• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE VON NEUMANN PARADOX FOR THE EULER EQUATIONS?

    2021-06-17 13:59:10王麗
    關(guān)鍵詞:王麗

    (王麗)

    Department of Arts and Sciences,Shanghai Dianji University,Shanghai 201306,China

    E-mail:wangli@sdju.edu.cn

    Abstract The reflection of a weak shock wave is considered using a shock polar.We present a sufficient condition under which the von Neumann paradox appears for the Euler equations.In an attempt to resolve the von Neumann paradox for the Euler equations,two new types of reflection configuration,one called the von Neumann reflection(vNR)and the other called the Guderley reflection(GR),are observed in numerical calculations.Finally,we obtain that GR is a reasonable configuration and vNR is an unreasonable configuration to resolve the von Neumann paradox.

    Key words von Neumann paradox;shock polar;Guderley reflection;von Neumann reflection

    1 Introduction

    The phenomenon of shock wave reflection was first reported by Ernst Mach[1]in 1878.In his experiments,he discovered two types of shock wave reflection configurations:regular reflection(RR)and irregular reflection(IR).Mach reflection(MR)is the main wave configuration among the various ones in IR,and it was systematically investigated by von Neumann[2]in 1943.According to the three shock theory(3ST)proposed by von Neumann,the wave configuration in the Mach reflection consists of three shocks and a contact discontinuity.When the incident shock is strong,the above mentioned theoretical result coincides well with experiments.However,for sufficiently weak shock,an interesting phenomenon has been found:there is no MR solution according to 3ST,but experimental results[3,4]and numerical results[5–7]show that there exists a wave configuration similar to the MR configuration.This phenomenon was suggested by Guderley[8],who concluded that a supersonic patch exists behind the triple point.Such a discrepancy was called the von Neumann paradox,and it has been studied by many authors[9].In this paper,we present a sufficient condition under which the von Neumann paradox appears for the Euler equations.

    The first serious attempt to simulate numerical shock wave reflection under the conditions of the von Neumann paradox was undertaken by Colella and Henderson[3]using a secondorder accurate scheme.They hypothesized that the reflected shock wave degenerated into a continuous compression wave near the triple point.This type of reflection configuration is now referred to as vNR.However,Olim and Dewey[10]showed that experiments comply with this hypothesis only when Ms<1.05,or for a wedge angle θw<10°.In[11],Lai and Sheng proved that the reflection configuration in which the Mach shock is smoothly merged into the incident shock at a point and where the wave behind this point is smooth is a mathematically impossible flow pattern for the two-dimensional(2D)self-similar potential flow equation and the 2D self-similar Euler equations.In this paper,we conduct numerical calculations using the Euler equations to confirm the unreasonableness of vNR in order to resolve the von Neumann paradox.

    In 1947,Guderley[8]proposed a modified Mach reflection.He added a centered expansion fan and a supersonic path behind the triple point.He also demonstrated that the local structures consisting of three shocks,a centered expansion fan and a contact discontinuity are possible.Calculations performed by Vasilev[12]confirmed the principal points of Guderley’s solution.Tesdall and Hunter[13]conducted numerical calculations using a simplified model based on the two-dimensional Burger’s equation.Tesdall et al.[14]performed similar calculations using the model of the nonlinear wave system.This new type of reflection configuration is now referred to as GR.Numerous experiments and numerical calculations that were reported in[15–20]confirmed the reasonableness of GR for resolving the von Neumann paradox.Lai and Sheng[21]confirmed the reasonableness of GR mathematically for the two-dimensional(2D)self-similar potential flow equation.In this paper,we conduct numerical calculations using the Euler equations to confirm the reasonableness of GR for resolving the von Neumann paradox.

    The paper is organized as follows:in Section 2,we present a sufficient condition under which the von Neumann paradox appears for the Euler equations.In Section 3,we study vNR in numerical calculations and confirm that vNR is an unreasonable configuration for resolving the von Neumann paradox.In Section 4,we study GR in numerical calculations and confirm that GR is a reasonable configuration for resolving the von Neumann paradox.

    2 The Sufficient Condition Under Which the von Neumann Paradox Appears for the Euler Equations

    The 3ST is the analytical model for describing the flow field near the triple point of a Mach reflection(MR).The wave configuration and some associated parameters of an MR are shown in Figure 1.

    Figure 1

    The MR consists of the incident shock wave,i,the reflected shock wave,r,the Mach stem,m,and one slipstream,s.These four discontinuities meet at a single point,known as the triple point,T.The flow field is divided into four regions:(0),(1),(2)and(3).Here,piis the flow pressure,Tiis the flow temperature,Miis the Mach number(i=0,1,2,3),θ0,θ20,θ30are the incident angles of the flow,and θj(j=1,2,3)are the deflected angles of the flow[22].In virtue of the conservation equations across an oblique shock wave,together with appropriate boundary conditions,we get[23,24]that

    (i)Across the incident shock wave i:

    (ii)Across the reflected shock wave r:

    (iii)Across the Mach stem m:

    In addition to these equations,there are also two boundary conditions which arise from the fact that state(2)and(3)are separated by a contact surface across which the pressure remains constant,that is,[22],

    Furthermore,if the flow is assumed to be inviscid and if the contact surface is assumed to be infinitely thin,that is,a slipstream,then the flows on both sides of the slipstream are parallel,that is,

    Using the expression for the Mach numberwhere γ is the adiabatic exponent and R is the specific gas constant,the eight parameters of equations(2.1)–(2.4)become p0,p1,T0,T1,M0,M1,θ0and θ1.Given p0,T0,M0and θ0,by solving the equations(2.1)–(2.4),we have

    When the shock is weak,there are initial conditions for which the 3ST does not provide any solution.In what follows,we give the sufficient condition under which the von Neumann paradox occurs.It is worth mentioning that the condition we propose here is a sufficient but not a necessary one.

    Theorem 2.1When the flow field(0)satisfiesand 1.18≤M0≤1.32,the von Neumann paradox takes place,where Ms=M0sinθ0is the Mach number of the shock wave.

    ProofFor the convenience,we use the polar coordinates(P,θ),whereThe equation of the I-polar is

    the equation of the left bench of the R-polar is

    and the equation of the right bench of the R-polar is

    We will show that the R-polar is inside the I-polar wholly for the condition proposed in Theorem 2.1;see Figure 2.Thus the 3ST does not provide any solution and the von Neumann paradox occurs.

    Figure 2 (=,γ=,M0=1.2)

    Using(2.15)–(2.17),we obtain

    Inserting(2.21)into(2.18)–(2.20),we get

    and

    Proposition 2.2Whenthe R-polar does not intersect either the P-axis or the I-polar.

    Firstly,we prove that the R-polar does not intersect the P-axis whenDifferentiating(2.23)with respect to P,we have

    we see that the minimum value of the objective function is 0.0198(rounded to 4 decimal places),which is positive and occurs when M0=1.32.The relationship betweenand M0and the minimum point of the functionare displayed in Figure 3.

    Figure 3

    Figure 4

    3 Unreasonableness of vNR to Resolve the von Neumann Paradox

    In order to resolve the von Neumann paradox,Colella and Henderson investigated,numerically,the weak-shock wave reflection domain,and found that there were cases in which there was no apparent discontinuity in the slope between the incident shock wave and the Mach stem and that the reflected shock wave degenerated near the triple point to a band of compression wave(see Figure 5).

    Figure 5

    Next,we will show that the vNR is an unreasonable configuration for resolving the von Neumann paradox.In what follows,we also suppose that the flow field(0)satisfies=6/5,γ=and 1.18≤M0≤1.32,where Ms=M0sinθ0is the Mach number of the shock wave.

    From Figure 5,we see that states(1)and(3)connect with state(0)via the incident shock wave i and the mach stem m,respectively,and state(2)connects with state(1)via a band of compression wave near the triple point.For convenience,we use the polar coordinates(P,θ),where P=.As is known,states(1)and(3)connect with state(0)via the I-polar defined by(2.22),and state(2)connects with state(1)via the epicycloid[23]

    where ν(M)is given by the following expression:

    The total pressures on both sides of the compression wave are the same,hence

    Theorem 3.1When the flow field(0)satisfiesand 1.18≤M0≤1.32,the vNR is an unreasonable configuration for resolving the von Neumann paradox,where Ms=M0sinθ0is the Mach number of the shock wave.

    ProofOn the basis of the above analysis,if we can prove that the I-polar defined by(2.22)cannot intersect with the epicycloid defined by(3.4)when(see Figure 6),the proof of Theorem 3.1 is finished.

    Figure 6 (=,γ=,M0=1.25)

    Figure 7

    4 Reasonableness of GR to Resolve the von Neumann Paradox

    In order to resolve the von Neumann paradox,Guderley[8]proposed a modified Mach reflection.He added a centered expansion fan and a supersonic path behind the triple point.Many researchers have supported the above idea through experiment,numerical calculation or theoretical analysis[11–20].This type of reflection configuration is now referred to as GR(see Figure 8).Next,we will show that GR is a reasonable configuration for resolving the von Neumann paradox.In what follows,we also suppose that the flow field(0)satisfiesand 1.18≤M0≤1.32,where Ms=M0sinθ0is the Mach number of shock wave.

    Figure 8

    According to the oblique shock theory,we have

    For our convenience,we use the polar coordinates(P,θ),whereAs is well known,states(1)and(4)connect with state(0)via the I-polar defined by(2.22),state(2)connects with state(1)via the R-polar defined by(2.24),and state(3)connects with state(2)via the epicycloid[23]

    where ν(M)is given by the following expression:

    The total pressures on both sides of the compression wave are the same,hence

    For closing the 4 wave theory,we require the following:

    In virtue of(4.4)–(4.8),we have

    From Figure 8,we know that on both sides of the slip line,P3=P4,where(i=3,4).

    Theorem 4.1When the flow field(0)satisfiesand 1.18≤M0≤1.32,the GR is a reasonable configuration for resolving the von Neumann paradox,where Ms=M0sinθ0is the Mach number of the shock wave.

    ProofOn the basis of the above analysis,if we can prove that the I-polar defined by(2.22)can intersect with the epicycloid defined by(4.9)(see Figure 9),the proof of Theorem 4.1 is finished.

    Figure 9 (=,γ=,M0=1.25)

    Figure 10

    From(4.9),we get

    Solving a nonlinear programming problem

    This finishes the proof of Theorem 4.1. □

    猜你喜歡
    王麗
    王麗攝影作品欣賞(二)
    參花(下)(2023年12期)2023-12-12 13:30:40
    請(qǐng)移走麻木對(duì)我的傷害(下篇)
    黃偉芬:中國航天員的“女教頭”
    做人與處世(2022年6期)2022-05-26 10:26:35
    慢性非傳染性疾病的預(yù)防醫(yī)學(xué)診療服務(wù)研究
    淺析中小企業(yè)應(yīng)收賬款存在的問題及對(duì)策
    踏實(shí)
    上海故事(2018年10期)2018-11-13 02:28:52
    想象出來的“問題”
    和老師同名
    Improved Kernel PLS-based Fault Detection Approach for Nonlinear Chemical Processes*
    多嘴的后果
    故事林(2011年2期)2011-05-14 17:29:44
    久久久久免费精品人妻一区二区| 精品久久久久久久久久久久久| 性色av乱码一区二区三区2| 在线观看av片永久免费下载| 18+在线观看网站| 观看免费一级毛片| 成人亚洲精品av一区二区| 亚洲av第一区精品v没综合| 日韩欧美三级三区| 一区福利在线观看| 亚洲 国产 在线| 好男人电影高清在线观看| 成年女人看的毛片在线观看| 在线观看免费视频日本深夜| 在线观看免费视频日本深夜| 免费av不卡在线播放| 国产精品国产高清国产av| 国产亚洲精品一区二区www| 一本精品99久久精品77| 老司机福利观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品影视一区二区三区av| 中文字幕人妻丝袜一区二区| 国产真实伦视频高清在线观看 | 五月玫瑰六月丁香| 久久精品国产清高在天天线| 3wmmmm亚洲av在线观看| 国产精品综合久久久久久久免费| 在线a可以看的网站| 免费看光身美女| 国产伦精品一区二区三区四那| 熟女少妇亚洲综合色aaa.| 午夜激情福利司机影院| 久久午夜亚洲精品久久| 嫩草影院入口| 一个人免费在线观看的高清视频| 搡女人真爽免费视频火全软件 | 好看av亚洲va欧美ⅴa在| 免费一级毛片在线播放高清视频| 午夜久久久久精精品| 亚洲av不卡在线观看| 99热这里只有精品一区| 内地一区二区视频在线| 国产精品亚洲av一区麻豆| 又黄又粗又硬又大视频| 啦啦啦观看免费观看视频高清| 很黄的视频免费| 国产成人影院久久av| 国产美女午夜福利| 国产中年淑女户外野战色| 中国美女看黄片| 观看美女的网站| 成人特级av手机在线观看| 日韩 欧美 亚洲 中文字幕| 国产精品久久久久久亚洲av鲁大| 免费无遮挡裸体视频| 欧美高清成人免费视频www| 天堂影院成人在线观看| 夜夜躁狠狠躁天天躁| 麻豆成人av在线观看| 婷婷精品国产亚洲av| 久久久久久人人人人人| 色吧在线观看| 国产高清有码在线观看视频| 青草久久国产| 桃红色精品国产亚洲av| 一级作爱视频免费观看| 欧美色欧美亚洲另类二区| 国内久久婷婷六月综合欲色啪| 国产精品久久电影中文字幕| 黄色丝袜av网址大全| 久久国产精品人妻蜜桃| 中文字幕av在线有码专区| 欧美日韩精品网址| 2021天堂中文幕一二区在线观| 国产欧美日韩精品亚洲av| 日韩欧美免费精品| 精品久久久久久久末码| 欧美成狂野欧美在线观看| 母亲3免费完整高清在线观看| 国产一区二区三区在线臀色熟女| 欧美黄色片欧美黄色片| 国产真实伦视频高清在线观看 | 欧美性猛交黑人性爽| 97超视频在线观看视频| 色噜噜av男人的天堂激情| 一区福利在线观看| 女人高潮潮喷娇喘18禁视频| 国内精品美女久久久久久| 老熟妇乱子伦视频在线观看| 中文资源天堂在线| 天堂网av新在线| 日本三级黄在线观看| 成人鲁丝片一二三区免费| 男人的好看免费观看在线视频| 嫩草影院精品99| 国产一区二区在线av高清观看| 欧美午夜高清在线| 五月伊人婷婷丁香| 波多野结衣高清无吗| 99视频精品全部免费 在线| 看黄色毛片网站| 最新美女视频免费是黄的| 欧美日韩亚洲国产一区二区在线观看| 一级黄片播放器| 欧美乱妇无乱码| 亚洲国产精品成人综合色| 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色| 成年女人永久免费观看视频| 国产国拍精品亚洲av在线观看 | 久久久久久久午夜电影| 在线免费观看的www视频| 18禁黄网站禁片免费观看直播| 午夜a级毛片| 黄色女人牲交| www.999成人在线观看| 中文字幕人成人乱码亚洲影| 亚洲精品在线观看二区| 国内精品美女久久久久久| 三级男女做爰猛烈吃奶摸视频| 国产精品乱码一区二三区的特点| 国产探花在线观看一区二区| 精品久久久久久久久久久久久| 又爽又黄无遮挡网站| 狂野欧美白嫩少妇大欣赏| 久久久久九九精品影院| 亚洲五月天丁香| 欧美日韩乱码在线| 亚洲av电影在线进入| 欧美一区二区国产精品久久精品| 长腿黑丝高跟| 免费av毛片视频| 亚洲激情在线av| 免费av毛片视频| 国产精品久久久人人做人人爽| 中国美女看黄片| 日韩欧美免费精品| 国产精品女同一区二区软件 | 欧美一级毛片孕妇| 精品无人区乱码1区二区| 午夜精品久久久久久毛片777| 久久九九热精品免费| 亚洲五月天丁香| av视频在线观看入口| av视频在线观看入口| 精品免费久久久久久久清纯| 观看美女的网站| 极品教师在线免费播放| 90打野战视频偷拍视频| 亚洲内射少妇av| 亚洲熟妇中文字幕五十中出| 黄色女人牲交| 久久精品国产亚洲av香蕉五月| 97人妻精品一区二区三区麻豆| 又粗又爽又猛毛片免费看| 日韩精品青青久久久久久| 久久久久久久久大av| or卡值多少钱| 69人妻影院| 国产精品久久视频播放| 亚洲最大成人手机在线| 日本一二三区视频观看| 日韩亚洲欧美综合| 午夜精品久久久久久毛片777| 一级黄片播放器| 蜜桃亚洲精品一区二区三区| 亚洲国产中文字幕在线视频| 国产aⅴ精品一区二区三区波| 日韩大尺度精品在线看网址| www日本在线高清视频| 国产精品亚洲美女久久久| 国产免费男女视频| 白带黄色成豆腐渣| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 亚洲美女黄片视频| eeuss影院久久| 欧美午夜高清在线| 久久久成人免费电影| 在线观看免费视频日本深夜| 91九色精品人成在线观看| 成人欧美大片| 搞女人的毛片| av福利片在线观看| 久久香蕉精品热| 不卡一级毛片| 亚洲成人精品中文字幕电影| 日韩成人在线观看一区二区三区| 淫秽高清视频在线观看| 欧美日韩乱码在线| 国产精品久久视频播放| av女优亚洲男人天堂| x7x7x7水蜜桃| 国内精品久久久久久久电影| xxxwww97欧美| 久久久国产成人精品二区| 成人18禁在线播放| 国产在线精品亚洲第一网站| 天堂网av新在线| 中文资源天堂在线| 99视频精品全部免费 在线| 伊人久久大香线蕉亚洲五| 啦啦啦免费观看视频1| 中文字幕人妻丝袜一区二区| 乱人视频在线观看| 免费人成视频x8x8入口观看| 一边摸一边抽搐一进一小说| 日韩亚洲欧美综合| 成人亚洲精品av一区二区| 精品一区二区三区av网在线观看| 国产伦一二天堂av在线观看| 亚洲av五月六月丁香网| 国产一级毛片七仙女欲春2| 精华霜和精华液先用哪个| 精品乱码久久久久久99久播| 欧美xxxx黑人xx丫x性爽| 99在线视频只有这里精品首页| 成人鲁丝片一二三区免费| 淫妇啪啪啪对白视频| 国产探花极品一区二区| 在线观看66精品国产| 男人舔奶头视频| 国产精品久久久久久精品电影| or卡值多少钱| 真人一进一出gif抽搐免费| 色视频www国产| 亚洲av成人精品一区久久| 欧美激情久久久久久爽电影| 好男人电影高清在线观看| 色综合亚洲欧美另类图片| 天美传媒精品一区二区| 亚洲欧美日韩高清专用| e午夜精品久久久久久久| 欧美大码av| 中文字幕高清在线视频| 免费一级毛片在线播放高清视频| av天堂中文字幕网| 午夜福利在线在线| 欧美黄色片欧美黄色片| 久久精品91无色码中文字幕| 成人av在线播放网站| 观看免费一级毛片| 久久国产精品影院| 欧美在线黄色| 观看美女的网站| 麻豆成人午夜福利视频| 九色国产91popny在线| 一个人看的www免费观看视频| 男人舔奶头视频| www.色视频.com| 亚洲av一区综合| 97超级碰碰碰精品色视频在线观看| 怎么达到女性高潮| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 免费人成视频x8x8入口观看| 久久久国产成人精品二区| 一区二区三区国产精品乱码| 91字幕亚洲| 一二三四社区在线视频社区8| 高清毛片免费观看视频网站| 美女高潮的动态| 中文资源天堂在线| 最好的美女福利视频网| 午夜福利免费观看在线| 男人的好看免费观看在线视频| 99热这里只有精品一区| 在线十欧美十亚洲十日本专区| 一级a爱片免费观看的视频| 日韩欧美免费精品| 女警被强在线播放| 国产成人av激情在线播放| 天天一区二区日本电影三级| 精品电影一区二区在线| 国产蜜桃级精品一区二区三区| 天美传媒精品一区二区| 欧美日韩国产亚洲二区| 国产高清视频在线播放一区| www.999成人在线观看| 欧美成人a在线观看| 精品久久久久久久久久久久久| 免费无遮挡裸体视频| 午夜福利18| 亚洲精品国产精品久久久不卡| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 噜噜噜噜噜久久久久久91| 国产亚洲av嫩草精品影院| 国产久久久一区二区三区| 757午夜福利合集在线观看| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 丁香六月欧美| 一区二区三区高清视频在线| 国产精品免费一区二区三区在线| 国产精品久久视频播放| 级片在线观看| 99视频精品全部免费 在线| 五月玫瑰六月丁香| 亚洲欧美日韩高清专用| 久久伊人香网站| 黄色日韩在线| 午夜福利欧美成人| 亚洲av电影在线进入| 国语自产精品视频在线第100页| 一区二区三区激情视频| 久久久久久久久大av| 国产精品久久久久久人妻精品电影| 狂野欧美激情性xxxx| 日韩国内少妇激情av| 色噜噜av男人的天堂激情| 18美女黄网站色大片免费观看| 国产综合懂色| 婷婷亚洲欧美| 国产高清激情床上av| 免费观看的影片在线观看| 欧美国产日韩亚洲一区| 国产精品亚洲一级av第二区| 久久久久久久久大av| 亚洲五月天丁香| 国产综合懂色| 国产亚洲精品久久久久久毛片| 久久久成人免费电影| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美 | 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 欧美日韩亚洲国产一区二区在线观看| 波野结衣二区三区在线 | 欧美黑人欧美精品刺激| 男插女下体视频免费在线播放| 级片在线观看| 国产精品久久久久久久电影 | 99久久综合精品五月天人人| 亚洲国产欧美网| 国产精品影院久久| 午夜亚洲福利在线播放| 老司机午夜十八禁免费视频| 久久久久免费精品人妻一区二区| 久久人人精品亚洲av| 亚洲欧美日韩卡通动漫| 亚洲男人的天堂狠狠| 97人妻精品一区二区三区麻豆| 制服丝袜大香蕉在线| www.熟女人妻精品国产| 久久国产精品影院| 欧美黄色片欧美黄色片| 禁无遮挡网站| 99精品在免费线老司机午夜| 嫩草影视91久久| 国产伦人伦偷精品视频| 国产亚洲精品久久久com| 成年女人毛片免费观看观看9| svipshipincom国产片| 内射极品少妇av片p| 精品久久久久久,| 欧美性感艳星| 少妇的丰满在线观看| 久久精品国产亚洲av涩爱 | 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 日韩av在线大香蕉| 色av中文字幕| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲五月天丁香| 一级毛片女人18水好多| 国内少妇人妻偷人精品xxx网站| 亚洲av日韩精品久久久久久密| 成年免费大片在线观看| 91九色精品人成在线观看| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 久久精品国产综合久久久| 黄片小视频在线播放| 99精品久久久久人妻精品| 天堂av国产一区二区熟女人妻| 大型黄色视频在线免费观看| 18禁在线播放成人免费| 婷婷丁香在线五月| 18+在线观看网站| 午夜影院日韩av| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 日韩精品中文字幕看吧| 午夜免费观看网址| 午夜福利在线观看吧| 热99re8久久精品国产| 欧美一级a爱片免费观看看| 国产精品99久久久久久久久| 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美 | 国产美女午夜福利| 亚洲中文字幕一区二区三区有码在线看| 久久久久久大精品| 在线看三级毛片| 精品久久久久久久人妻蜜臀av| www.色视频.com| 亚洲av免费高清在线观看| 午夜日韩欧美国产| 少妇丰满av| 久9热在线精品视频| 精品不卡国产一区二区三区| 一进一出好大好爽视频| 欧美色视频一区免费| 99久久精品一区二区三区| 日本五十路高清| 久久亚洲真实| 国产av麻豆久久久久久久| 久久久久亚洲av毛片大全| 亚洲av电影在线进入| 国产单亲对白刺激| 黄色日韩在线| 男女床上黄色一级片免费看| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 五月伊人婷婷丁香| 中国美女看黄片| 欧美最黄视频在线播放免费| 久久久久久九九精品二区国产| 亚洲性夜色夜夜综合| 色av中文字幕| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 日本熟妇午夜| 久久这里只有精品中国| 国产成人影院久久av| 丁香六月欧美| 在线视频色国产色| 久久精品91无色码中文字幕| 午夜精品一区二区三区免费看| 日韩欧美国产一区二区入口| 欧美日韩乱码在线| 亚洲第一电影网av| 老汉色∧v一级毛片| 乱人视频在线观看| 亚洲国产中文字幕在线视频| 一区二区三区激情视频| 久久精品综合一区二区三区| 美女高潮的动态| 国产精品1区2区在线观看.| 亚洲18禁久久av| 免费在线观看亚洲国产| 网址你懂的国产日韩在线| 国产一区二区三区视频了| 香蕉av资源在线| 日本黄色片子视频| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 国内精品久久久久精免费| 亚洲成人中文字幕在线播放| tocl精华| 亚洲最大成人中文| 亚洲精品粉嫩美女一区| 精品99又大又爽又粗少妇毛片 | 天美传媒精品一区二区| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 亚洲五月婷婷丁香| www日本在线高清视频| 国产黄a三级三级三级人| 婷婷丁香在线五月| 91字幕亚洲| 免费看十八禁软件| 特级一级黄色大片| 久久中文看片网| 51国产日韩欧美| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看| 熟女少妇亚洲综合色aaa.| 男人舔奶头视频| 性色avwww在线观看| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| www.熟女人妻精品国产| www日本黄色视频网| 操出白浆在线播放| 又紧又爽又黄一区二区| 一个人免费在线观看电影| 亚洲在线观看片| 在线观看一区二区三区| 热99re8久久精品国产| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 成人午夜高清在线视频| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 免费在线观看成人毛片| 免费在线观看影片大全网站| 岛国在线免费视频观看| 亚洲欧美日韩东京热| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 色在线成人网| 亚洲欧美日韩高清专用| h日本视频在线播放| 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 午夜福利在线在线| 久久午夜亚洲精品久久| 国产精品国产高清国产av| 久久香蕉国产精品| 国产精品一区二区免费欧美| 亚洲美女视频黄频| 色视频www国产| 悠悠久久av| 亚洲精品久久国产高清桃花| 一本综合久久免费| 午夜福利免费观看在线| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 日日夜夜操网爽| 18禁国产床啪视频网站| www.熟女人妻精品国产| 国产不卡一卡二| 亚洲一区高清亚洲精品| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| av天堂中文字幕网| 夜夜爽天天搞| 日本成人三级电影网站| 日本一二三区视频观看| 国产免费一级a男人的天堂| 黄片大片在线免费观看| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 美女免费视频网站| 国产日本99.免费观看| 每晚都被弄得嗷嗷叫到高潮| 色精品久久人妻99蜜桃| 国产伦在线观看视频一区| 国产成人福利小说| 国产av一区在线观看免费| 搡老岳熟女国产| 久久久久性生活片| 精品电影一区二区在线| 男插女下体视频免费在线播放| 日韩精品中文字幕看吧| 免费观看人在逋| 欧美高清成人免费视频www| 国产国拍精品亚洲av在线观看 | 免费观看精品视频网站| 欧美午夜高清在线| 欧美一级毛片孕妇| 欧美日韩综合久久久久久 | 亚洲av成人av| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆| 午夜激情欧美在线| 每晚都被弄得嗷嗷叫到高潮| 黄片大片在线免费观看| 黄色日韩在线| 69av精品久久久久久| 久久精品国产亚洲av涩爱 | 99热精品在线国产| 亚洲,欧美精品.| 亚洲第一电影网av| 少妇丰满av| 特大巨黑吊av在线直播| 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器| 日韩中文字幕欧美一区二区| 国产精品女同一区二区软件 | 久久99热这里只有精品18| 最近最新免费中文字幕在线| 成人国产综合亚洲| 91麻豆精品激情在线观看国产| 色综合欧美亚洲国产小说| 亚洲乱码一区二区免费版| 一级作爱视频免费观看| 精品一区二区三区视频在线观看免费| 久久亚洲真实| 手机成人av网站| 69人妻影院| 99国产精品一区二区三区| 叶爱在线成人免费视频播放| 午夜精品一区二区三区免费看| 久久精品国产清高在天天线| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色综合欧美亚洲国产小说| 国产真实伦视频高清在线观看 | 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| 亚洲精品一卡2卡三卡4卡5卡| 99国产精品一区二区蜜桃av| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人 | 国产私拍福利视频在线观看| 在线播放国产精品三级| 久久婷婷人人爽人人干人人爱| 亚洲人成网站在线播| 在线观看一区二区三区| 亚洲av不卡在线观看| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 18禁黄网站禁片免费观看直播| www国产在线视频色| 精品人妻1区二区| 99热6这里只有精品| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 午夜激情欧美在线| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 国内精品美女久久久久久| av女优亚洲男人天堂|