• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Least Squares Estimator for Fractional Brownian Bridges of the Second Kind

    2021-06-30 00:09:06WANGYihan汪義漢
    應(yīng)用數(shù)學(xué) 2021年3期

    WANG Yihan(汪義漢)

    (School of Mathematics and Statistics,Anhui Normal University,Wuhu 241000,China)

    Abstract:In this paper,we study the least squares estimator for the drift of a fractional Brownian bridge of the second kind defined under the cases of parameter θ>0 and Hurst parameter H∈We obtain the consistency and the asymptotic distribution of this estimator using the Malliavin calculus.

    Key words:Fractional Brownian motion;Least squares estimator;Bridge

    1.Introduction

    LetT>0 be fixed.For allθ>0,the fractional bridge of the second kind{Xt}t∈[0,T)with initial value 0 is the solution of the stochastic differential equation(SDE)

    In the case when the processXhas Hlder continuous paths of Hurst indexwe can consider the following least squares estimator(LSE)proposed in[8],

    as estimator ofθ,where the integral with respect toXis a Young integral.Thus,thanks to(1.1),it is easily to obtain

    In the same setup as fractional Brownian process of the first kind,the parameter estimation forθhas been studied by using classical maximum likelihood method or least squares technique by Barczy and Pap[4],Tudor and Viens[13],Es-Sebaiy and Nourdin[6],HAN,SHEN and YAN[7],respectively.In this paper,we consider the least squares estimatorin the setup of the fractional bridge of the second kind.The key point is the Lemma 3.6 in Section 3.

    This paper is organized as follows.Section 2 deals with some preliminary results on stochastic integrals with respect to Malliavin derivative,Skorohod integral,Young integral.The consistency and the asymptotic distribution of the estimator are stated in Section 3.Almost all the proofs of the lemmas are provided in Section 4.

    2.Preliminaries

    We start by introducing the elements from stochastic analysis that we will need in the paper(see[1,11]).Letbe a fractional Brownian motion with the covariance function satisfying

    The crucial ingredient is the canonical Hilbert spaceH(is also said to be reproducing kernel Hilbert space)associated to the Gaussian process which is defined as the closure of the linear spaceEgenerated by the indicator functions 1[0,t],t∈[0,T]with respect to the scalar product

    Therefore,the elements of the Hilbert spaceHmay not be functions but distributions of negative order.Let|H|be the set of measurable functionsφon[0,T]such that

    It is not difficult to show that|H|is a Banach space with the norm‖φ‖|H|andEis dense in|H|.Forφ,?∈|H|,we have

    Notice that the above formula holds for any Gaussian process,i.e.,ifGis a centered Gaussian process with covarianceRinL1([0,T]2),then(see[10])

    ifφ,?are such thatdudv<∞.

    LetSbe the space of smooth and cylindrical random variables of the form

    wheren≥1,f:Rn→R is a-function such thatfand all its derivatives have the most polynomial growth,andφi∈H.For a random variableFof the form above we define its Malliavin derivative as theH-valued random variable

    By iteration,one can define themth derivativeDmF,which is an element ofL2(Ω;H?m),for everym≥2.

    For everyq≥1,letHqbe theqth Wiener chaos ofB,that is,the closed linear subspace ofL2(Ω)generated by the random variables{Hq(H(h)),h∈H,‖h‖H=1},whereHqis theqth Hermite polynomial.The mappingIq(h⊙q)=Hq(B(h))provides a linear isometry between the symmetric tensor productH⊙q(equipped with the modified normandHq.Specifically,for allf,g∈H⊙qandq≥1,one has

    On the other hand,it is well-known that any random variableZbelonging toL2(Ω)admits the following chaotic expansion:

    where the series converges inL2(Ω)and the kernelsfq,belonging toH⊙q,are uniquely determined byZ.For a detail account on Malliavin calculus we refer to[11].

    Letf,g:[0,T]R be Hlder continuous functions of orderμ∈(0,1)andν∈(0,1)respectively withμ+ν>1.Young[14]proved that the Riemman-Stiltjes(so called Young integral)exists.Moreover,ifμ=ν∈(1/2,1)andΦ:R2R is a function of classC1,the integralsandexist in the Young sense and the following formula holds:

    for 0≤t≤T.As a consequence,ifand(ut,t∈[0,T])is a process with the Holder paths of orderμ∈(1-H,1),the integralis well defined as a Young integral.Suppose moreover that for anyt∈[0,T],ut∈D1,2(|H|),and

    Then,by the same argument as in[1],we have

    In particular,whenφis a non-random Hlder continuous function of orderμ∈(1-H,1),we obtain

    Finally,we will use the following covariance of the increments of the noiseY(1)satisfying(see Proposition 3.5 in[9])

    where

    withCH=H2H-1(2H-1).Note that the kernelrHis symmetric.

    3.Asymptotic Behavior of the Least Squares Estimator

    In this section we study the strong consistence and the asymptotic distribution of the estimator ofθtast→T.Consider the following processes related to{Xt}t∈[0,T):

    and

    then,fort∈[0,T)and<H<1,

    and

    Using the equations(3.1)and(3.2),the LSEdefined in(1.3)can be written as

    ⅠConsistency of the Estimator LSE

    The following theorem proves the(strong)consistency of the LSEFor simplicity,throughout this paper,letcstand for a positive constant depending only on the subscripts and its value may be different in different appearances,andstands for convergence in distribution(resp.probability,almost surely).

    Theorem 3.1Letbe given by(1.3).Then

    In particular,whenθ<H,Hast→T.

    In order to prove Theorem 3.1 we need the following two lemmas,and their proofs are shown in Section 4.

    Lemma 3.1Supposeθ∈(0,H),H∈and letξtbe given by(3.1).ThenξT:=limt→T ξtexists inL2.Furthermore,for all?∈(0,H-θ)there exists a modification of{ξt}t∈[0,T]with(H-θ-?)-Hlder continuous paths,still denotedξin the sequel.In particular,ξt→ξTalmost surely ast→T.

    Lemma 3.2Assumeθ∈(0,H),H∈and letξtbe defined in(3.1).Then,ast→T:

    1)if 0<θ<,then

    2)ifθ=,then

    Proof of Theorem 3.1By the formula(2.6),we obtain that,for anyt∈[0,T),

    which yields

    Whenusing Lemma 3.2 and Lemma 3.1,we derive that

    ast→T,respectively.Hence,we obtain thatast→T.

    Whenθ=the equality(3.3)becomes

    Analogously,by Lemma 3.2 and Lemma 3.1,we also deduce that

    ast→T,respectively.Hence,we obtainast→T.

    ast→T,respectively.Hence,(3.4)yields thatθ-ast→T,that is,

    Finally,whenθ≥H,by(2.4)and(2.9),and using the elementary inequality|ex-ey|α≤|x-y|αfor-1<α<0,x≥0,y≥0 andxy,we compute that

    Hence,having a look at(3.3)and becauseast→T,we deduce thatast→T,that is,which implies the desired conclusion.

    ⅡAsymptotic Distribution of the Estimator LSE

    Theorem 3.2Assume<H<1 be fixed and setσ2=2H(2H-1)β(1-H,2H-1)withβ(a,b)=LetN~N(0,1)be independent ofY(1),and letC(1)stand for the standard Cauchy distribution.

    1)Ifθ∈(0,1-H)then,ast→T,

    2)Ifθ=1-Hthen,ast→T,

    3)Ifθ∈(1-H,)then,ast→T,

    4)Ifθ=then,ast→T,

    We also apply the following several lammas to prove Theorem 3.2,whose proofs refer to Section 4.

    Lemma 3.3Letθ∈(1-H,H),H∈and letηtbe defined in(3.2).ThenηT:=limt→T ηtexists inL2.Furthermore,there existsγ>0 such that{ηt}t∈[0,T]admits a modification withγ-Hlder continuous paths,still denotedηin the sequel.In particular,ηt→ηTalmost surely ast→T.

    Lemma 3.4Letηtbe defined in(3.2).For anyt∈[0,T),we have

    Lemma 3.5Letθ∈(0,1-H],H∈Then,ast→T,

    Lemma 3.6Fix<H<1 and setσ1=σ2=2H(2H-1)β(1-H,2H-1).LetFbe anyσ{Y(1)}-measurable random variable satisfyingP(F<∞)=1,and letN~N(0,1)be independent ofY(1).

    1)Ifθ∈(0,1-H)then,ast→T,

    2)Ifθ=1-Hthen,ast→T,

    Proof of Theorem 3.21)Assume thatθ∈(0,1-H).By Lemma 3.4,we have

    with clear definitions forat,bt,ct,etandft.Let us begin to consider the termsat,btandct.First,Lemma 3.6 yields

    whereN~N(0,1)is independent ofY(1),whereas Lemmas 3.1,3.2 imply thatandast→T,respectively.On the other hand,by combining Lemma 3.2 with Lemma 3.5,we can get thatandast→T,respectively.Let us summarize all these convergence together,we obtain that

    2)Assume thatθ=1-H.By similar arguments as in the first point above,the counterpart of decomposition is the following:

    By using Lemma 3.6 again,we obtain that,ast→T,

    whereN~N(0,1)is independent ofY(1),whereas Lemmas 3.1,3.2 also imply thatandast→T,respectively.On the other hand,by combining Lemma 3.2 with Lemma 3.5,we deduce thata ndast→T,respectively.By plugging all these convergence together we get that,ast→T,

    3)Assume thatθ∈(1-H,).Using the decomposition

    we immediately obtain that the third point of Theorem 3.2 follows from an obvious consequence of Lemmas 3.3,3.2.

    4)Assume thatθ=By(3.4),

    4.Proofs of Several Lemmas

    In this section,we present here the proofs of several lemmas used in Section 3.

    Proof of Lemma 3.1The idea mainly comes from Lemma 2.2 in[5]and Lemma 4 in[6].We give the main process as following for the completeness.In order to apply the Kolmogorov continuity criterium,we need to evaluate the mean square of the increment

    with 0≤s≤t<T.This is a Gaussian random variable and we will use the formula(2.4)in order to compute itsL2norm.The covariance of the processY(1)can be obtained from the formula(2.9).

    Recall that the elementary inequality|ex-ey|α≤|x-y|αholds for-1<α<0,x≥0,y≥0 and.For all 0≤s≤t<T,using(2.3)and(2.9),we have

    for some positive constantC(H,θ)depending onHandθ.By applying the Cauchy criterion,we deduce thatξT:=limt→T ξtexists inL2.Furthermore,because the processξis centered and Gaussian,for any positive integerm,we have

    Hence,formsufficiently large satisfying 2m(H-θ)-1>0,ξtareγ-Hder continuous for every=Therefore,the result follows directly from an application of the Kolmogorov continuity theorem.

    Proof of Lemma 3.21)By Lemma 3.1,using the-Hlder continuity ofξt,we have

    3)By Lemma 3.1,the processξis continuous on[0,T],hence integrable.Furthermore,becauseu→(T-u)2θ-2is integrable atu=T.The convergence in point 3 holds with a finite limit.

    Proof of Lemma 3.3Letβ1,β2∈(1-H,H)be fixed.We first show that there existsε=ε(β1,β2,H)>0 andc=c(β1,β2,H)>0 such that,for all 0≤s≤t<T,

    In fact,by means of the change of variables,we have

    ≤c(t-s)εfor someε∈(0,1∧(2H-β1)-β2).

    Therefore,the inequality(4.1)holds.

    Now,using(2.7),we shall separateηtinto two terms.Fort<T,

    Set

    The identity(4.2)becomes

    Therefore,by(2.5),we have

    Sinceψt-ψs∈H⊙2,we obtain that

    Notice the fact thatψt-ψsis symmetric,we easily get thatis upper bounded by a sum of integrals of the type

    withβ1,β2,β3,β4∈{θ,1-θ}.Therefore,by(4.1),there existsε>0 small enough andc>0 such that,for alls,t∈[0,T],

    On the other hand,for all 0≤s≤t<T,we obtain again that

    Thus,

    Second,ifθ=2H-1 then

    Thus,

    Third,ifθ<2H-1 then

    Thus,

    To summarize three cases above,there existsc>0 such that,for alls,t∈[0,T],

    Substituting(4.4)and(4.5)into(4.3)yields that there existsε>0 small enough andc>0 such that,for alls,t∈[0,T],

    By using the Cauchy criterion again,we obtain thatηT:=limt→T ηtexists inL2.Furthermore,becauseηt-ηs-E[ηt]+E[ηs]belongs to the second Wiener chaos ofY(1),the result follows directly from an application of the Kolmogorov continuity theorem.

    Proof of Lemma 3.4Lett∈[0,T)be fixed.By(2.6),v)-θdY(1)vbecomes

    Furthermore,it follows from(2.7)that

    Hence,the result follows.

    Proof of Lemma 3.5PutNotice thatφt∈|H|⊙2andwe obtain that

    Sinceθ≤1-H,we obtain that

    Furthermore,since 2H+2θ-3<-1 andθ∈(0,1-H],we obtain that

    Hence,ifθ<1-H,then

    Assume now thatθ=1-H,then

    Thus,by combining all the previous cases,we obtain that lim supt→Tis finite,which completes the proof.

    Proof of Lemma 3.61)We will use the approach from the proof of Lemma 7 in[6].It is enough to prove that for anym≥1 and anys1,...,sm∈[0,T),we shall prove that,ast→T,

    where,for|T-t|sufficiently small,

    with

    Thus,

    On the other hand,by(2.9)we have,for anyv<t<T,

    2)By(2.9),for anyt∈[0∨(T-1),T)and for|T-t|sufficiently small,we have

    On the other hand,fixv∈[0,T),by(2.9),for allt∈[0∨(T-1),T),we have

    whereσ2=2H(2H-1)β(1-H,2H-1).Therefore,the same reasoning as in point 1 allows to go from(4.7)to(3.6).The proof of the lemma is concluded.

    AcknowledgmentsWe thank Professor Shen Guangjun for his guidance,including valuable suggestions and remarks and for his fund support.

    久久精品国产亚洲av香蕉五月| 美女国产高潮福利片在线看| 麻豆国产av国片精品| 久热这里只有精品99| 97碰自拍视频| 免费av中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲综合一区二区三区_| 亚洲视频免费观看视频| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区三区在线| 高清欧美精品videossex| 啦啦啦在线免费观看视频4| 熟女少妇亚洲综合色aaa.| 国产单亲对白刺激| 亚洲欧美一区二区三区黑人| 精品国产亚洲在线| 人人澡人人妻人| 丰满人妻熟妇乱又伦精品不卡| 久久久国产成人精品二区 | 亚洲人成电影免费在线| 日本精品一区二区三区蜜桃| 午夜精品国产一区二区电影| 久久久久久免费高清国产稀缺| 欧美日韩瑟瑟在线播放| 99久久99久久久精品蜜桃| xxxhd国产人妻xxx| 男女高潮啪啪啪动态图| 色婷婷av一区二区三区视频| 国产国语露脸激情在线看| 三级毛片av免费| 桃红色精品国产亚洲av| 中文字幕人妻丝袜一区二区| 老熟妇仑乱视频hdxx| 亚洲欧美精品综合一区二区三区| 欧美精品亚洲一区二区| 757午夜福利合集在线观看| 亚洲中文日韩欧美视频| 可以免费在线观看a视频的电影网站| 日本免费a在线| 日韩成人在线观看一区二区三区| 久久人人97超碰香蕉20202| 亚洲国产欧美日韩在线播放| 色婷婷久久久亚洲欧美| 人人澡人人妻人| 99热国产这里只有精品6| 在线永久观看黄色视频| a级毛片黄视频| 最近最新中文字幕大全电影3 | 久久这里只有精品19| www.www免费av| 日韩视频一区二区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 黑人巨大精品欧美一区二区mp4| 精品国产乱子伦一区二区三区| 欧美日韩福利视频一区二区| 免费高清在线观看日韩| 日韩精品免费视频一区二区三区| 夜夜看夜夜爽夜夜摸 | 亚洲成人免费电影在线观看| 一区二区三区国产精品乱码| 亚洲国产中文字幕在线视频| 亚洲人成电影免费在线| 亚洲黑人精品在线| 女生性感内裤真人,穿戴方法视频| 国产精品久久久av美女十八| 国产亚洲精品久久久久久毛片| 黑人操中国人逼视频| 国内久久婷婷六月综合欲色啪| 青草久久国产| 天天添夜夜摸| 日本精品一区二区三区蜜桃| 国产亚洲精品久久久久久毛片| 一级a爱视频在线免费观看| 水蜜桃什么品种好| 黄网站色视频无遮挡免费观看| 久久青草综合色| 久久久国产一区二区| 欧美日韩福利视频一区二区| 成人黄色视频免费在线看| 99香蕉大伊视频| 热99re8久久精品国产| www.www免费av| 中亚洲国语对白在线视频| av网站免费在线观看视频| a级毛片在线看网站| 日韩大码丰满熟妇| 淫秽高清视频在线观看| 精品一区二区三区视频在线观看免费 | 亚洲av成人av| 日韩三级视频一区二区三区| 国产xxxxx性猛交| 亚洲三区欧美一区| 亚洲专区国产一区二区| 成人影院久久| 免费一级毛片在线播放高清视频 | 制服人妻中文乱码| 国产97色在线日韩免费| www国产在线视频色| 日本三级黄在线观看| 亚洲avbb在线观看| 女人被狂操c到高潮| 亚洲第一欧美日韩一区二区三区| 高清av免费在线| 级片在线观看| 国产精品一区二区免费欧美| 国产高清videossex| 久久九九热精品免费| 亚洲aⅴ乱码一区二区在线播放 | 黄色 视频免费看| 亚洲va日本ⅴa欧美va伊人久久| 99精品在免费线老司机午夜| 在线国产一区二区在线| 性少妇av在线| 欧美人与性动交α欧美精品济南到| 亚洲精华国产精华精| 久久人妻熟女aⅴ| 亚洲人成77777在线视频| 嫩草影院精品99| 女生性感内裤真人,穿戴方法视频| 国内毛片毛片毛片毛片毛片| 最近最新免费中文字幕在线| 久久人妻熟女aⅴ| 国产亚洲欧美在线一区二区| 午夜a级毛片| 国产野战对白在线观看| 纯流量卡能插随身wifi吗| 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦在线免费观看视频4| 国产精品美女特级片免费视频播放器 | 99精品欧美一区二区三区四区| avwww免费| 天天躁狠狠躁夜夜躁狠狠躁| 黑人巨大精品欧美一区二区蜜桃| 午夜视频精品福利| 国产亚洲av高清不卡| 亚洲国产精品合色在线| 91九色精品人成在线观看| 窝窝影院91人妻| 一级毛片高清免费大全| 亚洲男人的天堂狠狠| 欧美中文综合在线视频| 国产精品 欧美亚洲| 日日夜夜操网爽| 真人做人爱边吃奶动态| 国产在线精品亚洲第一网站| 高清在线国产一区| 午夜久久久在线观看| 国产99久久九九免费精品| 精品国内亚洲2022精品成人| 久久青草综合色| 亚洲av片天天在线观看| 中文字幕精品免费在线观看视频| 一边摸一边抽搐一进一出视频| 一区二区三区激情视频| 国产伦一二天堂av在线观看| 午夜免费鲁丝| 国产精品永久免费网站| 国产av一区在线观看免费| 制服人妻中文乱码| 香蕉久久夜色| 国产精品亚洲一级av第二区| 日韩成人在线观看一区二区三区| 99久久人妻综合| 成人av一区二区三区在线看| 精品一区二区三区视频在线观看免费 | 亚洲欧美一区二区三区久久| 精品久久久精品久久久| 99久久久亚洲精品蜜臀av| 精品一品国产午夜福利视频| 天天添夜夜摸| 这个男人来自地球电影免费观看| 久久午夜亚洲精品久久| 一进一出抽搐动态| 国内久久婷婷六月综合欲色啪| 伦理电影免费视频| 欧美最黄视频在线播放免费 | ponron亚洲| 精品一区二区三卡| 中文字幕人妻丝袜一区二区| 国产精品爽爽va在线观看网站 | 国产成人精品久久二区二区91| 欧美日韩亚洲综合一区二区三区_| 丝袜人妻中文字幕| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| 国产精品秋霞免费鲁丝片| 午夜老司机福利片| 国产97色在线日韩免费| 欧洲精品卡2卡3卡4卡5卡区| 国产激情久久老熟女| 怎么达到女性高潮| 日韩精品中文字幕看吧| 老司机在亚洲福利影院| 水蜜桃什么品种好| 亚洲熟女毛片儿| 欧美亚洲日本最大视频资源| 欧美一区二区精品小视频在线| 自线自在国产av| 自线自在国产av| 久久人人精品亚洲av| 国产xxxxx性猛交| 80岁老熟妇乱子伦牲交| 国产欧美日韩一区二区三| 日韩欧美一区二区三区在线观看| 久久99一区二区三区| 久久久久久久精品吃奶| 极品教师在线免费播放| 国产精品av久久久久免费| 天堂中文最新版在线下载| 亚洲国产欧美一区二区综合| 久久精品亚洲av国产电影网| 女人精品久久久久毛片| 成人18禁在线播放| 亚洲 欧美一区二区三区| 9热在线视频观看99| 老熟妇仑乱视频hdxx| 国产蜜桃级精品一区二区三区| 新久久久久国产一级毛片| 久久国产乱子伦精品免费另类| 国产精品香港三级国产av潘金莲| 一二三四社区在线视频社区8| 亚洲精品中文字幕一二三四区| 人人妻人人澡人人看| 久久午夜亚洲精品久久| 女警被强在线播放| 国产精品秋霞免费鲁丝片| 美女扒开内裤让男人捅视频| 又黄又粗又硬又大视频| 色哟哟哟哟哟哟| 国产91精品成人一区二区三区| 国产精品爽爽va在线观看网站 | 女生性感内裤真人,穿戴方法视频| 女性生殖器流出的白浆| 亚洲一区二区三区欧美精品| 久久久久久亚洲精品国产蜜桃av| 国产在线精品亚洲第一网站| 在线观看免费高清a一片| 成人精品一区二区免费| 高清欧美精品videossex| 国产高清视频在线播放一区| 国产av一区二区精品久久| а√天堂www在线а√下载| 一进一出抽搐动态| 午夜免费鲁丝| 身体一侧抽搐| 黄色女人牲交| 亚洲人成77777在线视频| 久久九九热精品免费| 国产av一区在线观看免费| 日日爽夜夜爽网站| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 午夜福利在线免费观看网站| 操出白浆在线播放| 亚洲情色 制服丝袜| 757午夜福利合集在线观看| 一进一出抽搐gif免费好疼 | 一级片免费观看大全| 欧美日韩福利视频一区二区| 黑人欧美特级aaaaaa片| 国产精品1区2区在线观看.| 国产精品1区2区在线观看.| 伊人久久大香线蕉亚洲五| 成人三级黄色视频| 国产精品一区二区三区四区久久 | 美女 人体艺术 gogo| 正在播放国产对白刺激| 久久久久国产一级毛片高清牌| 精品无人区乱码1区二区| www国产在线视频色| 色尼玛亚洲综合影院| xxxhd国产人妻xxx| 欧美国产精品va在线观看不卡| 欧美成人午夜精品| 国产亚洲精品第一综合不卡| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 老鸭窝网址在线观看| 一进一出抽搐动态| 国内久久婷婷六月综合欲色啪| 一区二区三区国产精品乱码| 国产精品免费视频内射| 99久久人妻综合| 国产一卡二卡三卡精品| 免费看十八禁软件| 人妻久久中文字幕网| 久久人人爽av亚洲精品天堂| 又黄又爽又免费观看的视频| avwww免费| 免费搜索国产男女视频| 午夜久久久在线观看| 曰老女人黄片| 一区福利在线观看| 啦啦啦 在线观看视频| 日韩高清综合在线| 精品午夜福利视频在线观看一区| 国产成+人综合+亚洲专区| 成人国产一区最新在线观看| 亚洲精品美女久久久久99蜜臀| 高清毛片免费观看视频网站 | 久久久国产一区二区| 韩国av一区二区三区四区| 成年版毛片免费区| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 国产精品99久久99久久久不卡| 午夜福利欧美成人| 亚洲精华国产精华精| 国产片内射在线| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人下体高潮全视频| 精品国产乱码久久久久久男人| 交换朋友夫妻互换小说| 精品熟女少妇八av免费久了| 日韩大尺度精品在线看网址 | 制服人妻中文乱码| 一区二区三区激情视频| 亚洲久久久国产精品| 真人一进一出gif抽搐免费| 亚洲欧美日韩高清在线视频| 777久久人妻少妇嫩草av网站| 免费在线观看视频国产中文字幕亚洲| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 久久香蕉国产精品| 国产一区二区三区在线臀色熟女 | 国产亚洲欧美精品永久| 在线观看舔阴道视频| 亚洲成人精品中文字幕电影 | 欧美色视频一区免费| 丰满人妻熟妇乱又伦精品不卡| 少妇 在线观看| 久久久久性生活片| 久久中文看片网| 色播亚洲综合网| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩综合久久久久久 | 99热精品在线国产| 日韩欧美 国产精品| 波多野结衣高清作品| 嫩草影院入口| 亚洲欧美精品综合久久99| 在线观看舔阴道视频| 欧美一区二区精品小视频在线| 日韩欧美三级三区| 欧美成人一区二区免费高清观看| 成年女人毛片免费观看观看9| 免费人成在线观看视频色| 亚洲成人免费电影在线观看| 亚洲成人中文字幕在线播放| 国产一区二区三区在线臀色熟女| 麻豆国产av国片精品| 九色国产91popny在线| 免费av不卡在线播放| 久久精品国产自在天天线| 18禁在线播放成人免费| 欧美xxxx性猛交bbbb| 午夜视频国产福利| 国产亚洲精品久久久久久毛片| 男女做爰动态图高潮gif福利片| 欧美成人一区二区免费高清观看| 国产又黄又爽又无遮挡在线| av专区在线播放| 国产高清三级在线| 在线观看舔阴道视频| 人妻夜夜爽99麻豆av| 亚州av有码| 能在线免费观看的黄片| 91在线观看av| 在线观看一区二区三区| 嫁个100分男人电影在线观看| 免费人成在线观看视频色| 午夜影院日韩av| 性插视频无遮挡在线免费观看| 最近最新中文字幕大全电影3| 九九在线视频观看精品| 亚洲熟妇中文字幕五十中出| 热99re8久久精品国产| 人妻制服诱惑在线中文字幕| 他把我摸到了高潮在线观看| 成人性生交大片免费视频hd| 日韩欧美在线乱码| 2021天堂中文幕一二区在线观| 欧美精品国产亚洲| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 91字幕亚洲| 欧美极品一区二区三区四区| 欧美区成人在线视频| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产 | 蜜桃亚洲精品一区二区三区| 少妇熟女aⅴ在线视频| www.色视频.com| 久久九九热精品免费| 99热这里只有是精品50| 亚洲中文字幕日韩| 久久久久久大精品| 亚洲成a人片在线一区二区| 欧美潮喷喷水| 欧美日本亚洲视频在线播放| 嫩草影院入口| 日日摸夜夜添夜夜添小说| 久久国产乱子免费精品| 嫩草影院入口| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 午夜福利在线观看吧| 丁香六月欧美| 日韩欧美国产一区二区入口| 偷拍熟女少妇极品色| 免费黄网站久久成人精品 | 最近中文字幕高清免费大全6 | 毛片女人毛片| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 综合色av麻豆| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 日本黄色视频三级网站网址| 波多野结衣高清作品| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| xxxwww97欧美| 亚洲av二区三区四区| 国产老妇女一区| 久久99热这里只有精品18| 禁无遮挡网站| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 啪啪无遮挡十八禁网站| 成人一区二区视频在线观看| 亚洲精品在线观看二区| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 两个人视频免费观看高清| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 国产精品久久久久久人妻精品电影| 啦啦啦观看免费观看视频高清| 自拍偷自拍亚洲精品老妇| 欧美在线一区亚洲| 少妇的逼水好多| av欧美777| 免费搜索国产男女视频| 国产精品电影一区二区三区| 国产不卡一卡二| 国产欧美日韩一区二区精品| 国内精品一区二区在线观看| 天堂动漫精品| 蜜桃亚洲精品一区二区三区| 不卡一级毛片| 中文字幕熟女人妻在线| 午夜福利成人在线免费观看| 永久网站在线| 中文字幕熟女人妻在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一区av在线观看| 亚洲成av人片免费观看| 成人国产综合亚洲| or卡值多少钱| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区 | 国产高清激情床上av| 午夜精品在线福利| 欧美不卡视频在线免费观看| 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 欧美日韩乱码在线| 日日夜夜操网爽| 亚洲片人在线观看| 99久久精品一区二区三区| 在线观看一区二区三区| 亚洲欧美日韩高清专用| 天天一区二区日本电影三级| 色综合站精品国产| 色尼玛亚洲综合影院| 国产精品久久久久久亚洲av鲁大| 久久午夜福利片| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 国产av一区在线观看免费| 亚洲乱码一区二区免费版| 国产淫片久久久久久久久 | 黄色日韩在线| 综合色av麻豆| 老女人水多毛片| 人人妻人人澡欧美一区二区| 久久性视频一级片| h日本视频在线播放| 美女xxoo啪啪120秒动态图 | 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 色视频www国产| 在线天堂最新版资源| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 自拍偷自拍亚洲精品老妇| 成年人黄色毛片网站| 内射极品少妇av片p| 国产av不卡久久| 日韩有码中文字幕| av天堂中文字幕网| 51午夜福利影视在线观看| 丁香六月欧美| 深夜a级毛片| 99热6这里只有精品| ponron亚洲| a在线观看视频网站| 国产黄片美女视频| 日韩欧美免费精品| 高清在线国产一区| 欧美又色又爽又黄视频| 禁无遮挡网站| 白带黄色成豆腐渣| 国产精品自产拍在线观看55亚洲| 十八禁国产超污无遮挡网站| 日韩成人在线观看一区二区三区| 欧美色视频一区免费| 黄色配什么色好看| 九九热线精品视视频播放| 国产 一区 欧美 日韩| 欧美在线黄色| 日韩 亚洲 欧美在线| 夜夜看夜夜爽夜夜摸| 欧美成人性av电影在线观看| 国产在线男女| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 免费看a级黄色片| 国产真实乱freesex| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 人人妻人人看人人澡| 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 悠悠久久av| 一级毛片久久久久久久久女| 天堂影院成人在线观看| 亚洲美女黄片视频| 亚洲av熟女| 日韩欧美在线乱码| 国产高清视频在线观看网站| 中文字幕免费在线视频6| 国产三级中文精品| 国产欧美日韩一区二区精品| 成年女人看的毛片在线观看| 99riav亚洲国产免费| 国产黄片美女视频| 亚洲黑人精品在线| 少妇高潮的动态图| 欧美成人性av电影在线观看| 特级一级黄色大片| 中文字幕熟女人妻在线| 国产激情偷乱视频一区二区| 国产成人福利小说| 精品人妻一区二区三区麻豆 | 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 久久亚洲精品不卡| 女人被狂操c到高潮| 成人毛片a级毛片在线播放| 男人和女人高潮做爰伦理| 国产精品一区二区性色av| 午夜精品在线福利| 国产精品综合久久久久久久免费| av女优亚洲男人天堂| 99久久久亚洲精品蜜臀av| 成人性生交大片免费视频hd| 成人国产一区最新在线观看| 午夜激情福利司机影院| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区精品| 不卡一级毛片| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 一进一出抽搐动态| 亚洲 国产 在线| 日韩亚洲欧美综合| 国产一级毛片七仙女欲春2| 在现免费观看毛片| ponron亚洲| 免费在线观看成人毛片| 中文字幕av成人在线电影| 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 亚洲成a人片在线一区二区| 亚洲自拍偷在线| 亚洲精品456在线播放app | 成人av一区二区三区在线看| 国产人妻一区二区三区在| 动漫黄色视频在线观看| 国产亚洲精品久久久com| 999久久久精品免费观看国产| 麻豆成人午夜福利视频| 日韩欧美国产一区二区入口| 久久久国产成人精品二区| 国产一区二区在线观看日韩| 日韩欧美在线二视频| 高清日韩中文字幕在线| 精品一区二区三区av网在线观看| 哪里可以看免费的av片| av专区在线播放| a级毛片a级免费在线| 韩国av一区二区三区四区|