• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems

    2021-06-30 00:08:40DUANYonghong段永紅WENRuiping溫瑞萍GAOXiang高翔
    應(yīng)用數(shù)學(xué) 2021年3期
    關(guān)鍵詞:高翔

    DUAN Yonghong(段永紅),WEN Ruiping(溫瑞萍),GAO Xiang(高翔)

    (1.Department of Mathematics,Taiyuan University,Taiyuan 030600,China;2.Key Laboratory for Engineering & Computing Science,Shanxi Provincial Department of Education,Taiyuan Normal University,Jinzhong 030619,China)

    Abstract:This paper constructs two scaled preconditioned splitting iterative methods for solving the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix.The formula of the optimal parameters and the spectral radius properties of the iteration matrix for the new methods are discussed in detail.Theoretical analyses show that the new methods are convergent under the reasonable conditions.Finally,the numerical experiments show the new methods to be feasible and effective.

    Key words:Complex symmetric matrix;Splitting iterative method;Convergence;Preconditioned

    1.Introduction

    We consider the iterative solution of the linear systems

    whereA=W+iTis a non-Hermitian but symmetric matrix(=AT)withW,T∈Rn×nare real and symmetric,andWbeing positive definite andTpositive semidefinite.Here and in the sequel,we use i(i2=-1)to denote the imaginary unit.LetA=M-Nbe a splitting of the matrixA∈Cn×n,i.e.,M∈Cn×nis nonsingular andN∈Cn×n.Then a fixed point iterative method induced by this splitting has the form

    wherex(0)∈Cn×nis a given starting vector.

    Such systems(1.1)arise in many important areas in a variety scientific computing and many important engineering applications.We mention just a few:

    ·diffuse optical tomography[1];

    ·FFT-based solution of certain time-dependent PDEs[2];

    ·structural dynamics[3];

    ·lattice quantum chromodynamics[4];

    ·molecular scattering[5];

    ·numerical computations in quantum mechanics[6].

    Recently,for solving the systems(1.1)efficiently,Axelsson and Kucherov[7]presented the real valued iterative methods,Benzi and Bertaccini[8]proposed the block preconditioning of real-valued iterative algorithms,BAI et al.[9-11]introduced the modified Hermitian and skew-Hermitian splitting(MHSS)as well as PMHSS iterative methods,ZHAO et al.[12]put forward a single-step MHSS method(SMHSS)and its variants with a flexible-shift(f-SMHSS).WEN et al.[13-14]suggested also some iterative methods and preconditioned iterative methods;Van der Vorst and Melissen[15],F(xiàn)reund[16],Bunse-Gerstner and Stver[17]presented the conjugate gradient-type methods;Clements and Weiland[18]introduced the Krylov-type methods.For details one can refer to[1-19]and the references given therein.

    Considering a preconditioned system of(1.1)

    wherePis a nonsingular matrix.The corresponding iterative method is given in general by

    wherePA=MP-NPis a splitting ofPA.

    Some techniques of preconditioning which improve the convergent rate of these iterative methods have been developed.For example,ZHENG et al.[19]introduced a double-step scale splitting(DSS)iterative method by using the scaled technique.By multiplying two parameters(α-i)and(1-iα)both sides of the linear systems(1.1),two equivalent systems can be respectively yielded,i.e.,(α-i)Ax=(α-i)band(1-iα)Ax=(1-iα)b,whereαis a real positive number.Then two fixed-point equations can be generated as follows,

    The authors of[19]extended the idea of the PMHSS iterative method[11],and suggested the following iterative scheme alternatively:

    Whereas the systems(1.3)and(1.4)are in fact two preconditioned systems(1.2)whenP=(α-i)IandP=(1-iα)I,that is to say,the preconditioned matrices are both the scalar matrices.The(1.3)and(1.4)are the same whenα=1.Therefore,the alternation of the DSS iterative method was only carried out in twins of two preconditioned systems.

    In order to solve a class of the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix.We focus on the scaled preconditioned splitting iterative methods generally and consider the systems(1.2)whenP=(α-βi)Iwithα,βare both real numbers in this study.Theoretical analyses show that the new methods are convergent under the reasonable conditions,and the optimal parameters and spectral radius properties of the iteration matrix are discussed.Finally,numerical results are presented to show their feasibility and efficiency.

    Here are some essential notations and preliminaries.As usual,we use Cn×nto denote then×ncomplex matrices set and Cnthen-dimensional complex vectors space;Rn×nto stand for then×nreal matrices set and Rnthen-dimensional real vectors space.X*represents the conjugate transpose of a matrix or a vectorX,andXTrepresents the transpose of a matrix or a vectorX.

    A matrixA∈Cn×n(A∈Rn×n)is called Hermitian(symmetric)positive definite(or semidefinite),denoted byA?0(or?0),if it is Hermitian(symmetric)and for allx∈Cn,x/0,x*Ax>0(x*Ax≥0)holds true.Re(x)and Im(x)represent the real and imaginary parts of a complex numberx,respectively.The spectral radius of a matrixAis denoted byρ(A).Σ(A)represents the spectrum set of a matrixAandκ(A)stands for the condition number of a matrixA.

    A=M-Nis called a splitting of a matrixAifM∈Cn×nis nonsingular.This splitting is called a convergent splitting ifρ(M-1N)<1.

    The rest of the paper is organized as follows.Two scaled preconditioned splitting iterative methods are proposed in Section 2 and their convergence are discussed.Numerical experiments and comparison to other methods are shown in Section 3.Finally,we end the paper with a concluding remark in Section 4.

    2.The Scaled Preconditioned Iterative Methods

    First of this section,the new methods were introduced for solving a class of the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix,as shown in(1.1).

    Letα,βbe both real numbers andαβ>0.Then we consider the preconditioned systems(1.2)whenP=(α-βi)I,that is the form as follows

    Method 2.1The scaled preconditioned splitting(SPS)iterative method

    LetMP=αW+βT,NP=i(βW-αT).Then the fixed point iterative method for solving the preconditioned system(1.2)can be written as

    Alternatively,the system(1.1)can be solved iteratively based on the splittingA=Mα,β-Nα,βwith

    And the iteration matrix is

    Method 2.2The flexible-scalar preconditioned splitting(f-SPS)iterative method

    In Method 2.1,α,βare both real numbers,and are given in advance.To significantly speed up the convergence of the iterative methods,it is desirable to determine or find an accurate approximation to the optimal values ofα,β.So we concentrate on the generalized SPS iterative method with the flexible-parameters.Again motivated by the optimization models[12],the scaled parametersαk,βk,k=1,2,···,are generated by the minimizing the residuals at each step.The method is then designed as follows:

    where

    withrk=b-Ax(k),k=0,1,···.

    Next,we discuss the optimal parameters and the spectral radius properties of the iteration matrix for the SPS Method,and study the convergence of Methods 2.1-2.2 addressed above.

    For the sake of simplicity,we can assume thatα,βare both positive real numbers without loss of generality.

    Theorem 2.1LetA=W+iT∈Cn×nbe a non-Hermitian but symmetric matrix(=AT)withW,T∈Rn×nare both symmetric,andWbeing positive definite andTpositive definite or semidefinite.Letα,βbe both positive real numbers andλminandλmaxbe the extremal eigenvalues of the matrixW-1T.Then the following statements hold true:

    (i)the spectral radiusρ(Tα,β)in the SPS method is not more than

    (ii)the sequence{x(k)}generated by Method 2.1 converges to the unique solutionx*of the linear systems(1.1)for any initial guess if

    In particular,the iterative scheme(2.1)is convergent ifα>β>0 for the case thatTis a positive semidefinite matrix.

    Proof(i)By(2.4)and direct calculations,we have

    In the last step,the equality holds becauseW-1Tis a symmetric positive definite matrix,and so is(αI+βW-1T)-1.

    It is known thatλis nonnegative.By introducing the following function:

    it is obtained thatf(λ)is a decreasing function with respect toλsincef′(λ)=Thus,the upper bound ofρ(Tα,β)given in(2.5)is obtained.

    (ii)For the case thatλmax>1,δα<1 is equivalent toby simple calculations.And thenρ(Tα,β)<1,so the sequence{x(k)}generated by Method 2.1converges to the unique solutionx*of the linear systems(1.1).

    For the case thatΣ(W-1T)?[0,1],thenλmax≤1 at that time.Thus,δα<1 is only equivalent toα>.

    It is well-known thatλmin=0 ifTis a positive semidefinite matrix.And thenρ(Tα,β)≤α-1,the iterative scheme(2.1)is convergent ifα>β.

    The proof is completed.

    Corollary 2.1Assume that the conditions of Theorem 2.1 are satisfied,then the optimal relation between two parametersα,βthat minimizes the upper boundδα,βof the spectral radiusρ(Tα,β)is given by

    ProofBy introducingτ=α/β,and

    we have

    Theng(τ)andh(τ)are respectively decreasing and increasing functions with respect toτ.It is deduced thatδα,βattains its minimum wheng(τ)=h(τ),which is equivalent to

    That is to say,(2.6)holds true.

    Theorem 2.2LetA=W+iT∈Cn×nbe a non-Hermitian but symmetric matrix(AA*,A=AT)withW,T∈Rn×nbe both symmetric,andWbeing positive definite andTpositive definite or semidefinite.Thenρ(Tα,β)<1 if for allx∈Cn,it holds that.

    ProofLetλbe an eigenvalue of the matrixTα,βandxthe corresponding eigenvector,i.e.,=λx,or equivalently,λ(αW+βT)x=i(βW-αT)x.Then we have from the assumptions that

    We obtainα>by direct calculations under|λ|<1.The theorem is proved.

    RemarkIt is implied that all eigenvalues of the matrixTα,βlie in linearly imaginary axis from Theorem 2.2.

    At the last of this section,a property of the matrixcan be given.

    Theorem 2.3LetA=W+iT∈Cn×nbe a non-Hermitian but symmetric matrix(A/A*,A=AT)withW,T∈Rn×nbe both symmetric,andWbeing positive definite andTpositive definite or semidefinite.Assume thatλis an eigenvalue of the matrixdefined by(2.2),then Re(λ)=1.

    ProofLetλbe an eigenvalue of the matrixandxthe corresponding eigenvector with‖x‖2=1.It is known that

    So,

    From assumptions,x*Wx>0,x*Tx≥0.Then we have Re(λ)=1.

    3.Numerical Experiments

    In this section,some test problems are provided to assess the feasibility and effectiveness of Methods 2.1-2.2 in terms of the numbers of iterations(denoted by IT),computing time(in seconds,denoted by CPU),and the residual(denoted by RES).The performance of Methods 2.1-2.2 in comparison with the MHSS,SMHSS and f-SMHSS methods mentioned in Section 1.All our tests are started from zero vector,and terminated when the current iteration satisfied‖RES‖≤10-6.The iteration fails if the iteration number is up to 8000.

    Example 3.1The linear systems(1.1)is of the form(W+iT)x=b,with

    whereV=tridiag(-1,2,-1)∈Rm×m,Vc=V-e11∈Rm×m,e1=(1,0,···,0)T∈Rm,em=(0,···,0,1)T∈Rm.We take the right-hand side vectorbto beb=(1+i)A1 with 1 being the vector of all entries equal to 1.

    Example 3.2The complex linear systems(1.1)is of the form

    whereωis the driving circular frequency,MandKare the inertia and stiffness matrices,CVandCHare the viscous and the hysteretic damping matrices,respectively.We takeCH=μKwithμa damping coefficient,M=I,CV=10I,K=I?Bm+Bm?I,withBm=1/h2·tridiag(-1,2,-1)∈Rm×m,and mesh sizeh=Hence,Kis ann×nblocktridiagonal matrix withn=m2.In addition,we setω=π,μ=0.02,and the right-hand vectorbto beb=(1+i)A1 with 1 being the vector of all entries equal to 1.Furthermore,we normalize the system by multiplying both sides throughout byh2.

    Example 3.3Consider the two-dimensional convection-diffusion equation

    on the unit square(0,1)×(0,1)with constant coefficientηand subject to Dirichlet type boundary condition.By applying the five-point centered finite difference discretization,we get the system of linear equations(1.1)with the coefficient matrix

    where the matricesT1,Vare given by

    with

    being the mesh Reynolds number,andh=1/(m+1)being the equidistant step-size.?denotes the Kronecker product.Moreover,the right-hand side vectorbis taken to beb=Ax*withx*=(1,1,...,1)T∈Rnbeing the exact solution.

    In these experiments,we test matrices,with sizes up to almost 270,000(n=m2=512×512=262,144).Our numerical comparisons are reported in Tables 1-3.What we can see here is that Methods 2.1-2.2 work rather well.Among them,Method 2.2 needs the fewest numbers of iterations while Method 2.1 requires the fewest computing time.How to give consideration to both and so get a better method?This will be one of the subjects of our future research.

    Table 3.1 The numerical results of these methods for Example 3.1

    Table 3.2 The numerical results of these methods for Example 3.2

    Table 3.3 The numerical results of these methods for Example 3.3

    4.Concluding Remark

    In this paper,we presented the scaled preconditioned splitting iterative methods generally for solving a class of complex symmetric linear systems,and studied the preconditioned systems when the preconditioned matrixP=(α-βi)I.Theoretical analyses show that the new methods are convergent under the reasonable conditions,and the formula between the optimal parametersα,βand the spectral radius properties of the iteration matrix are revealed in detail.Finally,we compared our algorithms against three existing ones from[10,12].Overall,numerical results are reported to show that Methods 2.1-2.2 are feasibility and efficiency comparably.

    AcknowledgmentsThe authors gratefully acknowledge the anonymous referees for their helpful comments and suggestions which greatly improved the original manuscript of this paper.

    猜你喜歡
    高翔
    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection?
    Recent results of fusion triple product on EAST tokamak
    《巧用對稱形》教學(xué)設(shè)計
    Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios
    我家是個動物園
    不如歸去
    牡丹(2017年22期)2017-08-05 19:24:49
    花山我的故鄉(xiāng)
    歌海(2016年5期)2016-11-15 09:29:30
    Research survey and review of the effect of Compound Danshen Dripping Pills on the uric acid metabolism of patients with coronary heart disease
    亚洲aⅴ乱码一区二区在线播放 | 深夜精品福利| 亚洲最大成人中文| 色播亚洲综合网| 男女下面进入的视频免费午夜 | 性少妇av在线| 国产黄a三级三级三级人| 亚洲电影在线观看av| 黄色a级毛片大全视频| 热99re8久久精品国产| 两个人视频免费观看高清| 久久精品国产清高在天天线| 亚洲精品中文字幕在线视频| 色播在线永久视频| 美女扒开内裤让男人捅视频| 午夜精品在线福利| 亚洲精品美女久久av网站| 国产av在哪里看| 亚洲色图av天堂| xxx96com| 欧美色欧美亚洲另类二区 | 中文字幕av电影在线播放| 国产成人av教育| 18禁美女被吸乳视频| avwww免费| 亚洲精品在线美女| 啦啦啦观看免费观看视频高清 | 在线观看免费视频日本深夜| 中文字幕久久专区| 大码成人一级视频| 如日韩欧美国产精品一区二区三区| 国产精品爽爽va在线观看网站 | 午夜福利影视在线免费观看| 色尼玛亚洲综合影院| 一级作爱视频免费观看| 91成年电影在线观看| 国产蜜桃级精品一区二区三区| 国产午夜福利久久久久久| 亚洲色图综合在线观看| 久久久国产成人精品二区| 一个人观看的视频www高清免费观看 | 搡老岳熟女国产| 亚洲精品在线美女| 亚洲自偷自拍图片 自拍| 精品久久久久久久久久免费视频| x7x7x7水蜜桃| 久久精品国产亚洲av高清一级| 亚洲视频免费观看视频| 久久久久亚洲av毛片大全| 黑人巨大精品欧美一区二区mp4| 一级毛片精品| 亚洲avbb在线观看| 欧美丝袜亚洲另类 | 好男人电影高清在线观看| 亚洲国产日韩欧美精品在线观看 | 女人被躁到高潮嗷嗷叫费观| 天天一区二区日本电影三级 | 一区二区日韩欧美中文字幕| 每晚都被弄得嗷嗷叫到高潮| 韩国av一区二区三区四区| 成人亚洲精品av一区二区| 久久这里只有精品19| 久久久久久久久久久久大奶| 久久精品影院6| 无遮挡黄片免费观看| 国产亚洲精品久久久久久毛片| 中文字幕高清在线视频| 国产高清videossex| 在线av久久热| 国产国语露脸激情在线看| 国产在线精品亚洲第一网站| x7x7x7水蜜桃| www.www免费av| 久久人妻福利社区极品人妻图片| 黄片小视频在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜在线中文字幕| 黄色成人免费大全| 搡老熟女国产l中国老女人| 日本三级黄在线观看| 三级毛片av免费| 一区二区三区精品91| cao死你这个sao货| 国产亚洲欧美在线一区二区| 亚洲视频免费观看视频| 色在线成人网| 日韩免费av在线播放| 国产视频一区二区在线看| netflix在线观看网站| 精品一区二区三区av网在线观看| 一卡2卡三卡四卡精品乱码亚洲| 三级毛片av免费| 给我免费播放毛片高清在线观看| 搡老妇女老女人老熟妇| 99国产精品免费福利视频| 午夜福利欧美成人| 大型黄色视频在线免费观看| 日韩中文字幕欧美一区二区| 欧美日韩瑟瑟在线播放| 亚洲av片天天在线观看| 日日夜夜操网爽| 久久热在线av| 伦理电影免费视频| 免费久久久久久久精品成人欧美视频| 老司机午夜十八禁免费视频| 久99久视频精品免费| 久久性视频一级片| 后天国语完整版免费观看| 18美女黄网站色大片免费观看| 日韩欧美免费精品| 91成年电影在线观看| 亚洲精品粉嫩美女一区| 91成年电影在线观看| 久久久久久大精品| 国产精品一区二区三区四区久久 | 热re99久久国产66热| 黄色a级毛片大全视频| 夜夜夜夜夜久久久久| 啪啪无遮挡十八禁网站| 99国产综合亚洲精品| 中文字幕另类日韩欧美亚洲嫩草| 变态另类丝袜制服| 深夜精品福利| 99热只有精品国产| 欧美黄色片欧美黄色片| 午夜福利一区二区在线看| 在线观看免费视频网站a站| 男人舔女人下体高潮全视频| 日本 av在线| 国产av一区二区精品久久| 亚洲片人在线观看| 亚洲片人在线观看| 国产一区二区三区综合在线观看| 深夜精品福利| 亚洲成av片中文字幕在线观看| 国产免费av片在线观看野外av| 久热这里只有精品99| 亚洲片人在线观看| 久久精品国产亚洲av香蕉五月| 国产精品香港三级国产av潘金莲| 一区福利在线观看| 午夜免费观看网址| 中文字幕人妻丝袜一区二区| 亚洲精品美女久久av网站| 亚洲中文av在线| 国产亚洲欧美在线一区二区| 国产一区二区激情短视频| 亚洲成av片中文字幕在线观看| 久久精品国产清高在天天线| 国产主播在线观看一区二区| 一区二区日韩欧美中文字幕| 日本精品一区二区三区蜜桃| 精品乱码久久久久久99久播| 欧美黄色片欧美黄色片| 亚洲男人天堂网一区| 88av欧美| 久久久国产成人精品二区| 日韩视频一区二区在线观看| or卡值多少钱| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久男人| 免费观看人在逋| 久久婷婷人人爽人人干人人爱 | 女性生殖器流出的白浆| or卡值多少钱| 日韩欧美免费精品| 久久亚洲真实| 老鸭窝网址在线观看| 久久精品91无色码中文字幕| 亚洲五月天丁香| 麻豆av在线久日| 亚洲人成电影观看| 久久午夜亚洲精品久久| 午夜精品在线福利| 国产欧美日韩综合在线一区二区| 午夜福利视频1000在线观看 | 一本大道久久a久久精品| 亚洲自偷自拍图片 自拍| 欧美精品啪啪一区二区三区| 日韩精品中文字幕看吧| 国语自产精品视频在线第100页| 久久国产精品影院| 精品国产超薄肉色丝袜足j| 国产一区二区三区视频了| 国产午夜福利久久久久久| 悠悠久久av| 久久人人精品亚洲av| 欧美在线黄色| 一二三四社区在线视频社区8| 久久久精品欧美日韩精品| 亚洲一码二码三码区别大吗| 在线观看免费日韩欧美大片| 久久这里只有精品19| 自拍欧美九色日韩亚洲蝌蚪91| 人人澡人人妻人| 国产熟女xx| 午夜两性在线视频| 最好的美女福利视频网| 免费少妇av软件| 十八禁网站免费在线| 淫秽高清视频在线观看| 国产高清有码在线观看视频 | 国产97色在线日韩免费| 老司机午夜福利在线观看视频| 精品久久久久久成人av| 最近最新中文字幕大全电影3 | 色精品久久人妻99蜜桃| 午夜精品在线福利| 最新美女视频免费是黄的| 757午夜福利合集在线观看| 手机成人av网站| 一二三四在线观看免费中文在| 日韩中文字幕欧美一区二区| 黄网站色视频无遮挡免费观看| 色哟哟哟哟哟哟| 嫩草影视91久久| 国产真人三级小视频在线观看| 国产精品香港三级国产av潘金莲| 88av欧美| 露出奶头的视频| 亚洲精品中文字幕一二三四区| 久久亚洲真实| 精品欧美国产一区二区三| 国产成人av教育| 女人被狂操c到高潮| 久久伊人香网站| xxx96com| 黑人操中国人逼视频| 亚洲最大成人中文| 亚洲精品在线美女| 人人妻人人澡欧美一区二区 | 久久香蕉激情| 女人精品久久久久毛片| 一卡2卡三卡四卡精品乱码亚洲| 日本一区二区免费在线视频| 国产色视频综合| 日韩有码中文字幕| 国产97色在线日韩免费| 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 欧美久久黑人一区二区| 欧美日韩黄片免| 在线免费观看的www视频| 亚洲人成电影观看| 午夜免费鲁丝| 老司机靠b影院| 国产黄a三级三级三级人| 欧美色视频一区免费| 久久人人爽av亚洲精品天堂| 久久香蕉精品热| 国产免费av片在线观看野外av| 这个男人来自地球电影免费观看| 欧美国产日韩亚洲一区| 久久精品亚洲熟妇少妇任你| 国产男靠女视频免费网站| or卡值多少钱| 夜夜夜夜夜久久久久| 欧美最黄视频在线播放免费| 精品国产超薄肉色丝袜足j| 黄色女人牲交| 高清黄色对白视频在线免费看| 91麻豆av在线| 搡老熟女国产l中国老女人| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 视频在线观看一区二区三区| 性欧美人与动物交配| 欧美日本视频| 欧美一区二区精品小视频在线| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| svipshipincom国产片| 99国产精品一区二区三区| 久久久久久免费高清国产稀缺| 久久狼人影院| 日日干狠狠操夜夜爽| 大码成人一级视频| 国产免费男女视频| 欧美日本亚洲视频在线播放| 亚洲熟妇熟女久久| 1024视频免费在线观看| 亚洲国产中文字幕在线视频| 香蕉久久夜色| 日韩精品青青久久久久久| 琪琪午夜伦伦电影理论片6080| 在线观看午夜福利视频| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| av在线播放免费不卡| 日本a在线网址| 成人亚洲精品av一区二区| 亚洲中文字幕一区二区三区有码在线看 | 99精品久久久久人妻精品| 国产片内射在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产精品麻豆| 国产色视频综合| 久久久久久久久免费视频了| 一边摸一边做爽爽视频免费| 在线永久观看黄色视频| 99国产精品一区二区蜜桃av| 精品熟女少妇八av免费久了| 精品国内亚洲2022精品成人| 亚洲精品中文字幕在线视频| av有码第一页| 黄色片一级片一级黄色片| 亚洲天堂国产精品一区在线| 国产精品98久久久久久宅男小说| 日韩精品免费视频一区二区三区| 国产成人精品无人区| svipshipincom国产片| 黄色成人免费大全| 国产精品久久久人人做人人爽| 日日干狠狠操夜夜爽| 精品无人区乱码1区二区| 热re99久久国产66热| 亚洲全国av大片| 嫩草影院精品99| 人人妻人人澡人人看| 久久精品国产综合久久久| 波多野结衣av一区二区av| 久久久久国内视频| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 亚洲第一青青草原| 久久午夜亚洲精品久久| 精品国产乱子伦一区二区三区| 悠悠久久av| 国产一区二区三区综合在线观看| 午夜精品在线福利| 高潮久久久久久久久久久不卡| 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区精品| 高清在线国产一区| 在线观看免费视频日本深夜| 在线观看免费视频网站a站| 色播亚洲综合网| 老司机福利观看| 欧美精品啪啪一区二区三区| 日本欧美视频一区| 久久亚洲真实| 久久伊人香网站| 老熟妇乱子伦视频在线观看| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 成年版毛片免费区| 国产男靠女视频免费网站| 国产精品精品国产色婷婷| 无人区码免费观看不卡| 看片在线看免费视频| 日韩欧美国产一区二区入口| 久久人妻福利社区极品人妻图片| 中文字幕色久视频| 成人国语在线视频| 亚洲欧美日韩高清在线视频| 18禁观看日本| av在线天堂中文字幕| 久久久国产成人精品二区| 天天一区二区日本电影三级 | 免费在线观看黄色视频的| 精品国产国语对白av| 97人妻精品一区二区三区麻豆 | 99久久久亚洲精品蜜臀av| 99在线人妻在线中文字幕| 国产麻豆成人av免费视频| 久久久久久久久中文| 精品人妻1区二区| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 欧美不卡视频在线免费观看 | 狂野欧美激情性xxxx| 亚洲最大成人中文| 亚洲国产毛片av蜜桃av| 免费观看人在逋| 国产av一区在线观看免费| 一区二区三区高清视频在线| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到| 精品高清国产在线一区| 亚洲国产精品sss在线观看| 又大又爽又粗| 日韩大尺度精品在线看网址 | 国产成人精品久久二区二区91| 多毛熟女@视频| 国产成人欧美| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 97人妻天天添夜夜摸| 欧美老熟妇乱子伦牲交| 麻豆国产av国片精品| 看片在线看免费视频| 欧美在线黄色| 成人手机av| 岛国视频午夜一区免费看| 少妇 在线观看| 日韩欧美三级三区| 人人妻人人澡人人看| 曰老女人黄片| 中文字幕人妻丝袜一区二区| 在线av久久热| 亚洲三区欧美一区| 亚洲精品国产精品久久久不卡| 久久精品国产99精品国产亚洲性色 | xxx96com| 涩涩av久久男人的天堂| 不卡一级毛片| 久久久久亚洲av毛片大全| 51午夜福利影视在线观看| 黄色丝袜av网址大全| 黄色 视频免费看| 99国产综合亚洲精品| 色av中文字幕| 身体一侧抽搐| 日韩欧美免费精品| 天堂影院成人在线观看| 嫩草影视91久久| 夜夜爽天天搞| 91精品国产国语对白视频| 男人舔女人下体高潮全视频| 真人一进一出gif抽搐免费| 国产精品乱码一区二三区的特点 | 极品人妻少妇av视频| 曰老女人黄片| 亚洲熟妇熟女久久| 性欧美人与动物交配| 亚洲精品在线美女| 国产成人精品久久二区二区91| 国产成人免费无遮挡视频| 久久精品国产亚洲av香蕉五月| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 亚洲成人国产一区在线观看| 日本vs欧美在线观看视频| 首页视频小说图片口味搜索| av片东京热男人的天堂| 一区二区三区激情视频| 满18在线观看网站| 看免费av毛片| av欧美777| 在线观看免费午夜福利视频| 色婷婷久久久亚洲欧美| 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| ponron亚洲| 亚洲av熟女| 国产精品电影一区二区三区| 在线观看免费视频网站a站| 亚洲人成伊人成综合网2020| 一边摸一边做爽爽视频免费| 久久中文字幕一级| 亚洲欧美日韩高清在线视频| 巨乳人妻的诱惑在线观看| 国产麻豆成人av免费视频| 一二三四在线观看免费中文在| 国产一区二区激情短视频| 免费久久久久久久精品成人欧美视频| 亚洲成人久久性| 亚洲av熟女| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 久久久国产欧美日韩av| 成人手机av| 色婷婷久久久亚洲欧美| 久久婷婷人人爽人人干人人爱 | 级片在线观看| 男女午夜视频在线观看| 男人操女人黄网站| 757午夜福利合集在线观看| АⅤ资源中文在线天堂| 成人18禁在线播放| 亚洲少妇的诱惑av| 久久九九热精品免费| 又黄又爽又免费观看的视频| 国产欧美日韩精品亚洲av| 亚洲精品国产色婷婷电影| 亚洲自拍偷在线| 青草久久国产| 欧美精品亚洲一区二区| 极品教师在线免费播放| 一级毛片女人18水好多| 一区二区日韩欧美中文字幕| 女警被强在线播放| 亚洲欧美激情在线| 满18在线观看网站| 亚洲国产日韩欧美精品在线观看 | 欧美久久黑人一区二区| 国产又爽黄色视频| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影| 国内毛片毛片毛片毛片毛片| 91精品国产国语对白视频| 老汉色av国产亚洲站长工具| 亚洲第一电影网av| 日韩精品免费视频一区二区三区| 亚洲成a人片在线一区二区| 亚洲成人久久性| 青草久久国产| 亚洲 欧美 日韩 在线 免费| 一级片免费观看大全| 欧美性长视频在线观看| 极品教师在线免费播放| 亚洲色图综合在线观看| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 国产精品亚洲一级av第二区| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 日韩视频一区二区在线观看| 黄色毛片三级朝国网站| 深夜精品福利| 中文字幕最新亚洲高清| 久久婷婷人人爽人人干人人爱 | 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 亚洲一区二区三区色噜噜| 亚洲精华国产精华精| 亚洲av五月六月丁香网| 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| 久久中文字幕人妻熟女| 精品卡一卡二卡四卡免费| 国产一区二区三区综合在线观看| 欧美大码av| 男女做爰动态图高潮gif福利片 | 高潮久久久久久久久久久不卡| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 嫩草影视91久久| 欧美日韩福利视频一区二区| 国产99白浆流出| 给我免费播放毛片高清在线观看| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| 咕卡用的链子| 淫秽高清视频在线观看| 欧美日本视频| 嫩草影院精品99| 一区二区三区国产精品乱码| 视频区欧美日本亚洲| 中文字幕久久专区| 亚洲成人国产一区在线观看| 国产片内射在线| 在线永久观看黄色视频| 午夜久久久在线观看| 亚洲第一av免费看| 成人国语在线视频| 波多野结衣av一区二区av| 性少妇av在线| 亚洲伊人色综图| 国产麻豆69| 神马国产精品三级电影在线观看 | 黄色 视频免费看| 91国产中文字幕| 久久香蕉精品热| 这个男人来自地球电影免费观看| 变态另类成人亚洲欧美熟女 | 欧美乱色亚洲激情| 国产精品自产拍在线观看55亚洲| 啦啦啦韩国在线观看视频| 99国产精品免费福利视频| 91老司机精品| 99热只有精品国产| 亚洲欧洲精品一区二区精品久久久| av欧美777| 欧美中文综合在线视频| 一区福利在线观看| xxx96com| 人人妻人人爽人人添夜夜欢视频| 九色国产91popny在线| 亚洲激情在线av| 制服人妻中文乱码| 国产91精品成人一区二区三区| 国产精品永久免费网站| 午夜福利一区二区在线看| 国产成人啪精品午夜网站| 97人妻精品一区二区三区麻豆 | 国产亚洲精品久久久久5区| 咕卡用的链子| 国内毛片毛片毛片毛片毛片| 咕卡用的链子| 两个人视频免费观看高清| 激情在线观看视频在线高清| 国产成人精品无人区| 99国产精品一区二区三区| 99国产精品一区二区蜜桃av| 侵犯人妻中文字幕一二三四区| 久久性视频一级片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品一区av在线观看| 久久久国产成人精品二区| 久热这里只有精品99| 正在播放国产对白刺激| 久久婷婷人人爽人人干人人爱 | 午夜a级毛片| 黄色丝袜av网址大全| 午夜福利,免费看| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 午夜两性在线视频|