• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dependence of Estimating Whitecap Coverage on Currents and Swells

    2021-06-25 10:38:06LIUMinYANGBailinJIANanandZOUZhongshui
    Journal of Ocean University of China 2021年3期

    LIU Min, YANGBailin, JIANan, and ZOU Zhongshui

    Dependence of Estimating Whitecap Coverage on Currents and Swells

    LIU Min1), YANGBailin2), JIANan3), and ZOU Zhongshui4), *

    1) Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China 2) School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 3) PLA Information Engineering University, Zhengzhou 450001, China 4) School of Marine Science, Sun Yat-Sen University, Zhuhai 519082, China

    The shipboard measurements of whitecap coverage () and the meteorological and oceanographic information from two cruises in the South China Sea and Western Pacific are explored for estimating. This study aims at evaluating how to improve the parameterizations ofwhile considering the effects of currents and swells on wave breaking. Currents indeed affectin a way that winds with following currents can decrease, whereas winds with opposing currents can increase. Then, 10-m wind speed over sea surface (10) is calibrated by subtracting the current velocity from10when the propagating directions of winds and currents are aligned. By contrast, when the direction is opposite,10is calibrated by adding the parallel velocity component of the opposing current to10. The power fits ofdependence on the10-related parameters of10, friction velocity, wind sea Reynolds number in terms of this calibrated-10obtain better results than those directly fitted to10. Different from the effect of currents on, wind blowing along the crest line of swells may contribute to the increase in. The conclusions suggest that10should be calibrated first before parameterizingin areas with a strong current or some swell-dominant areas.

    whitecap coverage; currents; friction velocity; wind sea Reynolds number; swells

    1 Introduction

    Wave breaking is important for air-sea interaction processes, which can be expressed as whitecap coverage () for easier observation and better description. The parameterizations ofare of great interest and traditionally fitted to 10-m wind speed over sea surface (10) (Monahan, 1971; Hanson and Phillips, 1999; Stramska and Petelski, 2003). As certain differences exist among10, onlyparameterizations are used in various studies. A considerable effort has been exerted to find other parameters, such as field statistics and meteorological factors, for newparameterizations. Till now, the overall parameters used for estimatingcan be divided into two kinds: one is the10-related parameters, such as friction velocity (*) and wind sea Reynolds number (H) (Wu, 1979; Guan, 2007; Yuan, 2009), the other is named secondary factors or10absence parameters, including current velocity (current), thermal stability of the lower atmosphere, seawater temperature, and fetch (Wu, 1988; Xu, 2000; Callaghan, 2008; Salisbury, 2013).

    Anguelova and Webster (2006), Ren(2016), and Brumer(2017) provided a chronological listing of whitecap fraction datasets during the period of 1971–2004, 1963–2013, and 2007–2016, respectively. The10-relatedpower law functions can be influenced by currents due to wave current interaction (Khojasteh, 2018). When the along-wind current velocity is large enough,Haus (2007) found that the relative winds shifted by the currents, thereby affecting wave growth rates.Pearman(2014) showed that the effect of the current field on the swell is negligible. Nevertheless, for the wind wave high-frequency tail of wave spectral, steepening on the opposing current may contribute to thewave breaking dissipation or observed decay. Novel airborne observationsaccomplished by Romero(2017)over areas withstrong wavecurrent interactionsshowedmaximum vertical vorticity with a largebecause of strengthened wave break- ing.

    Currents indeed have an influence on, which may change the ‘effective-10’ for wave growth. For example, although the10is in the range of 7–8ms?1, Kraan(1996) found no visual whitecaps and suggested that the absence of whitecaps was caused by strong tidal currents of up to 1ms?1. Callaghan(2008) believed that a directionalalignment of wind and currentaccompanied by an increase incurrentproduceda marked increase in. Meanwhile, the measurements ofin the presence of the recorded magnitude and direction ofcurrents are scarce. Therefore, the manner in which currents work is unclear.

    Apart from currents, swells are also under our consideration if they have the same effect as the currents on(Zheng, 2019a, 2019b, 2020). Woolf (2005) proposed the importance of swells for. Sugihara(2007) and Callaghan(2008) indicated that whitecaps tend to be suppressed by the presence of swells, especially under the condition of opposing swells. Hwang(2013) believed that swells could promote whitecaps.

    On the basis of the data measured by ship, we attempt to further explore how currents and swells affectand determine if they influencein the same way. The following are the remaining parts of the paper. Section 2 introduces the data used in this study. Section 3 discusses how the magnitudes and directions of currents and swells influenceand proposes the improved power fits ofto10-related parameters on the basis of the current calibrated-10. Section 4 describes some important conclusions.

    2 Whitecap Observation

    Meteorological and oceanographic data were collected from two cruises byfrom Ocean University of China: the South China Sea cruise from December 5, 2013 to January 4, 2014 and the Western Pacific Ocean cruise from November 7, 2015 to January 7, 2016. The two projects focused on the study areas around 102?–115?E, 1?S–21?N and 135?–161?E, 1?S–36?N (Fig.1).

    Fig.1 A map showing the geography of the zone and trajectory of the scientific cruises. The blue stars and red pluses represent the South China Sea cruise and the Western Pacific Ocean cruise, respectively.

    The field statistics of waves and currents were continually recorded by the X-band Radar of WaMoSII and measured by the Waverider and Conductance Temperature Depth at some fixed stations. Meteorological parameters were obtained by the automatic weather station, 16m in height above the sea surface. The observed wind speed values were corrected to10on the basis of the logarithmic wind profile formula. The measurements ofwere manually taken by a camera on the top of the vessel, and thenwas extracted from photographs using the automated white- cap extraction (AWE) method proposed by Callaghan and White (2009) and the improved AWE algorithm proposed by Jia and Zhao (2019).

    Here is a brief description of the improved AWE algorithm, that is, how the photos of the sea surface are converted to values of. For traditional AWE, each photo is first converted into a grayscale image with pixels ranging from 0 to 1, and the percentage increase in pixels is used to obtain potential thresholds for separating whitecaps with background water. To reduce the influence of strong sun- light, the light distribution and brightness contrast of the measured photo are adjusted by Jia and Zhao (2019) to obtain a precise intensity threshold. Avalue is then acquired after computing the ratio of white pixels to black pixels on the basis of the intensity threshold. Data are divided into two subsets: the deflection angle between the propagating directions of wind and current smaller (greater) than 90? is denoted as |wind?current|<90? (>90?), indicating the alignment (encounter) of wind and current. Considering the effect of currents on,10is calibrated on the basis of the above deflection angles. Using the least square method,10and current calibrated-10dependent parameterizations are individually fitted to each dataset and combined. Two fit statistics of correlation coefficients (2) and root mean square error (RMSE) are introduced to evaluate the parameterizations. Parameterization equations with higher2and lower RMSE provide better results.

    3 Results and Discussion

    3.1 Influence of Currents on W

    10is the most traditional and effective way of estimating. To discover the effect of currents on, Fig.2 shows two original whitecap images taken during the Western Pacific Ocean cruise under the same10condition. Other meteorological information, wave parameters, andlisted in Table 1 are different for images (a) and (b). Although10is identical, the wave heights of mixed wave, swell, and wind wave for image (a) are much higher than those for image (b), which may be due to the effect of currents(Haus, 2007). Moreover, additional whitecaps can be seen from image (a), and a high(0.3486 in %) is obtained after averaging several hundreds of whitecap images taken at the same station asimage (a). However, averagedis only equal to 0.1474 forimage (b).

    The datasets analyzed here display nosignificantcurrentdependence (not shown), reminding us to find a new way to study the influence of currents on. The datasets are divided into two subsets to refit the(10) power laws: winds with following currents and winds with opposing currents. The parameterizations ofare displayed in Table 2 and Fig.3 where winds with followingcurrents labeled by a dot-dashed line obtain a small, whereas winds with opposing currents obtain a great. The direction difference between winds and currents(represented by |wind?current| wherewindandcurrentare directions of wind and current, respectively) can impact thepowerlaws, and the opposing (following) currentsare suggested to increase(decrease). |wind?current| should be considered for the continued improvement of whitecap para- meterizations.Intrigued by these findings, we introducecurrentinto whitecap parameterizations when considering the direction deviation of currents with winds.

    Fig.2 Two original whitecap images taken during the western Pacific Ocean cruise under the same wind speed condition. Meteorological information, wave parameters, and the whitecap ratio W (%) for (a) and (b) are listed in Table 1.

    Table 1 Summary of the meteorological and oceanographic conditions

    Notes:10, wind speed at 10m height;wind, wind direction;current, current speed;current, current direction;s, significant wave height;ss, wave height of swell;sw, wind sea;, whitecap coverage. The geographical locations for Figs.2(a) and 2(b) are also illustrated.

    Table 2 Parameterizations of W (%) as a function of U10 and Ucurrent calibrated-U10 (marked by ΔU)

    Notes: Numbers 1–3 (4–6) given in the first column are used as references in the legends in Fig.3 (Fig.4). The second column presents the data used when obtaining the formula, and |wind?current| are the deflection angles between the propagating directions of winds and currents. The Δin Numbers 5 and 6 represent the difference between10and the velocity of following currents and the sum of10and the parallel velocity component of opposing currents, respectively. The Δin Number 4 is a combination of the two Δin Numbers 5 and 6.2and RMSE represent the correlation coefficients and RMSE, respectively. The increase/decrease rate in the last column is the change rate of2and RMSE by fitting to Δinstead of10.

    10onlyparameterization, the most traditional and effective way of estimating, is improved by including wave field related parameters in this study. Considering the effect of currents on wave breaking, adjusting the parameters to include thecurrentin the10basedparameterization is performed in this section according to the value of |wind?current|. That is,10is calibrated with different methods separately for winds with following or opposing currents. When the value of |wind?current| is smaller than 90?,10is calibrated by subtracting thecurrentfrom10because the directional alignment of winds and currents accompanied by small wave steepness can weaken the wave breaking. On the contrary, when |wind?current| is greater than 90?, Δequals10is calibrated by adding the parallel velocity component of opposing currents. The calibrated-10marked by Δare as follows:

    ?=10?current, when |wind?current|<90?, (1)

    ?=10+currentcos(180?|wind?current|),

    when |wind?current|>90?. (2)

    Δbasedparameterizationsare refitted and displayed in Fig.4, which shows the same conclusions as those in Fig.3. For the directional alignment of wind and current situations,2increases from 0.5995 to 0.7107 and RMSE decreases from 0.1461 to 0.1242 when comparing the results in Rows 2 and 5 of Table 2. For the opposing current situation in Rows 3 and 6 of Table 2, we obtain the consistent conclusion that2increases up to 0.8048 accompanied by a decreasing RMSE. For the fit with the combined dataset, Δbasedparameterization provides a better fit than that fitted to10. Moreover, thelast column in Table 2 presents that the improvement of goodness of fit for the following current situation is the most significant; the increase rate of2is up to 18.55%, and the decrease rate of RMSE is down to ?15.00%. In summary, Δbased parameterizations show tighter correlations and better interdataset agreement than10only parameterizations for the methods of calibrating10in Eqs. (1) and (2).

    Fig.3 Dependence of W (%) on U10. The curves symbolize the best fit to the different datasets of Numbers 1–3 in Table 2: solid line, dot-dashed line, and dashed line are fitted by all winds, winds with followingcurrents, and winds with opposingcurrents, respectively. Stars and dots represent averagedW (%) when the winds and currents have a consistent and opposite direction, respectively.

    Fig.4 Dependence of W (%) on ΔU. ΔU (as in Eq. (1)) represents the difference between U10 and the velocity of following currents for star data and dot-dashed line. ΔU (as in Eq. (2)) represents the sum of U10 and the parallel velocity component of opposing currents for dot data and dashed line. ΔU for solid line is a combination of the two ΔU above.

    Inspired by the occurrences above, the contour map, which includes the combined effect of the difference in the magnitudes and directions of winds and currents, is displayed in Fig.5. Specifically, the contour suggests the effect of the magnitude and direction of currents on. We already fit theto10–currentregardless of |wind?current| (not shown). It shows that the greater10–currentmakes, the higher, as expected, which can also be inferred from Fig.5. Certainly, the improved parameterizations of, as a function of10–current, are still worse than those offitted to Δin Fig.4. Therefore, we confirm again that the currents significantly influenceand must be considered to calibrate-10before fittingto10-related parameters.

    Fig.5 W (%) as a function of ΔU and |Dwind?Dcurrent|. Black dots represent the original observations.

    3.2 Adjustment of u* and RH with Calibrated-U10

    Many parameterizations of, as a function ofu, have been used in previous studies (Lafon, 2007; Sugihara, 2007;Schwendeman and Thomson, 2015; Brumer, 2017).ucan be obtained through Eq. (3):

    whereis the wind stress, andis the air density.10represents a 10m drag coefficient over sea surface. The10used for calculatingufrom previous studies here is displayed in Fig.6 and summarized in Table 3.Compared with the fit statistics of formula from 1 to 14,10from Sheppard(1972) should be the best choice, and thisucan be applied for further analysis hereafter (Row 6 in Table 3). The fit to the calculatedumost closely follows that proposed by Schwendeman and Thomson (2015), as shown in Fig.6.

    The calculatedubased on the10from Sheppard(1972) is applied to obtain(u) parameterization. Following the same approach discussed in Section 3.1, the parameterizations of, as a function ofu, are determined by fitting the two subsets of data as defined, and the results are illustrated in Fig.7. Plots of theu, as a function of Δ, are shown here to illustrate the important influence of currents on. For example,2increasing from 0.7668 to 0.7958 and RMSE decreasing from 0.2157 to 0.2018 confirm the effect of currents onubased parameterizations. Overall, better fits are found whenuis expressed as a function of Δinstead of10, as in the case of10only parameterizations in Table 2.

    Table 3 Parameterizations of W (%) as a function of u* and RH

    Note: Numbers given in the first column are used as references to calculateuin the legends in Fig.6.

    Fig.6 W (%), as a function of u*calculated using a different CD10 formula concluded in Table 3, corresponds to lines 1–14. Lines 15, 16, 17, and 18 represent W (u*) power law fit summarized in Schwendeman and Thomson (2015), Sugihara et al. (2007), Lafon et al. (2007), and Brumer et al. (2017), respectively.

    Zhao and Toba (2001) first put forward a kind of dimensionless parameter defined asHand suggested thatHismore related withthan with10alone. However, significant wave heights are usually selected to computeH, even though it was originally applied exclusively for windsea circumstances (Goddijn-Murphy, 2011). In this study, we use Eq. (4) to calculateH:

    whereswis the wave height of the windsea, andwis the viscosity of seawater. Most air temperatures covered therange of 22℃–30℃ during the two cruises. Thus, in Eq. (4),wis fixed at the value of 1.0098×10?6m?2s when the temperature of seawater is 22℃. Aswis dependent ontemperature and the salinity of seawater (Monahan and Zietlow, 1969; Monahan and O’Muircheartaigh, 1986;Sharqawy, 2010),Hbased parameterizations can have a good fit if thewis variable. Fig.8 shows theplotted against theHin terms of10and Δ, and the fit statistics of2and RMSE are listed in Table 4. The power law fit of, in terms of Δ, obtains a greater2of 0.7499 and a smaller RMSE of 0.2483 than thein terms of10. Only 17 out of 128 data points have a current velocity of more than 1.00m·s?1, which may lead to a relatively low increase or decrease rate for2and RMSE by fitting Δin Tables 2 and 4, respectively. The currents do have an effect on. If many measurements are obtained from a cruise passing strong current areas, then the conclusions can be further confirmed.

    Fig.7 Dependence of W (%) onu*. u*–U10 (dots) and u*–ΔU (stars) refer to the parameters of u* calculated usingU10 and ΔU in Table 2, respectively. Thecorresponding best fit tou*is shown by the solid line and dashed line.

    To sum up, the parameterizations of, as a function of10,u, andH, are all in better agreement with observations when fitted to Δthan those directly fitted to10. We suggest that currents are important for the parameterizations of, as a function of10-related parameters, because currents can change the ‘effective wind speed’ for wave growth.

    3.3 Influence of Swell on W

    We consider wave current interaction and thus investigate the statistical distributions of wave height, wave direction for wind, wind sea, and swell, as illustrated in Fig.9. The distributions of wind and wind sea are consistent with each other, whereas the direction of swell is scattered. The directional overlap between wind and wind sea suggests that enhanced wave breaking or increasedwith opposing winds and currents is likely a result of opposing wind waves and currents and the wave current interaction between them. Wave breaking may be strength- ened when laminar flow changes into turbulent associated with horizontal shear instability. For horizontally sheared currents, MacIver(2006) provided evidence that opposing(following) waves bend toward the currentnormal(parallel) andincrease (decrease) in height based on laboratory experiments. Similarly, for uniform currents, wave heights increase(decrease), and wave wavelength isshortened (lengthened), leading to large (small) wave steepness when waves move against an opposing(following) current (Haus, 2007). The scattered swells in Fig.9 urge us to reconsider if swells are insignificant for, especially in swell-dominant waters whenis parameterized usingHor if swells influencethe same way as currents.

    Fig.8 Dependence of W (%) on RH. RH–U10 (dots) and RH–ΔU (stars) mean the parameters of RH calculated usingU10 and ΔU, respectively. The corresponding best fit toRHis represented by the solid line and dashed line.

    Table 4 Parameterizations of W (%) as a function of u* and RH.

    Notes:u(H)–10andu(H)–Δmean the parameters ofu(H) calculated using10and Δ, respectively. The increase/decrease rate in the last column is the change rate of2and RMSE by fitting to Δinstead of10.

    Fig.9 Measurements ofprobability distributions by the X-band radarof WaMoS II: wind, wind sea, and swell.

    To implore the reason whyis suppressed by swells shown in Fig.10,, as a function of10, and the deflection angle between wind and swell (|wind?swell|) are displayed in Fig.11. The most striking feature of Fig.11 is the conspicuously high values of10and |wind–swell| that are approximately 11ms?1and 90?, respectively. Lowvalues ofare found where the propagating directions of winds and swells are parallel. Sugihara(2007) found no certain relationship betweenand the deflection angle between the propagating directions of wind waves and swells. Fig.11 summarizes that the perpendicular (parallel) winds to the propagating direction of swells can increase (decrease). An explanation for a greatwhen the deflection angle is approximately 90? may rest on that wave breaking occurs easily on the wave crest through disturbance when the wind blows along the crest line of swells.

    Fig.10 Parameterizations of W (%) as a function of the wave height of swell (Hss) and wind sea (Hsw).

    3.4 Discussion

    Kraan(1996) found no visual whitecaps at10of 7–8ms?1and suggested that it is caused by strong tidal currents. Given the absence of direction information, we guess that such tidal currents and their observedwindare in the same direction, which contributes to this extremely smallaccording to the theory we proposed above. Callaghan(2008) observed a sharp increase inwhen10decreases steadily. Whencurrentincreases rapidly,windremains the same, butcurrentchanges abruptly. We disagree with Callaghan(2008), who believed that the directional alignment of winds and currents and increase incurrentco-produce an increase in. Here, we propose that the enlarged difference in magnitude and direction between winds and currents increases.

    Fig.11 W (%) as a function of U10 and |Dwind–Dswell|. The black dots represent the original observations.

    Moreover, we consider that the effect of |wind–current| onis caused by wave current interaction because of the basically consistent directions of winds and wind seas. In areas with strong currents, such as the western boundary current, the calibration of10is necessary. Swells indeed affectbut in a different way compared with currents. We suppose that the propagating direction of swells perpendicular to winds contributes to a great. We cannot avoid scarce observations, including current information in previous studies. The theory here can be a good explanation for the phenomenon in Kraan(1996) and Callaghan(2008) and should be verified with additional data in further studies.

    4 Conclusions

    Using the ship-based observations from two cruises in the South China Sea and Western Pacific, we present an analysis of the influence of currents and swells on whitecap fraction.

    First, according to the deflection angle between the propagating directions of winds and currents smaller or greater than 90?, data are divided into two subsets.10-dependent parameterizations are fitted using the two subsets individually and combined to find that the following (opposing) currents can decrease (increase). On the basis of the result,10is calibrated by subtractingcurrentfrom10in the condition of following currents, whereas the opposite situation10is calibrated by adding the parallel velocity component of opposing currents to10. The power law fits in terms of Δand provides an increasing R2and decreasing RMSE, illustrating better estimates ofthan those directly fitting to10. Second, Δis introduced touandH, leading to an improvement on theparameterizations.

    Overall, swells can cause a negative impact on. Nevertheless, wave breaking is enhanced when the winds blow along the crest line of swells. Considering that we lack information about wave velocity, swells withparameterizations are yet to be studied and may be discussed in the future.

    Acknowledgements

    This work was financially supported by the Hebei Agricultural University Research Project for Talented Scholars (No. YJ201835), the National Natural Science Foundation of China (No. 41806028), the China Postdoctoral Science Foundation (No. 2019M65206), and the Fundamental Research Funds for the Central Universities (No. N182303031). The efforts of the researchers who obtained and published the data adopted in this study are much appreciated. We thank the crew, scientists, and students infor the help in the process of collecting observation data.

    Anguelova, M. D., and Webster, F., 2006. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps., 111 (C3): C03017, DOI: 10.1029/2005JC003158.

    Brocks, K., and Krugermeyer, L., 1970. The hydrodynamic rough- ness of the sea surface. In:.No. 14, University of Hamburg, 55pp.

    Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., Fairall, C. W., and Cifuentes-Lorenzen,A., 2017.Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS., 47 (9): 2211-2235, DOI: 10.1175/JPO-D-17-0005.1.

    Callaghan, A.H., and White, M., 2009. Automated processing of sea surface images for the determination of whitecap coverage., 26 (2): 383-394, DOI: 10.1175/2008JTECHO634.1.

    Callaghan, A. H., Deane, G. B., and Stokes, M. D., 2008. Observed physical and environmental causes of scatter in whitecap coverage values in a fetch-limited coastal zone., 113 (C5): C05022, DOI: 10.1029/2007JC004453.

    Deacon, E. L., and Webb, E. K., 1962. Interchange of properties between sea and air, Chapter 3, small-scale interactions.In:. Hill, M. N., ed., Interscience, New York, 43-87.

    Donelan, M. A., 1982. The dependence of the aerodynamic drag coefficient on wave parameters. In:. The Hague, Netherlands, American Meteorological Society, 381-387.

    Geernaert, G. L., 1987.On the importance of the drag coefficient in air-sea interactions., 11(1): 19-38, DOI:10.1016/0377-0265(87)90012-1.

    Goddijn-Murphy, L., Woolf, D. K., and Callaghan, A. H., 2011. Parameterizations and algorithms for oceanic whitecap coverage., 41 (4): 742-756, DOI: 10.1175/2010JPO4533.1.

    Guan, C. L., Hu, W., and Sun, J., 2007. The whitecap coverage model from breaking dissipation parameterizations of wind waves., 112 (C5): C05031, DOI: 10.1029/2006JC003714.

    Hanson, J. L., and Phillips, O. M., 1999. Wind sea growth and dissipation in the open ocean., 29 (3): 1633-1648, DOI: 10.1175/1520-0485(1999)029<1633:wsgadi>2.0.co;2.

    Haus, B. K., 2007. Surface current effects on the fetch-limited growth of wave energy., 112: C03003, DOI:10.1029/2006JC003924.

    Hwang, P. A., Toporkov, J. V., Sletten, M. A., and Menk, S. P., 2013. Mapping surface currents and waves with interferometric synthetic aperture radar in coastal waters: Observations of wave breaking in swell-dominant conditions., 43 (3): 563-582, DOI: 10.1175/JPOD-12-0128.1.

    Jia, N., and Zhao, D. L., 2019. The influence of wind speed and sea states on whitecap coverage., 18 (2): 282-292, https://doi.org/10.1007/s11802-019-3808-7.

    Khojasteh, D., Mousavi, S. M., Glamore, W., and Iglesias, G., 2018. Wave energy status in Asia., 169: 344-358, DOI: 10.1016/j.oceaneng.2018.09.034.

    Kondo, J., 1975.Air-sea bulk transfer coefficients in diabatic conditions., 9(1): 91-112, DOI:10.1007/bf00232256.

    Kraan, G., Oost, W. A., and Janssen, P. A. E. M., 1996. Wave energy dissipation by whitecaps., 13(1): 262-267, DOI: 10.1175/1520-0426(1996)0132.0.CO;2.

    Lafon, C., Piazzola, J., Forget, P., and Despiau, S., 2007. Whitecap coverage in coastal environment for steady and unsteady wave field conditions., 66: 38-46, DOI: 10.1016/j.jmarsys.2006.02.013.

    MacIver, R. D., Simons, R. R., and Thomas, G. P., 2006. Gravity waves interacting with a narrow jet-like current., 111: C03009, DOI:10.1029/2005JC003030.

    Miller, B. I., 1964. A study of filling of hurricane Donna (1960) over land., 92: 389-406, DOI: 10.1175/1520-0493(1964)0922.3.CO;2.

    Monahan, E. C., 1971. Oceanic whitecaps., 1(2): 139-144, DOI: 10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2.

    Monahan, E. C., and O’Muircheartaigh, I. G., 1986. Whitecaps and the passive remote sensing of the ocean surface., 7(5): 627-642, DOI: 10.1080/01431168608954716.

    Monahan, E. C., and Zietlow, C. R., 1969. Laboratory comparisons of fresh-water and salt-water whitecaps., 74 (28): 6961-6966, DOI: 10.1029/JC074i028p06961.

    Pearman, D. W.,Herbers, T. H. C., Janssen,T. T., van Ettinger, H. D., McIntyre, S. A., and Jessen,P. F., 2014. Drifter observations of the effects of shoals and tidal-currents on wave evolution in San Francisco Bight., 91: 109-119, DOI:10.1016/j.csr.2014.08.011.

    Ren, D. Q., Hua, F., Yang, Y. Z., and Sun, B. N., 2016. The improved model of estimating global whitecap coverage based on satellite data., 35(5): 66-72, DOI: 10.1007/s13131-016-0848-3.

    Romero, L., Lenain, L., and Melville, W. K., 2017. Observations of surface wave-current interaction.,47(3): 615-632, DOI: 10.1175/jpo-d-16-0108.1.

    Salisbury, D. J., Anguelova, M. D., and Brooks, I. M., 2013. On the variability of whitecap fraction using satellite-based observations., 118 (11): 6201-6222, DOI: 10.1002/2013JC008797.

    Schwendeman, M., and Thomson, J., 2015. Observations of white- cap coverage and the relation to wind stress, wave slope, and turbulent dissipation.,120: 8346-8363, DOI: 10.1002/2015jc011196.

    Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M., 2010. Thermophysical properties ofseawater: A review of existing correlations and data., 16: 354-380, DOI: 10.5004/dwt.2010.1079.

    Sheppard, P. A., 1958.Transfer across the earth’s surface and through the air above., 84(361): 205-224, DOI:10.1002/qj.49708436102.

    Sheppard, P. A., Tribble, D. T., and Garratt, J. R., 1972.Studies of turbulence in the surface layer over water (Lough Neagh). Part I. Instrumentation, programme, profiles., 98(417): 627-641, DOI:10.1002/qj.49709841711.

    Smith, S. D., 1980.Wind stress and heat flux over the ocean in gale force winds., 10(5): 709-726, DOI:10.1175/1520-0485(1980)010<0709:wsahfo>2.0.co;2.

    Smith, S. D., and Banke, E. G., 1975.Variation of the sea surface drag coefficient with wind speed., 101(429): 665-673, DOI:10.1002/qj.49710142920.

    Stramska, M., and Petelski, T., 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic., 108 (C3): 3086, DOI: 10.1029/2002JC001321.

    Sugihara, Y., Tsumori, H., Ohga, T., Yoshioka, H., and Serizawa, S., 2007. Variation of whitecap coverage with wave-field conditions., 66: 47-60, DOI: 10.1016/j.jmarsys.2006.01.014.

    Wieringa, J., 1974. Comparison of three methods for determining strong wind stress over Lake Flevo., 7(1): 3-19, DOI: 10.1007/bf00224969.

    Woolf, D. K., 2005. Parameterization of gas transfer velocities and sea-state-dependent wave breaking., 57(2): 87-94, DOI: 10.3402/tellusb.v57i2.16783.

    Wu, J., 1979. Oceanic whitecaps and sea state., 9 (3): 531-554, http://dx.doi.org/10.1175/1520-0485(1979)0092.0.CO;2.

    Wu, J., 1980.Wind-stress coefficients over sea surface near neutralconditions–Arevisit., 10(5): 727-740, DOI:10.1175/1520-0485(1980)010<0727:wscoss>2.0.co;2.

    Wu, J., 1988. Variations of whitecap coverage with wind stress and water temperature., 18 (10): 1448-1453, DOI: 10.1175/1520-0485(1988)018<1448:VOWCWW>2.0.CO;2.

    Xu, D., Liu, X., and Yu, D., 2000. Probability of wave breaking and whitecap coverage in a fetch-limited sea., 105 (C6): 14253-14259, DOI: 10.1029/2000jc900040.

    Yelland, M., and Taylor, P. K., 1996.Wind stress measurements from the open ocean., 26(4): 541-558, DOI:10.1175/1520-0485(1996)026<0541:wsmfto>2.0.co;2.

    Yuan, Y. L., Han, L., Hua, F., Zhang, S. W., Qiao, F. L., Yang, Y. Z., and Xia, C. S., 2009. The statistical theory of breaking entrainment depth and surface whitecap coverage of real sea waves., 39 (1): 143-161, DOI: 10.1175/2008JPO3944.1.

    Zhao, D. L., and Toba, Y., 2001. Dependence of whitecap coverage on wind and wind-wave properties., 57: 603-616, DOI: 10.1023/a:1021215904955.

    Zheng, C. W., Chen, Y. G., Zhan, C., and Wang, Q., 2019a. Source tracing of the swell energy: A case study of the Pacific Ccean.,99: 1-1,DOI: 10.1109/ACCESS.2019.2943903.

    Zheng, C. W., Liang, B. C., Chen, X., Wu, G. X., Sun, X. F., and Yao, J. L., 2020.Diffusion characteristics of swells in the North Indian Ocean., 19(3):479-488.DOI: 10.1007/s11802-020-4282-y.

    Zheng, C. W., Wu, G. X., Chen, X., Wang, Q., Gao, Z. S., Chen, Y. G.,and Luo, X., 2019b. CMIP5-based wave energy projection: Case studies of the South China Sea and the East China Sea., 7: 82753-82763, DOI: 10.1109/ACCESS.2019.2924197.

    Zubkovskii, S. L., and Kravchenko, T. K., 1967. Direct measurements of some characteristics of atmosphere turbulence in the near water layer.,3: 73-77.

    March 6, 2020;

    January 21, 2021;

    February 19, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . E-mail: zouzhongshui@126.com

    (Edited by Xie Jun)

    免费在线观看亚洲国产| 亚洲五月婷婷丁香| 亚洲片人在线观看| 美女午夜性视频免费| 国产精品免费视频内射| 欧美日韩国产亚洲二区| 免费观看精品视频网站| 午夜精品在线福利| 免费在线观看影片大全网站| 高清在线国产一区| av片东京热男人的天堂| 搡老妇女老女人老熟妇| 国产一区二区在线观看日韩 | 亚洲中文日韩欧美视频| 97超级碰碰碰精品色视频在线观看| 99精品久久久久人妻精品| 亚洲五月天丁香| 国产成人精品无人区| 久久中文字幕人妻熟女| 色综合站精品国产| 亚洲av美国av| 午夜免费观看网址| avwww免费| 午夜免费成人在线视频| 久热爱精品视频在线9| 美女午夜性视频免费| 波多野结衣巨乳人妻| 亚洲成av人片免费观看| 成在线人永久免费视频| 免费在线观看影片大全网站| 精品久久久久久久久久久久久| 久99久视频精品免费| 亚洲国产精品成人综合色| 欧美成人性av电影在线观看| 我要搜黄色片| 哪里可以看免费的av片| 久久久水蜜桃国产精品网| 国产高清激情床上av| 两个人免费观看高清视频| 欧美黑人精品巨大| 久久精品91蜜桃| 国产精品一区二区三区四区免费观看 | 国内揄拍国产精品人妻在线| 又黄又粗又硬又大视频| 丰满人妻熟妇乱又伦精品不卡| 丝袜人妻中文字幕| av欧美777| 亚洲精品中文字幕在线视频| 亚洲最大成人中文| 免费一级毛片在线播放高清视频| 成人18禁在线播放| 狂野欧美激情性xxxx| 母亲3免费完整高清在线观看| 国产精品免费一区二区三区在线| 91字幕亚洲| 日本免费一区二区三区高清不卡| 日本成人三级电影网站| 亚洲国产精品久久男人天堂| 免费在线观看亚洲国产| 国产精品 国内视频| 99国产精品一区二区蜜桃av| 亚洲av熟女| 国产三级中文精品| 国产精品乱码一区二三区的特点| 久久久精品国产亚洲av高清涩受| 俺也久久电影网| 精品久久久久久久末码| 五月伊人婷婷丁香| 日韩国内少妇激情av| 色尼玛亚洲综合影院| 日韩有码中文字幕| 最近在线观看免费完整版| 国产精品久久久av美女十八| 成人永久免费在线观看视频| xxx96com| 精品无人区乱码1区二区| 国产精品 国内视频| 嫩草影院精品99| 亚洲片人在线观看| 久久国产乱子伦精品免费另类| 精品电影一区二区在线| 激情在线观看视频在线高清| 日日夜夜操网爽| 午夜福利成人在线免费观看| 中文字幕精品亚洲无线码一区| av超薄肉色丝袜交足视频| 90打野战视频偷拍视频| 在线免费观看的www视频| 悠悠久久av| 韩国av一区二区三区四区| 精品欧美国产一区二区三| 日韩av在线大香蕉| 一个人免费在线观看电影 | 每晚都被弄得嗷嗷叫到高潮| 国产亚洲av高清不卡| 国产黄片美女视频| 老司机靠b影院| 成人国产一区最新在线观看| 国产亚洲精品第一综合不卡| 少妇人妻一区二区三区视频| 麻豆久久精品国产亚洲av| 国产av麻豆久久久久久久| 免费看日本二区| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色| 欧美中文日本在线观看视频| √禁漫天堂资源中文www| 久久伊人香网站| 九色国产91popny在线| 国产激情偷乱视频一区二区| 午夜视频精品福利| 久久人人精品亚洲av| av在线播放免费不卡| 亚洲国产欧洲综合997久久,| 九色成人免费人妻av| 日本a在线网址| av福利片在线| 国产亚洲欧美98| 亚洲国产中文字幕在线视频| 国产av一区在线观看免费| 丁香六月欧美| 99国产精品一区二区三区| 日本三级黄在线观看| 三级毛片av免费| 这个男人来自地球电影免费观看| 国产精品免费一区二区三区在线| 91麻豆精品激情在线观看国产| 久久久久久九九精品二区国产 | 国产主播在线观看一区二区| 久久精品国产清高在天天线| 国产精品爽爽va在线观看网站| 国模一区二区三区四区视频 | 午夜福利视频1000在线观看| 桃色一区二区三区在线观看| 精品久久蜜臀av无| 精品第一国产精品| 国内精品一区二区在线观看| 身体一侧抽搐| 国产精品99久久99久久久不卡| 国产精品国产高清国产av| 激情在线观看视频在线高清| 精品久久久久久久久久免费视频| 成人三级做爰电影| 又爽又黄无遮挡网站| 丝袜人妻中文字幕| 成人午夜高清在线视频| 亚洲av熟女| 国产精品 国内视频| 午夜福利在线观看吧| 中亚洲国语对白在线视频| 久久精品成人免费网站| a在线观看视频网站| 这个男人来自地球电影免费观看| 91av网站免费观看| 久久久久久国产a免费观看| 国产av一区二区精品久久| 国产又色又爽无遮挡免费看| 日韩精品免费视频一区二区三区| 国产不卡一卡二| 美女黄网站色视频| 1024香蕉在线观看| 在线免费观看的www视频| 一二三四社区在线视频社区8| 香蕉av资源在线| 美女黄网站色视频| 亚洲精品美女久久久久99蜜臀| 国产高清视频在线观看网站| 五月玫瑰六月丁香| 日韩三级视频一区二区三区| 久久精品综合一区二区三区| 久久中文字幕人妻熟女| 母亲3免费完整高清在线观看| 又大又爽又粗| 精品久久久久久久末码| 制服诱惑二区| 日本一区二区免费在线视频| 久久久久性生活片| 国产激情久久老熟女| 91大片在线观看| 欧美乱色亚洲激情| 国产一区二区三区视频了| 午夜福利18| 国产成人系列免费观看| 在线永久观看黄色视频| 男女视频在线观看网站免费 | 午夜福利在线在线| av有码第一页| 1024手机看黄色片| 九色国产91popny在线| 全区人妻精品视频| 美女大奶头视频| 99热只有精品国产| 最近视频中文字幕2019在线8| 别揉我奶头~嗯~啊~动态视频| 97超级碰碰碰精品色视频在线观看| 久久久久国产一级毛片高清牌| 又爽又黄无遮挡网站| 丁香六月欧美| 日本黄色视频三级网站网址| www日本黄色视频网| 90打野战视频偷拍视频| 1024手机看黄色片| 欧美一级a爱片免费观看看 | 国产成人精品无人区| 夜夜夜夜夜久久久久| 国产激情欧美一区二区| 亚洲精品在线美女| 久久婷婷人人爽人人干人人爱| av视频在线观看入口| 欧美中文日本在线观看视频| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 在线观看一区二区三区| 国产精品乱码一区二三区的特点| 天天一区二区日本电影三级| 日韩欧美精品v在线| 18禁美女被吸乳视频| 三级毛片av免费| 人妻久久中文字幕网| www.精华液| 少妇的丰满在线观看| 国产精品永久免费网站| 久久久久精品国产欧美久久久| 午夜日韩欧美国产| 天天一区二区日本电影三级| 一二三四在线观看免费中文在| 日本黄大片高清| 久久久国产欧美日韩av| 亚洲成人国产一区在线观看| 亚洲,欧美精品.| 国产亚洲欧美在线一区二区| 日韩欧美免费精品| 最近最新中文字幕大全免费视频| 亚洲黑人精品在线| 国产欧美日韩一区二区精品| 久久久久性生活片| 老司机午夜福利在线观看视频| 校园春色视频在线观看| 天堂影院成人在线观看| 99精品在免费线老司机午夜| 老熟妇乱子伦视频在线观看| 亚洲成人免费电影在线观看| 久久欧美精品欧美久久欧美| 99re在线观看精品视频| 五月玫瑰六月丁香| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清专用| 热99re8久久精品国产| 特大巨黑吊av在线直播| www.精华液| 午夜成年电影在线免费观看| 99热这里只有是精品50| 欧美日韩国产亚洲二区| 在线观看免费视频日本深夜| 三级国产精品欧美在线观看 | 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 国产真人三级小视频在线观看| 国产精品久久久人人做人人爽| 岛国视频午夜一区免费看| 麻豆国产97在线/欧美 | 一进一出抽搐动态| 成人三级做爰电影| 黄色a级毛片大全视频| 亚洲午夜理论影院| 欧美成人午夜精品| 老司机靠b影院| 午夜福利18| 亚洲,欧美精品.| 成在线人永久免费视频| a级毛片在线看网站| 麻豆国产av国片精品| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 99国产精品一区二区三区| 久热爱精品视频在线9| 免费看a级黄色片| 亚洲精品美女久久久久99蜜臀| 亚洲一码二码三码区别大吗| 成人av在线播放网站| 国产av一区在线观看免费| 久久精品国产综合久久久| 国产精品99久久99久久久不卡| 国产一级毛片七仙女欲春2| 免费看a级黄色片| 国产欧美日韩一区二区三| 免费观看人在逋| 久久性视频一级片| 亚洲欧美激情综合另类| 成人18禁高潮啪啪吃奶动态图| 日韩欧美在线乱码| 一级黄色大片毛片| 久久天堂一区二区三区四区| 叶爱在线成人免费视频播放| 老鸭窝网址在线观看| 狂野欧美白嫩少妇大欣赏| svipshipincom国产片| 久久 成人 亚洲| 日本黄大片高清| 亚洲国产看品久久| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲av高清一级| 亚洲一码二码三码区别大吗| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 神马国产精品三级电影在线观看 | 色综合欧美亚洲国产小说| 99热这里只有是精品50| www日本在线高清视频| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 美女 人体艺术 gogo| 免费观看精品视频网站| av福利片在线观看| 在线观看一区二区三区| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 久久久久久久久中文| 久久精品91蜜桃| 香蕉av资源在线| 毛片女人毛片| 日韩欧美国产在线观看| 日韩中文字幕欧美一区二区| 一区福利在线观看| 久久久久久久精品吃奶| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| 亚洲精品粉嫩美女一区| 男插女下体视频免费在线播放| 免费在线观看日本一区| 黄色 视频免费看| 天堂√8在线中文| 日本一二三区视频观看| 国产精品 欧美亚洲| 超碰成人久久| 2021天堂中文幕一二区在线观| 床上黄色一级片| 精品无人区乱码1区二区| 中文字幕av在线有码专区| 天天躁夜夜躁狠狠躁躁| 免费在线观看完整版高清| 久久久久国内视频| 校园春色视频在线观看| 欧美乱色亚洲激情| 亚洲成人免费电影在线观看| 国产私拍福利视频在线观看| 久久久久久久精品吃奶| 可以免费在线观看a视频的电影网站| 国产成人精品久久二区二区免费| 久久精品91蜜桃| 香蕉av资源在线| 亚洲精华国产精华精| 国产又黄又爽又无遮挡在线| 一二三四在线观看免费中文在| 国产真人三级小视频在线观看| АⅤ资源中文在线天堂| 青草久久国产| 中文在线观看免费www的网站 | 欧美日韩乱码在线| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线在线| 丰满的人妻完整版| 国产三级黄色录像| 两个人视频免费观看高清| 99riav亚洲国产免费| 久久热在线av| 亚洲一区二区三区色噜噜| 丰满人妻一区二区三区视频av | 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 国产精品1区2区在线观看.| 欧美黑人精品巨大| 一级片免费观看大全| 欧美丝袜亚洲另类 | 久久久久久国产a免费观看| 亚洲欧美日韩高清专用| 国产精品电影一区二区三区| 午夜视频精品福利| 国产精品九九99| 欧美日韩一级在线毛片| 中文在线观看免费www的网站 | 九色成人免费人妻av| 最近在线观看免费完整版| 日日夜夜操网爽| 少妇粗大呻吟视频| 一二三四社区在线视频社区8| 免费人成视频x8x8入口观看| 黄色丝袜av网址大全| 亚洲专区字幕在线| 国产精品香港三级国产av潘金莲| 性色av乱码一区二区三区2| 欧美丝袜亚洲另类 | 一夜夜www| 婷婷丁香在线五月| 亚洲av五月六月丁香网| 日韩欧美一区二区三区在线观看| 麻豆av在线久日| 成人18禁高潮啪啪吃奶动态图| 岛国在线观看网站| 在线永久观看黄色视频| 亚洲精品久久国产高清桃花| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区色噜噜| 亚洲熟妇熟女久久| 操出白浆在线播放| 在线观看舔阴道视频| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 精品久久久久久成人av| 精品少妇一区二区三区视频日本电影| 久久这里只有精品中国| 久久久精品国产亚洲av高清涩受| 在线观看舔阴道视频| 亚洲18禁久久av| 国产成人一区二区三区免费视频网站| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 大型av网站在线播放| 午夜精品一区二区三区免费看| 男人舔女人的私密视频| 在线观看美女被高潮喷水网站 | 国产伦人伦偷精品视频| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 丰满的人妻完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 1024香蕉在线观看| 99久久无色码亚洲精品果冻| 亚洲精品av麻豆狂野| 精品电影一区二区在线| 亚洲av第一区精品v没综合| 啦啦啦观看免费观看视频高清| 国产av在哪里看| 黄片大片在线免费观看| 成人精品一区二区免费| 国产精品久久久av美女十八| 亚洲五月天丁香| 99国产精品99久久久久| 亚洲精品一区av在线观看| 国产av又大| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 日韩有码中文字幕| 亚洲色图av天堂| 欧美一区二区国产精品久久精品 | 精品第一国产精品| 2021天堂中文幕一二区在线观| 90打野战视频偷拍视频| 国产精品 欧美亚洲| 91字幕亚洲| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 国产野战对白在线观看| 久久久久九九精品影院| 日韩欧美在线乱码| 国产欧美日韩一区二区三| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 琪琪午夜伦伦电影理论片6080| 久久久久国产一级毛片高清牌| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 免费看日本二区| 我的老师免费观看完整版| 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 色综合亚洲欧美另类图片| 亚洲免费av在线视频| 小说图片视频综合网站| 国内毛片毛片毛片毛片毛片| 高潮久久久久久久久久久不卡| 村上凉子中文字幕在线| 久久香蕉激情| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 欧美大码av| 99re在线观看精品视频| 美女 人体艺术 gogo| 国产一区二区三区视频了| 成人午夜高清在线视频| 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 国产成人影院久久av| 欧美乱色亚洲激情| 亚洲精品色激情综合| www.精华液| 国产av在哪里看| 欧美乱妇无乱码| 又黄又爽又免费观看的视频| 中文字幕熟女人妻在线| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 最近在线观看免费完整版| 欧美日韩瑟瑟在线播放| 亚洲av日韩精品久久久久久密| 国产aⅴ精品一区二区三区波| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 婷婷精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| www日本黄色视频网| 三级毛片av免费| 亚洲精品在线美女| 99久久无色码亚洲精品果冻| 中文字幕av在线有码专区| 十八禁网站免费在线| 老司机福利观看| 午夜免费成人在线视频| 久9热在线精品视频| 黄色成人免费大全| 香蕉丝袜av| 麻豆一二三区av精品| www.999成人在线观看| 亚洲av电影不卡..在线观看| 一区二区三区高清视频在线| 欧美黑人巨大hd| 无限看片的www在线观看| 国产三级黄色录像| 国产精品一区二区免费欧美| 久久精品夜夜夜夜夜久久蜜豆 | 级片在线观看| 国产真人三级小视频在线观看| 免费在线观看成人毛片| 国产高清视频在线播放一区| 一本久久中文字幕| 亚洲色图av天堂| 91av网站免费观看| 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 国产探花在线观看一区二区| 免费av毛片视频| 亚洲国产精品久久男人天堂| 丁香欧美五月| 欧美色欧美亚洲另类二区| 不卡一级毛片| 1024视频免费在线观看| 成人高潮视频无遮挡免费网站| 天天添夜夜摸| 一级毛片高清免费大全| 黄片小视频在线播放| 午夜福利成人在线免费观看| 午夜福利18| 亚洲人成伊人成综合网2020| 老熟妇仑乱视频hdxx| 欧美日韩一级在线毛片| 亚洲成人久久性| 国产欧美日韩一区二区精品| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片| 婷婷亚洲欧美| 久久精品国产亚洲av高清一级| 脱女人内裤的视频| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 亚洲av中文字字幕乱码综合| 亚洲男人天堂网一区| 伦理电影免费视频| 亚洲av美国av| 两个人看的免费小视频| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 亚洲国产精品久久男人天堂| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲人成网站高清观看| avwww免费| 法律面前人人平等表现在哪些方面| 草草在线视频免费看| 亚洲av电影不卡..在线观看| 亚洲精品一区av在线观看| 三级毛片av免费| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站| 欧美成人午夜精品| 嫁个100分男人电影在线观看| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 久久精品91蜜桃| 国产精华一区二区三区| 日韩中文字幕欧美一区二区| 毛片女人毛片| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费 | or卡值多少钱| 男男h啪啪无遮挡| 中文字幕熟女人妻在线| 亚洲成av人片在线播放无| 亚洲人成77777在线视频| 久久久久免费精品人妻一区二区| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 国产亚洲精品av在线| 少妇裸体淫交视频免费看高清 |