• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      石英砂巖蠕變力學特性及長期強度研究

      2021-07-14 13:52:14楊帥東譚維佳方應學
      水力發(fā)電 2021年4期
      關鍵詞:關系法石英砂穩(wěn)態(tài)

      楊帥東,譚維佳,方應學

      (1.珠江水利委員會珠江水利科學研究院,廣東 廣州 510611;2.長安大學地質工程與測繪學院,陜西 西安 710054;3.江蘇水源綠化工程有限責任公司,江蘇 南京 210029)

      0 引 言

      隧道開挖過程中圍巖應力不斷加載和卸載,圍巖易發(fā)生蠕變變形,水的作用加劇了蠕變現(xiàn)象,對隧道開挖與運營造成潛在威脅[1-2]。因此,認識巖石蠕變力學特性以及正確判斷巖石長期強度對于隧道圍巖變形控制具有十分重要的意義,是隧道安全施工、運營及風險防控中不可缺少的環(huán)節(jié)[3- 4]。國內(nèi)外學者對巖石蠕變特性及長期強度的研究已有較多成果。楊淑碧等[5]開展沙溪廟組砂巖和泥巖單軸壓縮、剪切試驗,通過等時應力-應變法分別得到砂巖和泥巖的長期強度發(fā)現(xiàn),砂巖和泥巖蠕變發(fā)展受風化程度影響嚴重;王志儉等[6]進行紅層砂巖三軸壓縮蠕變試驗,通過分析蠕變應變率-時間關系判斷長期強度;Damjanac等[7]驗證了硬脆性巖石的長期強度閾值不低于瞬時強度的40%;武東生等[8]以灰?guī)r為研究對象開展三軸壓縮蠕變試驗,通過過渡蠕變法、等時應力-應變曲線法、穩(wěn)態(tài)蠕變速率與應力關系法對比分析長期強度;王軍保等[9]開展鹽巖單軸壓縮蠕變試驗,將傳統(tǒng)穩(wěn)態(tài)蠕變速率與應力關系法中通過擬合曲線取切線改為取拐點;劉新喜等[10]針對高應力區(qū)巖石黏塑性、黏彈性蠕變應變速率差異較大的特點,基于穩(wěn)態(tài)黏塑性蠕變速率與應力的擬合關系得到了高應力泥質粉砂巖長期強度。

      盡管有較多學者對巖石長期強度進行了分析研究,但對于不同方法之間的系統(tǒng)性對比分析及改進仍是目前關于長期強度的重點研究內(nèi)容。鑒于此,本文以某富水石英砂巖隧道為工程背景,開展石英砂巖在飽和狀態(tài)下的常規(guī)三軸壓縮和三軸壓縮蠕變試驗,以過渡蠕變法、等時應力-應變曲線法、穩(wěn)態(tài)蠕變速率與應力關系法、殘余應變法、強度與破壞時間關系法研究石英砂巖長期強度,總結分析差異性和適用性,提出改進方法,并比較長期流變強度指標和瞬時強度指標,為深刻認識石英砂巖長期強度及隧道工程長期穩(wěn)定性研究提供參考。

      1 巖石蠕變試驗及結果

      1.1 工程背景

      1.2 試驗設備及試樣制備

      蠕變試驗采用RLW-2000型三軸流變試驗系統(tǒng),可進行單軸、三軸壓縮及蠕變試驗。在隧道底板取新鮮石英砂巖,用保鮮膜包裹后運回試驗室進行加工。根據(jù)國際巖石力學學會(ISRM)推薦標準,將巖樣加工成直徑50 mm、高100 mm的圓柱樣,并將其斷面打磨平整。經(jīng)薄片鑒定,砂巖由碎屑物(84%)和膠結物(16%)組成,碎屑物主要成分為石英(71%)、長石(9%)、巖屑(3%)、微量礦物(1%)等,膠結物主要成分為方解石(15%)、綠泥石(1%)等。石英砂巖基本物理參數(shù)見表1。

      表1 巖石物理參數(shù)

      1.3 常規(guī)三軸壓縮試驗

      蠕變試驗開展前,先進行常規(guī)三軸壓縮試驗,將圍壓σ3設置為4MPa,另設8 MPa和12 MPa作為對比圍壓。試驗含水狀態(tài)設置為飽和狀態(tài),其含水率為3.47%。根據(jù)常規(guī)三軸壓縮試驗得到的飽和狀態(tài)下巖石偏應力-應變曲線見圖1。從圖1可知,石英砂巖在圍壓4、8 MPa和12 MPa下的三軸抗壓強度分別為29.98、41.52 MPa和56.21 MPa。

      圖1 偏應力-應變的關系

      1.4 蠕變試驗

      目前蠕變試驗的應力狀態(tài)主要分為單軸和三軸,應力路徑有逐級加載、逐級加卸載和逐漸卸載等。由于隧道圍巖處于三向應力狀態(tài),隧道開挖過程中圍巖應力不斷加載和卸載,故本文將蠕變試驗設置為分級加卸載的試驗方式,假定巖石長期強度是三軸抗壓強度的75%~80%[11],據(jù)此進行加卸載蠕變試驗各級偏應力水平的設置。將偏應力水平設為5級,分別為三軸抗壓強度的40%、50%、60%、70%和80%。應力路徑見圖2(以圍壓4 MPa為例)。蠕變試驗將應力加載速率設置為0.05 MPa/s,當達到目標值時,持續(xù)至少90 h以使蠕變變形趨于穩(wěn)定,然后以0.01 MPa/s的卸載速率將偏應力卸載至0(軸向應力等于圍壓),靜置20 h后繼續(xù)下1級加載,不斷循環(huán)直至巖石破壞。

      圖2 應力路徑

      1.5 蠕變試驗結果

      3種圍壓下的分級加卸載蠕變曲線見圖3。從圖3可看出,巖石在不同圍壓的蠕變曲線形態(tài)總體較為相似,主要差別體現(xiàn)在加速蠕變階段,圍壓4、8 MPa和12 MPa下最后1級加載蠕變破壞時間分別為58.57、24.41 h和19.98 h。

      圖3 蠕變試驗

      2 石英砂巖長期強度確定

      巖石的長期強度與巖體工程建設緊密關聯(lián),因此長期強度在巖石蠕變力學特性中備受關注。室內(nèi)試驗確定長期強度的方法主要有過渡蠕變法、等時應力-應變曲線法、穩(wěn)態(tài)蠕變速率與應力關系法、殘余應變法以及強度與破壞時間關系法。

      2.1 過渡蠕變法

      過渡蠕變法的核心思想是假設巖石材料內(nèi)部存在某一個應力閥值,當外部應力低于該閥值時巖石不會發(fā)生破壞,僅表現(xiàn)出衰減蠕變階段;而當外部應力高于該閥值時還表現(xiàn)有穩(wěn)態(tài)蠕變或加速蠕變行為。由此,將巖石材料在不發(fā)生穩(wěn)態(tài)蠕變行為所承受最大荷載視為長期強度[8]。判斷蠕變曲線斜率(蠕變速率)的變化規(guī)律找出長期強度是過渡蠕變法的主要觀察方式。對圖3進行Boltzmann線性疊加處理[12-13],得到分別加載蠕變曲線,見圖4。從圖4可看出,前4級偏應力水平下的曲線較為平緩,最后1級曲線較陡。以圍壓4 MPa為例,擬合前4級曲線,得到第1~4級曲線斜率分別為7.260 4×10-4、7.563 8×10-4、8.057 2×10-4和8.586 1×10-4,而第5級曲線斜率為0.055 9,遠遠大于前4級。根據(jù)過渡蠕變法思想認為,前4級均未發(fā)生穩(wěn)態(tài)蠕變。由此,將20.97 MPa定為石英砂巖圍壓4 MPa下的長期強度。同理,將29.06 MPa和39.35 MPa分別定為圍壓8 MPa和12 MPa下的長期強度。

      圖4 分別加載蠕變

      2.2 等時應力-應變曲線法

      等時應力-應變曲線法是對曲線彎折處取轉折點,從而確定長期強度。擇取圖4中1~81 h共9個時間節(jié)點的偏應力-應變數(shù)據(jù),繪制成等時偏應力-應變曲線,見圖5。從圖5可知,等時偏應力-應變曲線近似為曲線簇,曲線簇左側為線性段,右側為非線性段,且有逐漸向橫軸靠攏的發(fā)展趨勢。通過取右側非線性段曲線的拐點得到石英砂巖在不同工況下的長期強度,圍壓4、8 MPa和12 MPa的長期強度分別為19.84、27.59 MPa和37.21 MPa。

      圖5 等時偏應力-應變的關系

      2.3 穩(wěn)態(tài)蠕變速率與應力關系法

      當偏應力小于長期強度時,巖石材料還未屈服破壞,每1級加載級別下的穩(wěn)態(tài)蠕變速率基本保持恒定,穩(wěn)定在一個較小的接近于0的量值。當偏應力超過長期強度后,穩(wěn)態(tài)蠕變速率在該階段較快增長到一個較高的水準。取穩(wěn)態(tài)蠕變速率擬合曲線的切線與應力軸的交點,即為長期強度σs。分別利用冪函數(shù)和指數(shù)函數(shù)擬合穩(wěn)態(tài)蠕變速率與偏應力關系,繪制關系曲線,見圖6。從圖6可知,指數(shù)函數(shù)相較于冪函數(shù)擬合效果更好,相關性系數(shù)R2平均可達到0.998 2。通過指數(shù)函數(shù)擬合曲線的切線與橫軸的截距確定圍壓4 MPa下σs為19.05 MPa。同理,圍壓8 MPa和12 MPa下σs分別為26.89 MPa和34.92 MPa。

      圖6 穩(wěn)態(tài)蠕變速率與偏應力水平的關系

      2.4 殘余應變法

      在逐級加卸載蠕變試驗中,巖石隨著不斷的應力加卸載,損傷逐漸累積發(fā)展,該過程伴隨著產(chǎn)生不可逆的殘余變形,且殘余變形逐漸增加。當巖石內(nèi)部損傷累積至某一程度時,巖石損傷劣化程度急劇擴大,此時不可逆殘余變形增長速率在某一偏應力水平會出現(xiàn)明顯變化,表現(xiàn)出增速變化的突變點,這個突變點認為是長期強度。巖石加卸載蠕變過程中產(chǎn)生了瞬時應變、蠕變應變、卸載后的彈性恢復應變、滯后彈性恢復應變以及殘余變形,將任意時刻的軸向應變ε分解為[14]

      ε=εm+εc=εme+εmp+εce+εcp

      (1)

      式中,εm為彈性應變;εc為黏彈塑性應變;εme為瞬時彈性應變;εmp為瞬時塑性應變;εce為黏彈性應變;εcp為黏塑性應變。應變分離示意見圖7。

      圖7 應變分離示意

      巖石蠕變的殘余應變是指不可恢復的瞬時塑性應變εmp與黏塑性應變εcp之和,通過圖7所示的方法確定砂巖在屈服破壞前每1級加卸載等級中的殘余應變,繪制殘余應變隨偏應力變化的關系曲線,見圖8。從圖8可知,瞬時塑性應變、黏塑性性應變和殘余應變隨偏應力水平的提升而遞增,在殘余應變與偏應力關系曲線中選擇殘余應變的增長速率突變點,確定石英砂巖在3種圍壓下長期強度分別為17.99、24.91 MPa和33.73 MPa。

      圖8 殘余應變與偏應力關系

      2.5 強度與破壞時間關系法

      李良權等[15]發(fā)現(xiàn),巖石強度和破壞時間呈反相關。Aubertin[16]基于Charles law給出蠕變破壞時間與應力之間的關系表達式為

      (2)

      式中,tf為蠕變破壞時間;δ1為施加應力與損傷閾值的差值;δ2為施加應力與瞬時強度的差值;α1和β為與蠕變性質相關的參數(shù)。

      以圍壓4 MPa為例,蠕變破壞時間為58.9 h,施加應力為23.98 MPa,瞬時強度為29.98 MPa,損傷閾值(長期強度)通常被認為是材料損傷開始急劇累積的臨界值[17],這里取等時應力-應變曲線法確定的19.84 MPa。將以上參數(shù)代入式(2),基于最小二乘法的非線性擬合得到α1和β分別為0.003 6和7.28,由此繪制圍壓4 MPa下施加應力和瞬時強度比值與破壞時間的關系曲線,見圖9。從圖9可知,巖石蠕變過程中施加應力與破壞時間呈反相關,但該方法僅能分析施加應力和瞬時強度比值與破壞時間的關系,不能確定巖石長期強度。實際上,巖石蠕變變形過程中,應力作用導致巖石損傷累積,蠕變破壞時間受加載應力大小、損傷閾值和加載應力歷史的影響,存在較多不確定因素,且需要大量試驗數(shù)據(jù)支撐,故Aubertin[16]提出的方法在本文中不適用。

      圖9 施加應力和瞬時強度比值與破壞時間的關系

      Kachanov[18]提出蠕變條件下的損傷發(fā)展方程為

      (3)

      式中,D(t)為損傷變量;A和ν為材料參數(shù);σ為應力。對式(3)積分可得

      te=[A(ν+1)σν]-1

      (4)

      式中,te為蠕變破壞時間。由式(4)可知,首先要確定材料參數(shù)A和ν才能得到蠕變破壞時間te。根據(jù)分別加載蠕變曲線(圖4),圍壓4 MPa下石英砂巖的破壞偏應力為23.98 MPa,對應的te為58.57 h,基于最小二乘法的非線性擬合得到A和ν分別為5.42×10-22和13.29。將圍壓4 MPa下的5級偏應力荷載代入式(4),得到不同應力下石英砂巖蠕變破壞時間,偏應力11.99、14.99、17.99、20.97 MPa和23.98 MPa的蠕變破壞時間te分別為67.135 7、3.449 1、0.305 1、0.039 8 a和0.006 7 a,蠕變破壞時間隨著偏應力水平的遞增而降低。當偏應力持續(xù)為11.99 MPa時,石英砂巖發(fā)生蠕變破壞時間為67.135 7 a,對于一般砂巖隧道,其設計使用年限為50 a。從工程角度而言,當石英砂巖承受荷載削弱到一定程度時,可認為蠕變破壞時間無限大,這也符合巖石長期強度的基本思想。盡管通過Kachanov[18]提出的方法不能得到確切的長期強度值,但為長期強度的深刻認識提供一定參考。

      3 長期強度比較分析

      3.1 對比分析

      將過渡蠕變法、等時應力-應變曲線法、穩(wěn)態(tài)蠕變速率與應力關系法、殘余應變法這4種方法得到的長期強度與瞬時強度的比值進行對比,見表2。從表2可看出,通過過渡蠕變法確定的長期強度與瞬時強度比值在不同圍壓下皆為0.700,殘余應變法皆為0.600,這是由于這2種方法均是基于不同規(guī)律確定長期強度在某1級偏應力水平,故長期強度與瞬時強度比值在不同圍壓條件下保持一致。結合圖4發(fā)現(xiàn),過渡蠕變法確定本文石英砂巖長期強度為第4級偏應力水平,殘余應變法確定長期強度為第3級偏應力水平,而等時應力-應變曲線法、穩(wěn)態(tài)蠕變速率與應力關系法得到的長期強度介于第3~4級偏應力水平之間。

      表2 長期強度與瞬時強度的比值對比

      總體上,過渡蠕變法操作上較為簡單,只需要判斷穩(wěn)態(tài)蠕變和非穩(wěn)態(tài)蠕變的臨界點,然后擇取某1級應力水平作為長期強度。該方法存在一定弊端,由于巖石蠕變試驗采取梯度加卸載的方式,直接擇取應力水平只能得到長期強度的臨近值,加卸載級數(shù)越少,誤差越大。目前巖石蠕變試驗多以逐級增量加載為主,無法確定巖石的瞬時塑性和黏塑性變形,本文殘余應變法需確定巖石的不可逆塑性變形,對蠕變試驗設計和操作要求更高,且同樣存在只能得到長期強度臨近值的弊端。等時應力-應變曲線法操作上略復雜,需進一步處理分別加載蠕變曲線,得到等時應力-應變曲線,在曲線簇中取拐點即為長期強度。盡管本文石英砂巖等時應力-應變曲線拐點較為明顯,但不同種類、結構的巖石存在等時應力-應變曲線拐點不明確的現(xiàn)象,且取拐點的過程具有一定主觀和隨意性,該方法局限性較強。巖石外界應力低于屈服應力時,穩(wěn)態(tài)蠕變速率幾乎為0,穩(wěn)態(tài)蠕變速率與應力關系法僅需擬合不同偏應力水平下的穩(wěn)態(tài)蠕變速率值,根據(jù)不同擬合關系取右側曲線切線與應力軸的截距。該方法操作較簡單,可自行選擇相關性系數(shù)高的擬合曲線進而確定長期強度。假若巖石在最后1級應力水平下,穩(wěn)態(tài)蠕變發(fā)展不明顯,則會導致穩(wěn)態(tài)蠕變速率擬合曲線切點與橫軸截距偏小,相應地,長期強度值偏小。同樣,若應力橫坐標軸與穩(wěn)態(tài)蠕變速率縱坐標軸交叉點不是以0為起始點,也會導致長期強度值偏差。

      3.2 方法改進

      部分學者對長期強度求取方法進行了改進,王軍保等[9]將傳統(tǒng)穩(wěn)態(tài)蠕變速率與應力關系法中通過擬合曲線取切線改為取拐點,本質上與等時應力-應變曲線法取拐點類似,皆存在一定主觀和隨意性。

      為了克服傳統(tǒng)穩(wěn)態(tài)蠕變速率與應力關系法的缺陷,本文參考文獻[8-10]中對穩(wěn)態(tài)蠕變速率的分析,考慮到可操作性和客觀性,提出一種能較精確判斷巖石長期強度的方法。在穩(wěn)態(tài)蠕變速率值擬合關系曲線同時取左側和右側曲線切線的交叉點,交叉點橫坐標值即為長期強度,選擇擬合效果更好的指數(shù)函數(shù)擬合曲線,通過該方法確定長期強度,結果見圖10。值得注意的是,該過程僅擬合穩(wěn)態(tài)蠕變速率數(shù)據(jù)點,不考慮坐標原點。從圖10可知,石英砂巖圍壓4、8 MPa和12 MPa下的長期強度分別為19.63、27.65 MPa和37.07 MPa,與瞬時強度比值分別為0.655、0.666和0.659,改進后的穩(wěn)態(tài)蠕變速率與應力關系法得到的長期強度略大于改進前。

      圖10 穩(wěn)態(tài)蠕變速率與偏應力水平的關系

      由于本文等時應力-應變曲線的拐點較為明顯,通過該方法得到的長期強度相對誤差較小,具有較強參考性,而改進后穩(wěn)態(tài)蠕變速率與應力關系法確定的長期強度與等時應力-應變曲線法較為一致,證明改進后穩(wěn)態(tài)蠕變速率與應力關系法具有較強可行性。

      一般地,通過等時應力-應變曲線法判斷長期強度,其結果多略大于傳統(tǒng)穩(wěn)態(tài)蠕變速率與應力關系法[17,19-20]。本文改進后的穩(wěn)態(tài)蠕變速率與應力關系法確定的長期強度量值相比傳統(tǒng)方法略微增大,接近等時應力-應變曲線法結果,且改進方法減小了人為主觀判斷帶來的誤差,操作便捷,便于應用,由此本文推薦采用改進后的方法來求取長期強度。本文石英砂巖的長期強度折減較大,折減范圍為33.4%~34.5%,實際工程應考慮長期強度折減問題。

      3.3 長期流變強度指標與瞬時強度指標的對比

      巖石強度指標主要包含黏聚力c和內(nèi)摩擦角φ,一般可根據(jù)繪制不同圍壓條件下莫爾圓的公切線確定,通過下式可求得

      (5)

      (6)

      式中,σd為最大軸向應力與圍壓的最佳關系曲線在縱軸上的截距;m為斜率。最大軸向壓力為偏應力與圍壓之和,則圍壓4、8 MPa和12 MPa下的蠕變最大軸向應力分別為27.98、41.22 MPa和56.97 MPa,瞬時最大軸向應力分別為33.98、49.52 MPa和68.21 MPa,通過式(5)~(6)得到最大軸向應力-圍壓關系曲線,見圖11。

      圖11 最大軸向應力-圍壓的關系

      根據(jù)圖11分別得到巖石瞬時試驗和蠕變試驗的σd和m,代入式(5)~(6)計算得到長期流變強度指標黏聚力和內(nèi)摩擦角分別為3.43 MPa和34.57°,瞬時強度指標黏聚力和內(nèi)摩擦角分別為3.95 MPa和38.40°,長期流變強度指標黏聚力和內(nèi)摩擦角相比瞬時強度指標分別降低了13.16%和9.97%。長期流變強度指標相比瞬時強度指標存在一定衰減,實際巖體工程應用中應進行考慮。

      4 結 語

      本文以某富水環(huán)境下的石英砂巖隧道為研究背景,開展加卸載蠕變力學試驗,通過不同的方法求取石英砂巖長期強度,得出以下結論:

      (1)巖石蠕變過程中,伴隨不可逆殘余變形的累積,巖石內(nèi)部損傷不斷發(fā)展。長期強度可認為是材料損傷開始急劇累積的臨界值,確定巖石長期強度對巖體工程長期穩(wěn)定性分析及風險防控具有重要意義。

      (2)過渡蠕變法、等時應力-應變曲線法、穩(wěn)態(tài)蠕變速率與應力關系法、殘余應變法這4種方法得到的長期強度大體上一致。過渡蠕變法、殘余應變法只能根據(jù)應力梯度得到長期強度臨界值,存在較大弊端,可作為輔助判斷依據(jù)。等時應力-應變曲線法取拐點的過程具有一定主觀和隨意性,局限性較強。穩(wěn)態(tài)蠕變速率與應力關系法受巖石穩(wěn)態(tài)蠕變發(fā)展程度影響,確定的長期強度略小于等時應力-應變曲線法。

      (3)針對傳統(tǒng)穩(wěn)態(tài)蠕變速率與應力關系法的不足,通過同時在曲線左、右側取切點交點的方式改進傳統(tǒng)方法,確定石英砂巖在圍壓4、8 MPa和12 MPa下的長期強度分別為19.63、27.65 MPa和37.07 MPa,折減范圍為33.4%~34.5%。長期流變強度指標相比瞬時強度指標同樣存在弱化,實際工程中應考慮長期強度及長期流變強度指標的衰減。

      猜你喜歡
      關系法石英砂穩(wěn)態(tài)
      中華人民共和國對外關系法
      重慶與世界(2023年7期)2023-07-29 11:19:38
      高溫高壓下石英砂粒徑對油井水泥石性能的影響
      可變速抽水蓄能機組穩(wěn)態(tài)運行特性研究
      大電機技術(2022年3期)2022-08-06 07:48:24
      碳化硅復合包殼穩(wěn)態(tài)應力與失效概率分析
      電廠熱力系統(tǒng)穩(wěn)態(tài)仿真軟件開發(fā)
      煤氣與熱力(2021年4期)2021-06-09 06:16:54
      鳴律
      炎黃地理(2021年12期)2021-01-04 18:52:33
      元中期歷史劇對社會穩(wěn)態(tài)的皈依與維護
      中華戲曲(2020年1期)2020-02-12 02:28:18
      “與臺灣關系法”必輸給反分裂國家法(社評)
      石英砂巖礦浮選降鐵試驗研究
      北海某高嶺土尾礦中石英砂的選礦提純試驗
      金屬礦山(2013年6期)2013-03-11 16:54:05
      安平县| 漠河县| 金寨县| 阿拉善左旗| 河北区| 上饶市| 唐海县| 濮阳县| 合水县| 边坝县| 泾川县| 麟游县| 呼和浩特市| 抚宁县| 麦盖提县| 安福县| 休宁县| 平度市| 大竹县| 仙居县| 永清县| 吐鲁番市| 郁南县| 监利县| 盘锦市| 密云县| 贵阳市| 陆河县| 营口市| 修武县| 花垣县| 平阴县| 依安县| 拜泉县| 甘肃省| 包头市| 奉贤区| 巧家县| 卢氏县| 淳化县| 色达县|