• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative Evaluation of the Larval Density of Sea Potato Acaudina spp. with Mitochondrial Molecular Marker

    2021-06-25 11:16:10LIXiangWANGGuilinLIYunfanLIUWeiLUChaoGUOYuchenHUANGWenWANGJinhuiandDONGBo
    Journal of Ocean University of China 2021年3期

    LI Xiang, WANG Guilin, LI Yunfan, LIU Wei, LU Chao,GUO Yuchen, HUANG Wen, WANG Jinhui, and DONG Bo, 2), *

    Quantitative Evaluation of the Larval Density of Sea Potatospp. with Mitochondrial Molecular Marker

    LI Xiang1), 2), #, WANG Guilin1), 2), #, LI Yunfan1), LIU Wei3), 4), LU Chao3), 4),GUO Yuchen3), 4), HUANG Wen3), 4), WANG Jinhui5), and DONG Bo1), 2), *

    1),,,266003,2),,266237,3),352100,4),200137,5),,200137,

    The sea potatospp. is a species of sea cucumber, belonging to the classunder Phylum. It becomes blooming recently in the East Sea of China, causing serious ecological problems. However, until now there are no molecular data for its larval identification and population genetic analysis. In this study, we firstly screened a mtDNA fragment and demonstrated that it was the species-specific molecular marker for the identification ofspp. We then developed a quantitative polymerase chain reaction (PCR)method to evaluate the larval density ofspp. based on this molecular probe. Utilizing this method, we examined 116 plankton samples collected in four seasons from 13 stations along the coastal region in Fujian province, China. The results showed that the high larval density was presented at stations 1, 2, and 3, which were near a quay in the coast. The larval density increased from April and reached the highest value in June and July, suggesting temperature might be the main environmental factor on the effects of its population distribution and density. Our work provides an important molecular tool for species identification and risk evaluation of a potentially invasive species.

    spp.; sea potato; larval density; population distribution; molecular marker

    1 Introduction

    The sea potato (spp.), a species of sea cucum-ber,widely distributes in the waters alongsome Asiancounties including Philippine and China. Most of these spe- cies live in the intertidal zone, and only a few of them live in the coastal sediment. The sea potato has simple body structure with a fast reproductive ability. Every summer, it becomes blooming in the East Sea of China, causing serious problems on the maintenance and operation of marine facilities. For example, large numbers of adults and larvae of sea potato caused the blockage of the pipes for seawater intake and drainage for nuclear power plants. It is necessary to carry out species identification and establish the risk evaluation system forthis species. The classic species identification is mainly based on morphology observation. However, this approach is hard to identify the larvae of sea potato from a large number of plankton. The molecular methods based on the mitochondria genome have become an effective way to solve this problem.

    Mitochondria are subcellular organelles unique to eukaryotes, playing an important role in a series of cytolo- gical processes, such as energy metabolism (Brand, 1997; Morenosánchez., 2010), cellular aging and diseases (Wallace., 1995). Mitochondrial genome data have been utilized to study phylogeographic (Scribner., 2003), evolution and phylogenetic relationships of the ani- mals in the metazoans (Boore., 2005). Mitochondrial DNA (mtDNA) is a double-stranded circular DNA molecule that is independent of the chromosome. Its size is about 16kb (Boore, 1999). Except for a few species, most of animals’ mitochondrial genomes consist of 37 genes: 13 protein-coding genes, 2 ribosomal RNAs (rRNAs), 22 tran- sfers RNAs (tRNAs) (Boore and Brown, 1994; Peregrino- Uriarte., 2009), and a non-coding putative control re- gion, in which signal sequences exist for transcription and replication (Takata., 2001). mtDNA is essential for the process of protein synthesis, transcription, and translation. In addition, it has the characteristics of the small genome (Behera., 2018), compact structure, high copy number (Ingman., 2000) and no rearrangement during cell meiosis (Fan., 2011). It is widely used in evolution analysis, genetic diversity study and species identification (Curole and Kocher, 1999). The full mitochondrial sequ- ences of most species of the sea cucumber have been de- termined (Shen., 2009; Perseke., 2010).

    In our previous study, the mitochondrial DNA sequence ofspp.has been detected through polymerase chain reaction (PCR) amplification and Sanger sequencing (Wang., 2019). In this study, based on the complete mitochondrial genome sequences, we screened and identi- fied the partial sequence ofgene as a specific molecular marker for the identificationofspp. from the col- lected plankton samples. With the molecular marker, we de- veloped an effective method to identify and evaluate the population dynamic ofspp. through PCR.

    2 Materials and Methods

    2.1 Animal Collection

    Four adults ofspp.(Fig.1A) were collected fromthe coast in Fujian Province, China. Species were identifiedby morphology (Xiao, 2015) and 16S rRNA sequencing based on the published sequences (Wen., 2011).The samples were then fixed in 75% ethanol and stored at 4℃ until DNA extraction.

    The larvae ofspp.were collected using a type II plankton collection net (diameter 31.6cm, length 140cm,mesh size 0.16mm, rope length 10m) from 13 stations. The plankton samples were concentrated in a 500mL plastic sampling bottle and then fixed with 75% ethanol. The po- sitions of sampling stations were indicated in Fig.3A.

    2.2 DNA Isolation

    Total genomic DNA was extracted from the gonad of adultspp. and the planktonic samples, respec-tively, using a modified phenol/chloroform/isoamyl alco- hol method (Wei., 2020). Firstly, 45mL STE buffer (100mmolL?1NaCl, 10mmolL?1Tris-HCl, 100mmolL?1EDTA, pH 8.0) and 4.5mL 10% SDS (dissolved in ddH2O) were mixed in a 50mL tube to make the lysis buffer. The gonads were dissected from the animal and were put into a 1.5mL tube. Then 700μL lysis buffer and 2.8μL Protei- nase K (Merck, dissolve in ddH2O with the concentration of 50mgmL?1) were added into the tube to make a final concentration of 200μgmL?1proteinase K. The mixture was shaken gently and incubated in a water bath at 58℃for 3h.Finally, DNA was extracted with phenol-chloro- form-isoamyl alcohol and chloroform-isoamyl alcohol, re- spectively, and then precipitated by alcohol and dissolved in ddH2O. The dissolved DNA was stored at ?20℃.

    2.3 PCR Amplification

    PCR reaction was carried out using PfuS DNA polyme- rase (gift from Dr. Zhiyi Lv) in a 50μL volume. The reac- tion solution includes 10μL 5× Phusion HF Buffer (Ther- mo fisher Catalog number: F518L), 1μL 10mmolL?1dNTP, 2.5μL 10μmolL?1Primer F, 2.5μL 10μmolL?1Primer R, 1μL template DNA (200ngμL), 0.5μL PfuS DNA poly- merase, and 32.5μL ddH2O. The PCR was performed as follows: Pre-denaturation at 95℃ for 3min; denaturation at 95℃ for 15s; annealing at 55℃ for 15s, followed withelongation at 72℃ for 1min, and totally for 35 cycles; and a final extension at 72℃for 5min. The PCR products were purified by Gene JET Gel Extraction Kit (Thermo Fisher Scientific, Lithuanian).

    Table 1 Primer sequences and annealing temperatures

    Note: Degenerate base: R=A/G, Y=C/T, H=A/T/C, D=G/A/T.

    The primers for the amplification offromspp.were designed based on the published mitoge- nomes (Wang., 2019).The primer sequences and an- nealing temperaturesof PCR were shown in Table 1.

    2.4 TOPO Clone, Sequencing, and Sequence Alignment

    TOPO cloning was performed using pEasy-Blunt3 kit(Transgen, Beijing, China). Firstly, 4μL purified PCR pro- duct was mixed with 1μL pEasy-Blunt3 vector and incubated at 25℃ for 15min.Then they were transformed intoTrans1-T1 competent cells and spray on Luria-Bertani (LB)agar plates. The LB plates were cultured overnight at 37℃. Monoclonal colonies were picked up for sequencing. Sequencing was performed by Genwiz company (Tianjin, Chi- na). Multiple sequence alignments were carried out using the ClustalW program in BioEdit software (version 7.0.4.1) with default parameters.

    2.5 Image Analysis and Statistical Analyses

    Totally 116 plankton samples were examined by PCRto determine whether the larvae ofsppwere in the samples. PCR products were detected on a 1% agarose gel.The electrophoresis bands of 116 samples were analyzed using ImageJ software to calculate the gray value, which can reflect the content of DNA.(also known asgene) was used as a reference. The distribution ofspp. larvae at 13 detected stations were eva- luated based on molecular data.

    3 Results

    3.1 Morphological and Molecular Identification of Acaudina spp.

    One adult sample was collected from the coast of Fujian province. It was about eight cm long and its body pre- sented the light brown color with dark brown spots (Fig.1A). They were morphologically similar to sea potato. To iden- tify the species, we designed primersandto amplify a mitochondrial fragment including two genesandbased onpreviously published sequ- ences (FJ971405 and FJ971380) ofspp.(Wen., 2011)A 1500 bp DNA fragment was amplified from the total DNA (Fig.1B). After sequencing and alignment,bothandgenes from our samples showed high identify with the ones fromspp..However, the identity ofsequence from our samples with FJ- 971405 was only 85% (Fig.1C), and thesequ- ence from our samples showed 90% identity with FJ971- 380 (Fig.1D). Based on these data, we identified our sam- ples asspp.

    3.2 The Fragment of Mitochondrialnd1 Gene Was an Effective Species-Specific Molecular Marker

    Mitochondrial genes are widely used in population iden- tification and genetic studies, such as(Das., 2018),(Wang., 2018),(Behera., 2015)In our previous work, we got the mitochondrial genome sequ- ence ofspp.. Based on this data, we designed pri- mers to amplify different fragments from the total DNA ofspp. and other marine species to identify the species-specific marker. The results showed that a 229bpDNA fragment ofgene could be effectively amplified through a primers pair,(Fig.2A) and(Fig.2B) from the total DNA ofspp., but could not from other marine species including ascidians (,), clam ()andscallop ()(Fig.2C). We then tested the validity of this pair of primers using total DNA extracted from the collected plankton samples. The results showed that one specific fragment could be successfully amplified from 9 of 13 samples (Fig.2D), suggesting that the fragment ofgene is an effective species-specific molecular marker for species identification and larva detection from the plankton samples.

    Fig.1 Morphological and molecular identification of sea potato Acaudina spp.(A) Image of adultAcaudina spp.. Bar is 1cm. (B) Polymerase chain reaction (PCR) product with about 1500bp size. The length of the markers from top to bottom is 5000bp, 3000bp, 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp, and 100bp, respectively. (C)Sequence alignment be- tween amplicon and Am-COI (FJ971405). The identity is 85%. (D) Sequence alignment between amplicon and Am-16S(FJ971380). The identity is 90%.

    Fig.2 Screen of species-specific molecular for the identification of Acaudina spp. (A) Alignment of the forward primer with the nd1 sequences from different species. (B) Alignment of the reverse primers with the nd1 sequences from different species. (C) The amplificated bands were presented in 1% agarose gel using the nd1 gene primers and the total DNA from different marine species. M, DL5000 marker; 1, C. robusta, 2, S. clava, 3, Acaudina spp.,4, M. quadrangularis, 5, P. yes- soensis. (D) The amplificated bands were presented in 1% agarose gel using the nd1 gene primers and the total DNA from the nine collected plankton samples.

    3.3 Quantitative Evaluation of Larval Population of Sea Potato

    To evaluate the population of sea potato, we developed a relative quantitative analysis method based on the species-specificmarker. The quality of DNA from each sample was verified bywith universal primers.The optical density ratio ofandPCR bands were used to represent the relative quantity of sea potato larvae, and compare the population variation among dif- ferent samples. The 116 samples were collected from 13 stations distributed along the coast region of Fujian province (Fig.3A). We divided all the sampling stations into four groups by the distance to the S01 station: group I in- cluded S01, S02, and S03, which were off S01 station less than 1km; group II included S04, S05, S06 and S07, off S01 station 1to 2km; Group III included S08, S09, and S10, off S01 station 4 to 6km; group IV included S11, S12, and S13, off S01 station more than 9km. The total DNA was extracted from the samples, respectively. AllDNA samples were diluted to 20ngμL?1, and 10μL was utilized for PCR. The DNA quality of most samples (107/ 116) were sufficiently good for the amplification of the fragments ofand. The results showed ob- vious differences in the relative larval density among the samples and the groups (Fig.3B). It clearly showed that the high-density sea potato was presented in group I station in spring and summer near the land, suggesting that distribution of sea potato is associated to the marine se- diment environment.

    Fig.3 Quantitative evaluation of the density of Acaudina spp. larvae. (A) Sampling stations in this study (B) Relative quan- tity of Acaudina spp. larval density.Relative densities of Acaudina spp. larvae are indicated through a gradient change from white to red. White color indicates lower density of larvae. Red color indicates higher density of the larvae. Blue color indicates that the sample was not collected. Yellow color indicates failures of PCR reaction (no band on the gel).

    3.4 Season Variation of Acaudina spp.Larvae

    The samples were collected in four seasons. The data showed that the highest larval density appeared in June and July. For stations in group I, there was a significant increase from May to July, and then a rapid decline after September (Fig.4A). For stations in groups II and III, they showed similar patterns: the lowest density in Winter, and other seasons showed the moderate density (Figs.4B and 4C). For group IV, the relative density was globally low and two small peaks were observed in January and June (Fig.4D).

    4 Discussion

    In this study, we successfully identified a 229bp fragment of geneasspp. specific molecular mar- ker, which provides an effective molecular tool for species identification and population dynamic evaluation. By analyzing the relative quantity of this fragment with PCR, we quantitatively detected the larval density ofspp.in a marine coast, and found that their density decreased gradually from offshore to deeper waters. In the samples that were collected from about 20m deep of the seawaters, the larval density is quite low. In addition, the higher density of larvae was presented in the samples col- lected in May, June, and July, suggesting that the larvae ofspp. might propagate from April to July.

    It is worthy to note that the method that we developed in this studycannot distinguish the species within one ge- nus. CRISPR-based specific high sensitivity enzymatic re-porter unlocking technology (Gootenberg., 2017; Gootenberg., 2018) and DNA endonuclease targeted CRISPR trans reporter technology (Chen., 2018) can be the alternative ways to accurately quantify target mole- cules. Loop-mediated isothermal amplification is another potentially useful technology with high specificity and ef- ficiency under isothermal conditions (Notomi., 2015).

    Fig.4 Relative density of Acaudina spp. larvae at different stations. Variation trend of relative density plot in stations of group I (A), group II (B), group III (C), and group IV (D), respectively.

    Our results showed that the larval density ofspp. is dynamic and tightly correlates with the temperature and the sediment in the offshore seawaters. These re- sults therefore provide useful information to understand the seasonal and regional distribution ofspp. lar- vae. Based on this information, population dynamics can be effectively evaluated, early warning mechanisms canbe established, and the population density ofspp.can be regulated in the specific sea region.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (No. 2018YFD090 0705), the Key Laboratory of Integrated Marine Monitor- ing and Applied Technologies for Harmful Algal Blooms Funds (No. MATHAB201706), and the Fundamental Re- search Funds for the Central Universities (No. 201822016).

    Behera, B. K., Baisvar, V. S., Rout, A. K., Pakrashi, S., Kumari, K., Panda, D., Das, P., Parida, P. K., Meena, D. K., Bhakta, D., Das, B. K., and Jena, J., 2018. The population structure and genetic divergence of(Hamilton, 1822) analyz- ed through mitochondrial DNA cytochrome b gene for con- servation in Indian waters., 29: 543-551.

    Behera, B. K., Kunal, S. P., Paria, P., Das, P., Meena, D. K., Pa- krashi, S., Sahoo, A. K., Panda, D., Jena, J., and Sharma, A. P., 2015. Genetic differentiation in Indian Major Carp,(Hamilton, 1822) from Indian Rivers, as revealed by direct sequencing analysis of mitochondrial Cytochromere- gion., 26: 1-3.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27: 1767-1780.

    Boore, J. L., and Brown, W. M., 1994. Mitochondrial genomes and the phylogeny of molluscs.,108 (supp. 2): 61- 78.

    Boore, J. L., Macey, J. R., and Medina, M., 2005. Sequencing andcomparing whole mitochondrial genomes of animals., 395: 311.

    Brand, M. D., 1997. Regulation analysis of energy metabolism., 200: 193-202.

    Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., and Doudna, J. A., 2018. CRISPR-Cas12a tar- get binding unleashes indiscriminate single-stranded DNase activity., 360: 436.

    Curole, J. P., and Kocher, T. D., 1999. Mitogenomics: Digging deeper with complete mitochondrial genomes., 14: 394-398.

    Das, S. P., Swain, S., Jena, J., and Das, P., 2018. Genetic di- versity and population structure ofreveal- ed by mitochondrial ATPase 6 gene., 29: 495-500.

    Fan, S., Hu, C., Wen, J., and Zhang, L., 2011. Characterization of mitochondrial genome of sea cucumber: A novel gene arrangement in Holothuroidea., 54: 434-441.

    Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., and Zhang, F., 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6., 360: 439.

    Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., Myhrvold, C., Bhattacharyya, R. P., Livny, J., Regev, A., Koonin, E. V., Hung, D. T., Sabeti, P. C., Col- lins, J. J., and Zhang, F., 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2., 356: 438.

    Ingman, M., Kaessmann, H., P??bo, S., and Gyllensten, U., 2000. Mitochondrial genome variation and the origin of modern hu- mans., 408: 708-713.

    Morenosánchez, R., Rodríguezenríquez, S., Marínhernández, A., and Saavedra, E., 2010. Energy metabolism in tumor cells., 274: 1393-1418.

    Notomi, T., Mori, Y., Tomita, N., and Kanda, H., 2015. Loop- mediated isothermal amplification (LAMP): Principle, features, and future prospects., 53: 1-5.

    Peregrino-Uriarte, A. B., Varela-Romero, A., Muhlia-Almazan, A., Anduro-Corona, I., Vega-Heredia, S., Gutierrez-Millan, L. E., De la Rosa-Velez, J., and Yepiz-Plascencia, G., 2009. The complete mitochondrial genomes of the yellowleg shrimpand the blue shrimp(Crustacea: Decapoda)., 4: 45-53.

    Perseke, M., Bernhard, D., Fritzsch, G., Brümmer, F., Stadler, P. F., and Schlegel, M., 2010. Mitochondrial genome evolutionin Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phy- logenetic relationships of Echinodermata., 56: 201.

    Scribner, K. T., Talbot, S. L., Pearce, J. M., Pierson, B. J., Bol- linger, K. S., and Derksen, D. V., 2003. Phylogeography of Canada Geese () in western North America., 120: 889-907.

    Shen, X., Tian, M., Liu, Z., Cheng, H., Tan, J., Meng, X., and Ren, J., 2009. Complete mitochondrial genome of the sea cu- cumber(Echinodermata: Holothuroi- dea): The first representative from the subclass Aspidochi- rotacea with the echinoderm ground pattern., 439: 79- 86.

    Takata, K., Yoshida, H., Hirose, F., Yamaguchi, M., Kai, M., Oshige, M., Sakimoto, I., Koiwai, O., and Sakaguchi, K., 2001.mitochondrial transcription factor A: Characteri- zation of its cDNA and expression pattern during development., 287: 474-483.

    Wallace, D. C., Shoffner, J. M., Trounce, I., Brown, M. D., Bal- linger, S. W., Corraldebrinski, M., Horton, T., Jun, A. S., and Lott, M. T., 1995. Mitochondrial DNA mutations in human de- generative diseases and aging., 1271: 141-151.

    Wang, G., Li, X., Wang, J., Zhang, J., Liu, W., Lu, C., Guo, Y., and Dong, B., 2019. The complete mitochondrial genome and phylogenetic analysis of.–, 4: 668-669.

    Wang, X., Han, X., Zhang, Y., Liu, S., and Lin, Q., 2018. Phy- logenetic analysis and genetic structure of the seahorse,from the Arabian and Red Sea based on mi- tochondrial DNA sequences., 39: 165-171.

    Wei, J., Zhang, J., Lu, Q., Ren, P., Guo, X., Wang, J., Li, X., Chang, Y., Duan, S., Wang, S., Yu, H., Zhang, X., Yang, X., Gao, H., and Dong, B., 2020. Genomic basis of environmen- tal adaptation in the leathery sea squirt ()., 20: 1414-1431.

    Wen, J., Hu, C., Zhang, L., and Fan, S., 2011. Genetic identifi- cation of global commercial sea cucumber species on the basis of mitochondrial DNA sequences., 22: 72-77.

    Xiao, N., 2015.. Science Press, Beijing, 100pp (in Chinese).

    June 6, 2020;

    September 21, 2020;

    November 17, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    #The two authors contributed equally to this work.

    . E-mail: bodong@ouc.edu.cn

    (Edited by Qiu Yantao)

    午夜免费激情av| 国产成人a区在线观看| 欧美zozozo另类| 免费电影在线观看免费观看| 久久精品国产自在天天线| av中文乱码字幕在线| 国内少妇人妻偷人精品xxx网站| 小说图片视频综合网站| 日韩在线高清观看一区二区三区 | 国产黄片美女视频| 成人特级黄色片久久久久久久| 国产乱人视频| 嫩草影视91久久| 日韩人妻高清精品专区| 亚洲电影在线观看av| 变态另类成人亚洲欧美熟女| 国语自产精品视频在线第100页| 国产视频一区二区在线看| 成人一区二区视频在线观看| 99热精品在线国产| 日日摸夜夜添夜夜添av毛片 | 亚洲精品色激情综合| 麻豆国产97在线/欧美| 狂野欧美激情性xxxx在线观看| 国产精品三级大全| 我要看日韩黄色一级片| 最近视频中文字幕2019在线8| 久久精品综合一区二区三区| 亚洲精品粉嫩美女一区| 丰满乱子伦码专区| 极品教师在线免费播放| 美女xxoo啪啪120秒动态图| 欧美性猛交黑人性爽| 日韩强制内射视频| 制服丝袜大香蕉在线| 日本 欧美在线| 春色校园在线视频观看| 成年人黄色毛片网站| 国模一区二区三区四区视频| 99riav亚洲国产免费| 桃色一区二区三区在线观看| 久久久久性生活片| 熟女人妻精品中文字幕| 好男人在线观看高清免费视频| 国产精品嫩草影院av在线观看 | 国产在视频线在精品| 中文字幕av在线有码专区| 看黄色毛片网站| 国产亚洲精品av在线| h日本视频在线播放| 亚洲经典国产精华液单| 身体一侧抽搐| 18禁黄网站禁片免费观看直播| 精华霜和精华液先用哪个| 99热网站在线观看| 亚洲av免费在线观看| 男女边吃奶边做爰视频| 欧美zozozo另类| 欧美激情在线99| 性插视频无遮挡在线免费观看| 亚洲va在线va天堂va国产| 毛片一级片免费看久久久久 | 婷婷丁香在线五月| 亚洲精品乱码久久久v下载方式| 99久久成人亚洲精品观看| 天堂网av新在线| 国产伦一二天堂av在线观看| 特级一级黄色大片| 九九在线视频观看精品| 精品不卡国产一区二区三区| 精品不卡国产一区二区三区| 国产高潮美女av| 久久热精品热| 国产午夜精品久久久久久一区二区三区 | 久久精品综合一区二区三区| 床上黄色一级片| 国产高清视频在线观看网站| 国产91精品成人一区二区三区| 国产成人福利小说| 国产精品一及| 国产精品女同一区二区软件 | 国产激情偷乱视频一区二区| 91在线观看av| 日日摸夜夜添夜夜添av毛片 | 久久中文看片网| 变态另类丝袜制服| 欧美性猛交╳xxx乱大交人| 国内毛片毛片毛片毛片毛片| 成人无遮挡网站| 好男人在线观看高清免费视频| xxxwww97欧美| 国产美女午夜福利| 1024手机看黄色片| 亚洲七黄色美女视频| 成人性生交大片免费视频hd| 亚洲精品乱码久久久v下载方式| 久久久久久久久中文| 欧美激情国产日韩精品一区| av天堂中文字幕网| 99久久久亚洲精品蜜臀av| 亚洲真实伦在线观看| 久久精品夜夜夜夜夜久久蜜豆| 露出奶头的视频| 一个人观看的视频www高清免费观看| 中亚洲国语对白在线视频| 午夜精品在线福利| 夜夜夜夜夜久久久久| 看片在线看免费视频| 一个人看视频在线观看www免费| 国内精品美女久久久久久| 美女高潮喷水抽搐中文字幕| 国模一区二区三区四区视频| xxxwww97欧美| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 国产成人av教育| 国产探花在线观看一区二区| 欧美绝顶高潮抽搐喷水| 日韩人妻高清精品专区| 蜜桃亚洲精品一区二区三区| 黄色欧美视频在线观看| 看免费成人av毛片| 老熟妇仑乱视频hdxx| av国产免费在线观看| 国产国拍精品亚洲av在线观看| 午夜福利在线观看吧| 欧美中文日本在线观看视频| 亚洲人成网站高清观看| 免费一级毛片在线播放高清视频| 色尼玛亚洲综合影院| 春色校园在线视频观看| 成人二区视频| 麻豆一二三区av精品| 欧美日韩综合久久久久久 | 精品一区二区免费观看| 乱人视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品久久男人天堂| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 中国美女看黄片| 国产成人a区在线观看| 中文字幕av成人在线电影| 免费大片18禁| 校园春色视频在线观看| 国产免费一级a男人的天堂| 天堂动漫精品| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 日本精品一区二区三区蜜桃| 欧美3d第一页| 国内精品美女久久久久久| 亚洲狠狠婷婷综合久久图片| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 欧美性感艳星| 国产大屁股一区二区在线视频| 一区二区三区高清视频在线| 搡老妇女老女人老熟妇| 中文在线观看免费www的网站| av在线蜜桃| 欧美一区二区国产精品久久精品| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 俄罗斯特黄特色一大片| 日本一本二区三区精品| 国产一区二区在线观看日韩| 亚洲欧美日韩高清专用| 亚洲va日本ⅴa欧美va伊人久久| 草草在线视频免费看| 美女cb高潮喷水在线观看| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 最新中文字幕久久久久| 搡老妇女老女人老熟妇| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 日韩强制内射视频| 国产精品一区二区免费欧美| 自拍偷自拍亚洲精品老妇| 一个人观看的视频www高清免费观看| 精品久久久噜噜| 精品人妻1区二区| 亚洲五月天丁香| 日日夜夜操网爽| 亚洲乱码一区二区免费版| 欧美zozozo另类| 亚洲在线自拍视频| 亚洲美女黄片视频| 最近在线观看免费完整版| 国产成人一区二区在线| 亚洲av成人av| 内地一区二区视频在线| 日本五十路高清| 99国产精品一区二区蜜桃av| 赤兔流量卡办理| 国内揄拍国产精品人妻在线| 欧美色欧美亚洲另类二区| 麻豆成人av在线观看| or卡值多少钱| 国产成人a区在线观看| 亚洲自拍偷在线| a在线观看视频网站| 色综合婷婷激情| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 一级黄色大片毛片| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合| 高清日韩中文字幕在线| 精品午夜福利视频在线观看一区| 日韩人妻高清精品专区| 日本一二三区视频观看| 国产综合懂色| 999久久久精品免费观看国产| 在线a可以看的网站| 99国产精品一区二区蜜桃av| 在线观看av片永久免费下载| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 欧美高清成人免费视频www| 亚洲精品成人久久久久久| 99国产精品一区二区蜜桃av| 日本在线视频免费播放| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 精品一区二区三区视频在线观看免费| 亚洲18禁久久av| 美女 人体艺术 gogo| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 国内精品宾馆在线| 成人精品一区二区免费| 亚洲精品一区av在线观看| 最近视频中文字幕2019在线8| 极品教师在线视频| 黄色一级大片看看| 久久久久久久久大av| 午夜精品久久久久久毛片777| 99热精品在线国产| 精品一区二区三区视频在线观看免费| 亚洲一级一片aⅴ在线观看| 国产亚洲av嫩草精品影院| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 国产黄a三级三级三级人| 午夜爱爱视频在线播放| 亚洲av中文字字幕乱码综合| av在线观看视频网站免费| 99九九线精品视频在线观看视频| 婷婷丁香在线五月| 女同久久另类99精品国产91| 国产男人的电影天堂91| x7x7x7水蜜桃| 成人国产综合亚洲| 国产精品久久久久久精品电影| 最近最新免费中文字幕在线| 老女人水多毛片| 日韩中文字幕欧美一区二区| 亚洲五月天丁香| 亚洲性久久影院| 亚洲熟妇熟女久久| 国产高清三级在线| 高清日韩中文字幕在线| 国产精品永久免费网站| 日本与韩国留学比较| 禁无遮挡网站| 国产成人一区二区在线| 国产成人福利小说| 午夜久久久久精精品| 国产一区二区在线观看日韩| x7x7x7水蜜桃| 此物有八面人人有两片| 国产淫片久久久久久久久| 国产高清不卡午夜福利| 天天躁日日操中文字幕| 午夜爱爱视频在线播放| 免费在线观看影片大全网站| 亚洲av免费高清在线观看| 一个人看的www免费观看视频| 露出奶头的视频| 精品久久久噜噜| 国产蜜桃级精品一区二区三区| 成人二区视频| 精品久久久久久,| 成人性生交大片免费视频hd| 精品一区二区三区人妻视频| 午夜福利视频1000在线观看| 伦精品一区二区三区| 国产男人的电影天堂91| 国产综合懂色| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 国内精品美女久久久久久| 国模一区二区三区四区视频| 国产高清不卡午夜福利| 精品久久久久久久末码| 欧美日本视频| 国产精品,欧美在线| 欧美高清性xxxxhd video| 日本五十路高清| 国模一区二区三区四区视频| 又紧又爽又黄一区二区| 毛片一级片免费看久久久久 | 亚洲精品日韩av片在线观看| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 欧美激情在线99| 在线观看舔阴道视频| 男女边吃奶边做爰视频| 亚洲在线观看片| 精品国产三级普通话版| 中文字幕免费在线视频6| 国产三级在线视频| 能在线免费观看的黄片| 精品一区二区三区视频在线观看免费| 国产成人影院久久av| 免费无遮挡裸体视频| 69人妻影院| 亚洲中文日韩欧美视频| 久久精品综合一区二区三区| av专区在线播放| 97超视频在线观看视频| 国产在视频线在精品| 精品国产三级普通话版| 精品午夜福利视频在线观看一区| 久久精品国产自在天天线| 美女高潮的动态| 97碰自拍视频| 国产美女午夜福利| 亚洲精品亚洲一区二区| 51国产日韩欧美| 不卡一级毛片| 日韩亚洲欧美综合| 欧美三级亚洲精品| 俺也久久电影网| 免费av不卡在线播放| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 亚洲精品影视一区二区三区av| 国产精品一区二区三区四区免费观看 | 久久久精品欧美日韩精品| 窝窝影院91人妻| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 午夜a级毛片| 啦啦啦啦在线视频资源| 色在线成人网| 男人狂女人下面高潮的视频| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 此物有八面人人有两片| 51国产日韩欧美| 身体一侧抽搐| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 最近中文字幕高清免费大全6 | 久久久久久伊人网av| 欧美极品一区二区三区四区| 精品久久久久久久久亚洲 | 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩亚洲国产一区二区在线观看| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 少妇丰满av| 99久国产av精品| 成人三级黄色视频| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 婷婷丁香在线五月| 在线观看一区二区三区| 精品久久久久久久久久久久久| 久久精品久久久久久噜噜老黄 | 亚洲国产欧洲综合997久久,| 国内精品久久久久精免费| 免费电影在线观看免费观看| 国产综合懂色| 他把我摸到了高潮在线观看| 久久精品国产清高在天天线| 精品久久久久久久久久免费视频| 免费高清视频大片| 国产伦精品一区二区三区四那| 精品午夜福利在线看| 久久国产精品人妻蜜桃| 亚洲av成人av| 色综合婷婷激情| 嫩草影院精品99| 日日摸夜夜添夜夜添小说| 精品久久久久久久久av| 国产激情偷乱视频一区二区| 美女xxoo啪啪120秒动态图| 中文资源天堂在线| 一夜夜www| 91在线观看av| 亚洲七黄色美女视频| 国产免费男女视频| 国产精品自产拍在线观看55亚洲| 天天一区二区日本电影三级| 毛片一级片免费看久久久久 | 嫩草影院新地址| 人妻制服诱惑在线中文字幕| 99国产精品一区二区蜜桃av| 三级男女做爰猛烈吃奶摸视频| 在线观看午夜福利视频| 悠悠久久av| 乱系列少妇在线播放| 小说图片视频综合网站| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 久久久国产成人免费| 午夜福利高清视频| 国产视频内射| 最好的美女福利视频网| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 老司机福利观看| 99久久精品热视频| 成人美女网站在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美日本视频| 亚洲黑人精品在线| 免费观看在线日韩| 午夜精品久久久久久毛片777| 日韩精品青青久久久久久| 久久热精品热| 少妇人妻精品综合一区二区 | 日日摸夜夜添夜夜添av毛片 | 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 国产爱豆传媒在线观看| 久久精品国产亚洲网站| 国产不卡一卡二| 一级av片app| 麻豆国产97在线/欧美| 日韩欧美一区二区三区在线观看| 亚洲av免费在线观看| 中出人妻视频一区二区| 我的老师免费观看完整版| 69人妻影院| 亚洲在线自拍视频| 午夜a级毛片| 久久99热6这里只有精品| 亚洲男人的天堂狠狠| 国产精品久久久久久久电影| 91久久精品国产一区二区成人| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 国产精品1区2区在线观看.| 九九热线精品视视频播放| 成人美女网站在线观看视频| 丰满的人妻完整版| 91精品国产九色| 91久久精品电影网| 久久天躁狠狠躁夜夜2o2o| 成人国产综合亚洲| 九九热线精品视视频播放| 中文在线观看免费www的网站| 亚洲成人中文字幕在线播放| 在现免费观看毛片| 成年版毛片免费区| 亚洲国产精品成人综合色| 国产在线男女| 亚洲美女黄片视频| 很黄的视频免费| av在线蜜桃| a在线观看视频网站| 在线a可以看的网站| 久久亚洲真实| 不卡视频在线观看欧美| 亚洲最大成人av| 赤兔流量卡办理| 精品久久国产蜜桃| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 天堂网av新在线| 天堂√8在线中文| 亚洲在线自拍视频| avwww免费| 日本黄色片子视频| 国产三级在线视频| 成人av在线播放网站| 亚洲中文字幕日韩| 国产精品久久视频播放| 网址你懂的国产日韩在线| 国国产精品蜜臀av免费| 国产高清三级在线| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 国产精品久久久久久精品电影| 在线播放国产精品三级| 国产精品一及| 真实男女啪啪啪动态图| 天堂动漫精品| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 国产在线男女| 琪琪午夜伦伦电影理论片6080| 又爽又黄a免费视频| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 午夜福利欧美成人| 老司机午夜福利在线观看视频| 国产精品福利在线免费观看| 久久精品国产亚洲网站| 村上凉子中文字幕在线| 免费看日本二区| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| eeuss影院久久| 亚洲人成网站在线播| 国产蜜桃级精品一区二区三区| 国产又黄又爽又无遮挡在线| 亚州av有码| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 午夜视频国产福利| 十八禁网站免费在线| 亚洲中文日韩欧美视频| 色综合站精品国产| 成人综合一区亚洲| 久久精品影院6| 免费一级毛片在线播放高清视频| 深夜精品福利| 日韩欧美国产在线观看| 婷婷色综合大香蕉| 成人鲁丝片一二三区免费| 成人毛片a级毛片在线播放| 日韩强制内射视频| 亚洲av成人精品一区久久| 日日撸夜夜添| 成年女人毛片免费观看观看9| 人人妻,人人澡人人爽秒播| 简卡轻食公司| 国产精品98久久久久久宅男小说| 国内毛片毛片毛片毛片毛片| 中文字幕av在线有码专区| 在线免费观看的www视频| 别揉我奶头 嗯啊视频| 91午夜精品亚洲一区二区三区 | 亚洲黑人精品在线| 国内精品一区二区在线观看| av视频在线观看入口| 国产乱人伦免费视频| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 亚洲精品国产成人久久av| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 日韩欧美在线乱码| 国产精品自产拍在线观看55亚洲| 亚洲性久久影院| 一个人免费在线观看电影| 国产免费男女视频| 狠狠狠狠99中文字幕| 亚洲av二区三区四区| 午夜福利在线观看吧| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频| 1000部很黄的大片| 在线免费观看不下载黄p国产 | 亚洲成人久久爱视频| 男人舔奶头视频| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| 别揉我奶头 嗯啊视频| 亚州av有码| 欧美潮喷喷水| 18禁在线播放成人免费| 不卡视频在线观看欧美| 亚洲黑人精品在线| av.在线天堂| 免费观看的影片在线观看| 全区人妻精品视频| 亚洲va在线va天堂va国产| 熟女电影av网| 亚洲精品久久国产高清桃花| 国内精品一区二区在线观看| 一级毛片久久久久久久久女| 人人妻人人看人人澡| 18禁裸乳无遮挡免费网站照片| 精品人妻1区二区| 久久久久精品国产欧美久久久| 18禁在线播放成人免费| 身体一侧抽搐| 日韩欧美在线二视频| 91久久精品国产一区二区三区| 国产亚洲精品久久久久久毛片| 久久99热6这里只有精品| 97超视频在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲国产色片| 亚洲美女视频黄频| 日日摸夜夜添夜夜添av毛片 | 午夜福利18| 午夜精品一区二区三区免费看| 国产高清有码在线观看视频| 成人av一区二区三区在线看| 别揉我奶头 嗯啊视频| 深爱激情五月婷婷| 亚洲国产高清在线一区二区三| 老司机福利观看| 日韩强制内射视频| 亚洲成人免费电影在线观看| 精品午夜福利视频在线观看一区| 成人特级av手机在线观看| 亚洲专区国产一区二区| 免费看av在线观看网站| 欧美精品国产亚洲| 黄色日韩在线| 97超级碰碰碰精品色视频在线观看|