn)化為夾芯板的動能,使其在平衡位置附近發(fā)生彈性振動。從夾芯梁的變形能時程曲線(見圖11)可以看出:當(dāng)沖頭反彈之后,夾芯梁的塑性變形能波動非常小,塑性變形能的值基本趨于穩(wěn)定,即夾芯板的彈性振動非常小。因此,在本文的分析當(dāng)中,假設(shè)沖頭的反彈動能等于夾芯板的彈性變形能:

    式中:m為沖頭質(zhì)量,vi為沖擊速度,vr為反彈速度,?Ek為夾芯梁吸收的能量。

    如圖13(a)所示,沖頭的反彈速度隨著沖擊次數(shù)的增加而增大,且可以發(fā)現(xiàn)從第8次沖擊開始,反彈速度的增長速率不斷減小。利用式(1)所示的動能定理,可以近似地由初始沖擊速度和反彈速度計算夾芯梁吸收的能量。如圖13(b)所示,夾芯梁吸收的能量隨著沖擊次數(shù)的增加而減小,而其存儲的彈性能則隨著沖擊次數(shù)的增大而增大,其增長速率先增大后減小,彈性能的值逐漸趨于穩(wěn)定。

    圖13 不同沖擊次數(shù)下的回彈特性Fig.13 Rebound characteristics at different impact numbers

    為了分析泡沫金屬夾芯梁的能量吸收特性,在此定義能量吸收效率Ea和回彈因數(shù)Rc:

    式中:Ei為沖擊能量,Er為反彈能量。

    如圖14所示,夾芯梁的能量吸收效率隨著沖擊次數(shù)的增大而減小,且變化速率先增加后減小,其值在0.91與0.82之間。在多次沖擊之后,反彈能量積累量會不斷累積,因此在分析過程中不能忽略泡沫金屬夾芯梁的回彈效應(yīng)。從圖15可以看出,回彈因數(shù)隨著沖擊次數(shù)的增加而增大,但其增長速率先增加后減小,最后逐漸趨于穩(wěn)定。即當(dāng)沖擊次數(shù)足夠大時,回彈因數(shù)趨于0.18。

    圖14 不同沖擊次數(shù)下的能量吸收效率Fig.14 Energy absorption efficiency at different impact numbers

    圖15 不同沖擊次數(shù)下的回彈因數(shù)Fig.15 Rebound coefficient at different impact numbers

    3 結(jié) 論

    利用非線性有限元軟件ABAQUS/Explicit,建立了泡沫金屬夾芯梁的數(shù)值分析模型,研究了泡沫金屬夾芯梁重復(fù)沖擊動態(tài)響應(yīng)和能量吸收特性,得到的結(jié)論如下。

    (1)泡沫金屬夾芯梁在重復(fù)沖擊過程中,其變形不斷累積。上下面板的最終撓度均隨著沖擊次數(shù)的增加而不斷增大,而增長速率不斷減小。夾芯梁跨中至邊界間的位移近似呈線性分布,夾芯梁產(chǎn)生整體變形的同時伴隨著局部凹陷,上面板主要出現(xiàn)局部凹陷和整體彎曲,而芯層則是局部壓縮,下面板表現(xiàn)為整體彎曲。

    (2)泡沫金屬夾芯梁在重復(fù)加卸載過程中,彈性加載剛度大于塑性加載剛度。前一次沖擊的彈性卸載剛度與下一次沖擊的彈性加載剛度幾乎相同,且加載剛度和卸載剛度均隨著沖擊次數(shù)的增加而不斷增大。

    (3)隨著沖擊次數(shù)的增加,上面板和芯層的能量吸收增量不斷減小,而下面板的能量吸收增量不斷增加,且最終均趨于穩(wěn)定。此外,泡沫金屬夾芯梁的塑性變形能增量逐漸減小,而夾芯梁的彈性變形能逐漸增大,但兩者的變化速率均先增加后減小?;貜椣禂?shù)隨著沖擊次數(shù)的增加不斷增大,當(dāng)沖擊次數(shù)較大時,其值趨于0.18。

    猜你喜歡
    撓度塑性面板
    基于應(yīng)變梯度的微尺度金屬塑性行為研究
    面板燈設(shè)計開發(fā)與應(yīng)用
    硬脆材料的塑性域加工
    Spontaneous multivessel coronary artery spasm diagnosed with intravascular ultrasound imaging:A case report
    鈹材料塑性域加工可行性研究
    MasterCAM在面板類零件造型及加工中的應(yīng)用
    模具制造(2019年4期)2019-06-24 03:36:50
    Photoshop CC圖庫面板的正確打開方法
    石英玻璃的熱輔助高效塑性域干磨削
    懸高測量在橋梁撓度快速檢測中的應(yīng)用
    收縮徐變在不同鋪裝時間下對連續(xù)梁橋長期撓度的影響
    崇明县| 腾冲县| 乌审旗| 淮安市| 山东省| 石渠县| 新宾| 什邡市| 固原市| 临潭县| 桦南县| 巴彦县| 漳浦县| 上饶市| 兴国县| 蒙山县| 阿拉善盟| 肇州县| 龙井市| 乌拉特后旗| 长海县| 隆林| 会东县| 临清市| 巴林左旗| 河北区| 定日县| 修水县| 突泉县| 湟源县| 桑植县| 双牌县| 阳西县| 安顺市| 东丽区| 石狮市| 远安县| 长武县| 贡觉县| 凤台县| 乐昌市|