• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL WEAK SOLUTIONS TO THE α-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS?

    2021-06-17 13:58:48任亞伯
    關(guān)鍵詞:亞伯

    (任亞伯)

    Faculty of Science,Beijing University of Technology,Beijing 100124,China

    E-mail:ryb2018@emails.bjut.edu.cn

    Boling GUO(郭柏靈)

    Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China

    E-mail:gbl@iapcm.ac.cn

    Shu WANG(王術(shù))

    Faculty of Science,Beijing University of Technology,Beijing 100124,China

    E-mail:wangshu@bjut.edu.cn

    AbstractGlobal in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper.We prove the existence of global weak solutions to α-model regularization for the three dimension compressible Euler-Poisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies γ>

    Key wordsGlobal weak solutions;α-model regularization for Euler-Poisson equations;Faedo-Galerkin method

    1 Introduction

    The motion of a compressible isentropic perfect fluid with self-gravitation is modeled by the Euler-Poisson equations in three space dimensions:

    where t≥0,x∈T3,ρ,u=(u1,u2,u3),P(ρ)and Φ represent the fluid density,velocity,pressure and gravitational potential,respectively.We assume that the pressure function P(ρ)satisfies the usual γ-law,

    for some γ>1.

    In this paper,we consider the global weak solutions to Euler-Poisson equations with a viscosity term:

    with the initial conditions

    Equation(1.3)is also known as the α-model regularization for the Euler-Poisson equations.The term?α2Δutis a small perturbation,representing some kind of friction.The term on the right hand side of the second equation in(1.3)describes the internal force of gradient vector field produced by potential function,which can be uniquely solved by the Poisson equation(1.3)3.The potential function is given by

    where G(x,y)denotes the Green’s function of the Poisson part.

    In particular,if without the term?α2Δut,the equations(1.3)will be reduced to the Euler-Poisson equations.This describes the motion of a compressible isentropic perfect fluid with selfgravitation in three space dimensions(compare[11]).T.Luo and J.Smoller proved in[14]that the non-linear dynamical stability of compressible Euler-Poisson equations with perturbations have the same total mass and symmetry as the rotating star solution.A rigorous mathematical theory for rotating stars of compressible fluids was initiated by Auchmuty and Besls[15]in 1971.The existence and properties of rotating star solutions were obtained by Auchmuty and Besls[15],Auchmuty[13],Caffarelli and Friedman[16],Friedman and Turkington[17,25],Li,Chami-llo and Li[19],and Luo and Smoller[20].In[24],McCann proved an existence result for rotating binary stars.In contrast,the existence and properties of stationary non-rotating star solutions is classical(see[11]).

    In this paper,we prove the existence of weak solutions to(1.3)by using the Faedo-Galerkin method(see[4,23]).When we deduce the energy estimates and B-D entropy,the estimates will depend on the index?,δ and η,so we need to be very careful as we deduce these estimates because we need to tend the?,η,δ to zero step by step later in the proof of the main theorem.In addition,B-D entropy can also be applied to other equations;for more details,the reader can refer to[12,18,21,22]and references therein.

    1.1 Formulation of the weak solutions and main result

    For the smooth solutions(ρ,u,Φ(ρ)),multiplying equation(1.3)2and integrating by parts,we can deduce the following energy inequality:

    However,the above energy estimate is not enough to prove the stability of the weak solutions(ρ,u,Φ(ρ))of(1.3).We will obtain the following B-D entropy estimate,which was first introduced by Bresh-Desjardins in[10]:

    where C is bounded by the initial energy.Thus the initial data should satisfy the following:

    Definition 1.1We will say that(ρ,u,Φ)is the finite energy weak solution of problems(1.3)and(1.4)if the following is satisfied:

    1.ρ,u belong to the classes

    2.The equations(1.3)1–(1.3)2hold in the sense of D′((0,T)×T3),(1.3)3holds a.e.for(t,x)∈((0,T)×T3);

    3.(1.4)holds in D′(T3);

    4.(1.6)and(1.7)hold for almost every t∈[0,T].

    NotationsThroughout this paper,C denotes a generic positive constant which may depend on the initial data or some other constant independently of the indexes?,η,δ and r0,and C(·)>0 means that the constant C depends particularly on the parameters in the bracket.

    We now state our main results.

    Theorem 1.2Letting γ>and letting the initial data be satisfied by(1.8),for any time T there exists a weak solution(ρ,u,Φ)to(1.3)–(1.4)in the sense of Definition 1.1.

    The rest of this paper is organized as follows:in Section 2,we state some elementary inequalities and compactness theorems which will be used frequently throughout the proof.To prove our main result,we use the weak compactness analysis method and need to pass to the limits at several approximate levels.In Section 3,following the method used in[12],we show the existence of global-in-time weak solutions to the approximate equations by using the Faedo-Galerkin method.In Section 4,we deduce the Bresch-Dejardins entropy estimates and pass to the limits as?,μ→0.In Sections 5–6,by using the standard compactness arguments,we pass to the limits as η→0,r0→0 and δ→0,step by step.

    2 Preliminaries

    First,we recall some inequalities of Sobolev and Gagliardo-Nirenberg type used later when we deduce the energy estimates and B-D entropy.

    Lemma 2.1([3]) Let ? be any bounded domain in R3with a smooth boundary.Then

    (i)‖f‖L∞(?)≤C‖f‖H2(?)

    (ii)‖f‖Lp(?)≤C‖f‖H1(?), 2≤p≤6

    for some constant C>0,depending only on ?.

    Lemma 2.2([7])(Gagliardo-Nirenberg interpolation inequality) For function u:?→R defined on a bounded Lipschitz domain ??Rn,?1≤q,r≤∞and a natural number m,suppose also that a real number β and a natural j are such that

    The following two lemmas are standard compactness results and will help us get the strong convergence of solutions:

    Lemma 2.3([1,2])(Aubin-Lions Lemma) Let B0,B and B1be three Banach spaces with B0?B?B1.Suppose that B0is compactly embedded in B and that B is continuously embedded in B1.For 1≤p,q≤+∞,let

    Then,

    (i)if p<+∞,then the embedding of W into Lp([0,T];B)is compact;

    (ii)if p=+∞and q>1,then the embedding of W into C([0,T];B)is compact.

    Lemma 2.4([4])(Egoroffs theorem about uniform convergence) Let fn→f a.e.in ?,with a bounded measurable set in Rn,with f finite a.e.Then,for any?>0,there exists a measurable subset ???? such that|??ε|

    we have fn→f strong in Ls,for any s∈[1,p).

    ProofSince fn→f a.e.in ? and fnis uniformly bounded in Lp(?),due to Egoroff’s theorem,we have

    3 Faedo-Galerkin Approximation

    In this section,we construct the approximate system to the original problem by using the Faedo-Galerkin method.We proceed similarly in[5]and[6].

    3.1 Approximate system

    In order to prove the global existence of weak solutions to the α-model regularization for the three-dimensional Euler-Poisson equations,we consider the following approximate system:

    The extra terms?η?ρ?6and?δρ?Δ3ρ are necessary to keep the density bounded and bounded away from below with a positive constant for all time.This enables us to takeas a test function to derive the B-D entropy.The term r0u is used to control the density near the vacuum.?α2Δutis used to make sure that√ρu is a strong convergence in L∞([0,T];L2)at the last approximate level.

    Letting T>0,we define a finite-dimensional space Xn=span{φ1,···,φn},n∈N,where{φk}is an orthonormal basis of L2(T3)which is also an orthogonal basis of H1(T3).Let(ρ0,u0)∈C∞(T3)be some initial data satisfying ρ0≥ξ>0 for x∈T3for some ξ>0,and let the velocity u∈C([0,T];Xn)satisfy

    Since Xnis a finite-dimensional space,all the norms are equivalence on Xn.Thus,u is bounded in C([0,T];Ck(T3))for any k∈N,and there exists a constant C>0 depending on k such that

    Then the approximate of continuity equation is defined as follows:

    First,to show the well-posedness of the parabolic problem(3.3),we introduce the following lemma:

    Lemma 3.1([8]) Let T3be a domain of class C2,θ,θ∈(0,1),and let u∈C([0,T];Xn)be a given vector field.If the initial data ρ0≥ζ>0,ρ0∈C2(T3),then problem(3.3)possesses a unique classical solution ρ=ρu.More specifically,

    Furthermore,because u∈C([0,T];Xn)is a given vector field,by using the bootstrap method and Lemma 3.1,it is easy to prove that system(3.3)exists a unique classical solution ρ∈C1([0,T];C7(T3)).Moreover,if 0<ρ≤ρ≤ρ and divu∈L1([0,T];L∞(T3)),through the maximum principle it provides ρ(x,t)≥0.

    Then if we define Lρ=?tρ+div(ρu)??Δρ,by direct calculation we can obtain

    Next we will show that the solution of equation(3.3)depends on the velocity u continuously.Let ρ1,ρ2be two solutions with the same initial data,that is,

    Subtracting the above two equations,multiplying the resulting equation by?Δ(ρ1?ρ2)and integrating by parts with respect to x over T3,we have

    Since ρ1and ρ2satisfy Lemma 3.1,by using Cauchy-Schwartz inequality,Poincaré’s inequality and Gronwall’s inequality,we can obtain

    Moreover,for u∈C([0,T];Xn)being a given vector field,by using the bootstrap method and compactness analysis,we can prove that

    Thus if we introduce the operator S:C([0,T];Xn)→C([0,T];C7(T3))by S(u)=ρ,we have the following proposition:

    Proposition 3.2If 0<ρ≤ρ≤ρ,ρ0∈C∞(T3),u∈C([0,T];Xn),then there exists an operator S:C([0,T];Xn)→C([0,T];C7(T3))satisfying that

    for any τ∈[0,T]and u1,u2∈MK={u∈C([0,T];Xn);‖u‖C([0,T];Xn)≤k,t∈[0,T]}.

    Remark 3.3Proposition 3.2 suggests that the operator S is Lipschitz continuous for sufficiently small time t.

    3.2 Fadeo-Galerkin approximation

    Next,we hope to solve the momentum equation on the space Xnby using the Faedo-Galerkin approximation method.To this end,for given ρ=S(u),we are looking for an approximate solution un=C([0,T];Xn)satisfying

    for any test function ?∈Xn.

    To solve(3.7),we follow the same arguments as in[5,6,9],and introduce the following family of operators:

    In a fashion similar to[9],it is easy to check that the operater M[ρ]satisfies the following operators:

    for some α>0,and all ρ1,ρ2∈L1(T3),such that ρ1,ρ2≥ρ>0.

    ProofHere we omit the proof;for more details,we refer readers to[5,6,9]. □

    By using the operators M and ρ=S(un),the integral equation(3.7)can be rephrased as

    In view of Lipschitz continuous estimates for S and M?1,equation(3.8)can be solved by the fixed-point theorem of Banach for a short time[0,T′],where T′≤T,on the space C([0,T];Xn).Thus there exists a unique local-in-time solution(ρn,un,Φ(ρn))to(3.3)and(3.8).Next we will extend this local solution that we have obtained to be a global one.

    Differentiating(3.7)with respect to time t,taking φ=unand integrating by parts with respect to x over T3,we have the following energy estimate:

    First,we estimate the terms on the left hand side one by one as follows:

    and where we use the approximate mass equation(3.3)and integration by parts:

    Next we will deal with the cold pressure and high order derivative of the density terms as follows:

    Finally,we will estimate the Poisson term on the right hand side as follows:

    where we have used equation(1.3)3.

    Then,substituting(3.10)–(3.14)into(3.7)and integrating the resulting equation with respect to t over[0,T]yields

    where 0

    Then substituting(3.16)into(3.15)we get

    where ?′is a sufficient small positive constant,and C is a generic positive constant depending only on the initial data and T.

    Thus the energy inequality(3.20)yieldswhere C(?,δ)denotes a positive constant depending particularly on?,δ,but independent of n,and due to dimXn≤+∞and(3.5),the density is bounded and bounded away from below with a positive constant,which means that there exists a constant c>0 such that

    for all t∈[0,T?).Moreover,the energy inequality also gives us

    which,together with(3.21),(3.22)and energy inequality,implies that

    where we used the fact that all the norms are equivalent on Xn.Then we can repeat the above argument many times and,using the compactness analysis,we can obtain un∈C([0,T];Xn),so we can extend T?to T.Thus there exists a global solution(ρn,un,Φ(ρn))to(3.3),(3.7)for any time T.

    To conclude this part,we have the following proposition on the approximate solutions(ρn,un,Φ(ρn)):

    Proposition 3.4Let(ρn,un,Φ(ρn))be the solutions of(3.3),(3.7)on(0,T)×T3constructed above.Then the solutions must satisfy the energy inequality(3.20).In particular,we have the following estimates:

    3.3 Passing to the limits as n→∞.

    We perform first the limit with n→∞,?,η,δ,r0>0 being fixed.Based on the above estimates,which are uniform on n and in accordance with the Aubin-Lions Lemma,we have the following compactness results:

    3.3.1Step 1Convergence of ρn,Pressure?and gravitational force?Φ(ρn)

    Lemma 3.5The following estimates hold for any fixed positive constants?,η,δ and r0:

    where K is independent of n,and depends on?,η,δ,r0,initial data and T.Furthermore,up to an extracted subsequence,

    ProofBy(3.3),we have that

    holds for any ?∈L2([0,T];H1),which yields?tρn∈L2([0,T];H?1).

    This,together with ρn∈L∞([0,T];H3)TL2([0,T];H4),and using the Aubin-Lions Lemma,allows us to claim that ρn∈C([0,T];H3),so,up to a subsequence,we have

    Next,we show that the density is bounded away from zero with a positive constant for all time t∈[0,T]by using the Sobolev inequality.

    The proof of this lemma is complete. □

    3.3.2Step 2Convergence of ρnun?α2Δun

    Lemma 3.6Up to an extracted subsequence,

    ProofFrom the energy estimates,we know that unis bounded in L∞([0,T];H1),so up to a subsequence,we have un?u in L∞([0,T];H1).

    Recall that ρn→ρ strongly in C([0,T];H3),so we have

    Moreover,since ρn∈L∞([0,T];H3),and un∈L∞([0,T];C∞),we can show that

    Together with ρnun∈L∞([0,T];L2),we have ρnun∈L∞([0,T];H2).Next,in order to use the Aubin-Lions Lemma,we only need to prove that

    Since

    based on the energy estimates,it is easy to check that?t(ρnun?α2Δun)∈L2([0,T];H?3),so by using the Aubin-Lions Lemma,we can show

    Thus the proof of this lemma is complete. □

    3.3.3Step 3Convergence of nonlinear diffusion terms

    Thus we have

    With the above compactness results in hand,we are ready to pass to the limits as n→∞in the approximate system(3.3),(3.7).Thus,we can show that(ρ,u,Φ)solves

    and for any test function ?,the following holds:

    Thanks to the lower semicontinuity of norms,we can pass to the limits in the energy estimate(3.20),and we have the following energy inequality in the sense of distributions on(0,T):

    Thus,we have the following proposition on the existence of weak solutions at this level approximate system:

    Proposition 3.7There exists a weak solution to the following system:

    with suitable initial data,for any T>0.In particular,the weak solutions(ρ,u,Φ)satisfy the energy inequality(3.32).

    4 B-D Entropy and Passing to the Limits as?,μ→0

    In this section,we deduce the B-D entropy estimate for the approximate system in Proposition 3.7,which was first introduced by Bresch and Desjardins in[10];this B-D entropy will give a higher regularity of the density and will help us to get the compactness of ρ.By(3.24),(3.28)and u∈L2([0,T];H2),we have

    4.1 B-D entropy

    Substituting(4.3)–(4.5)into(4.2)and integrating it with respect to the time t over[0,T],we have

    where we have used the energy inequality(3.32).Then we need to control the rest of the terms on the right hand side of(4.6):

    Next,we control the terms I4?I11as follows:

    For some large fixed constant s>0,

    Then,substituting(4.7)–(4.15)into(4.2),we have

    where C(δ,η,T)denotes that C particularly depends on δ,η and time T.

    4.2 Passing to the limits asμ,?→0

    We use(ρμ,?,uμ,?,Φ(ρμ,?))to denote the solutions at this level of approximation.From(4.17)and(4.18),it is easy to show that(ρμ,?,uμ,?,Φ(ρμ,?))has the following uniform regularities:

    Lemma 4.2Letting(ρμ,?,uμ,?,Φ(ρμ,?))be weak solutions to(3.33),in combination with(4.19)and(4.20),we have

    and using the Aubin-Lions Lemma,we have the following compactness results:

    ProofThe proof is similar to the compactness analysis in Section 3,so for simplicity,we omit the details here. □

    With the above compactness results in hand,we pass to the limits asμ=?→0.Here we only focus on the terms involving?andμ.First,because ρμ,?is bounded in L∞(H3)TL2(H4)uniformly on?,we have that

    So passing to the limits asμ=?→0 in(3.33),we have that

    holds in the sense of distribution on(0,T)×T3,and that

    Furthermore,thanks to the lower semi-continuity of the convex function and the strong convergence of ρμ,?,uμ,?,Φ(ρμ,?),we can pass to the limits in the energy inequality(3.32)and B-D entropy(4.17)asμ=?→0 with δ,η,r0being fixed as follows:

    Thus,to conclude this part,we have the following proposition:

    Proposition 4.3There exist the weak solutions to systems(4.24),(4.26)and(4.27)with suitable initial data,for any T>0.In particular,the weak solutions(ρ,u,Φ)satisfy the energy inequality(4.29)and the B-D entropy(4.30).

    5 Passing to the Limits as η→0

    In this section,we pass to the limits as η→0 with δ,r0being fixed.We denote that(ρη,uη,Φ(ρη))are weak solutions at this level.From Proposition 4.3,we have the following regularities:

    It is easy to check that we have the same estimates as in Lemma 4.2 in terms of the level with η,thus we deduce the same compactness for(ρη,uη,Φ(ρη))as follows:

    Thus,at this level of approximation,we only focus on the convergence of the term η?.

    Here we state the following lemma:

    Lemma 5.1For ρηdefined as in Proposition 4.3,we have that

    as η→0.

    ProofThe proof is inspired by Vasseur and Yu[12].From the B-D entropy(4.30),we have that

    Note that

    is a convex continuous function.Moreover,in combination with the property of the convex function and Fatou’s Lemma,this yields

    Moreover,using the interpolation inequality,that yields

    This,together with(5.6)and Eogroff’s theorem,yields

    Thus,by using the compactness results(5.2),we can pass to the limit as η→0 in(4.24),(4.27)and(4.28):

    Similarly,due to the lower semi-continuity of convex functions,we can obtain the energy inequality and B-D entropy by passing to the limits in(4.29)and(4.30)as η→0,so we have

    Thus,we have the following Proposition on the existence of weak solutions at this level of approximation:

    Proposition 5.2There exist weak solutions to system(5.7)with suitable initial data,for any T>0.In particular,the weak solutions(ρ,u,Φ(ρ))satisfy the energy inequality(5.8)and the B-D entropy(5.9).

    6 Passing to the Limits as δ,r0→0

    At this level,the weak solutions satisfy the energy inequality(5.8)and the B-D entropy(5.9),thus we have the following regularities:

    Next,we will proceed to examine the compactness arguments in several steps.

    6.1 Step 1 Convergence of

    Lemma 6.1Letting(ρδ,r0,uδ,r0Φ(ρδ,r0))satisfy Proposition 5.2,we have

    As a consequence,up to a subsequence,converges almost everywhere and strongly in L2([0,T];L2),which means that

    Moreover,we have

    and hence,we have

    Thus the proof of Lemma 6.1 is complete. □

    6.2 Step 2 Convergence of

    Lemma 6.2The termsatisfies the regularityand up to a subsequence,we havea.e.,andstrongly in L1([0,T];L1).

    ProofThe proof is as the same as it is in Section 2,so we omit the details here. □

    6.3 Step 3 Convergence of the momentum and the term?α2Δ

    Lemma 6.3Up to a subsequence,the momentum and α-regular ofis

    Note that we can define u(x,t)=m(x,t)/ρ(x,t)outside the vacuum set{x|ρ(x,t)=0}.

    ProofSince

    In order to apply the Aubin-Lions Lemma,we also need to show that

    Actually,using the momentum equation(5.7)2,it is easy to check that

    Hence,using the Aubin-Lions Lemma,Lemma 6.3 is proved. □

    6.4 Step 4 Convergence of

    Lemma 6.4We havestrongly in L2([0,T];L2),and there exists a function u(x,t)such that m(x,t)=ρ(x,t)u(x,t)and

    ProofRecalling Lemma 6.3,we define velocity u(x,t)by setting u(x,t)=m(x,t)/ρ(x,t),so we have m(x,t)=ρ(x,t)u(x,t).

    Moreover,Fatou’s lemma yields that

    as r0=δ→0 and M→+∞.Thus we have proven that

    6.5 Step 5 Convergence of the terms

    Focussing on the most difficult term,

    Similarly,we can deal with the other terms from

    With all of the above compactness results,we can pass to the limits in(5.7)as δ→0,so we have that

    Furthermore,thanks to the lower semi-continuity of the convex function,we can obtain the following energy inequality and B-D entropy by using the limits as δ=r0→0:

    and

    Thus we have completed the proof of Theorem 1.2.

    猜你喜歡
    亞伯
    假牙
    讀者(2024年4期)2024-02-21 05:45:10
    假牙
    真正的毒蛇
    該隱與亞伯
    譯林(2018年3期)2018-05-24 11:08:36
    摩西
    中國攝影(2017年11期)2017-11-22 23:18:00
    恐怖分子的自殺謎案
    顛倒世界
    曹亞伯的對聯(lián)
    世紀(2012年1期)2012-07-23 02:05:32
    華金·莫內(nèi)格羅的悲劇性掙扎——《亞伯·桑切斯》對《圣經(jīng)》經(jīng)典段落的重述
    文教資料(2011年36期)2011-08-15 00:42:55
    母象王妃的驚天情殤
    国产欧美日韩一区二区三区在线| 欧美丝袜亚洲另类 | 精品久久久久久电影网| 精品久久蜜臀av无| 久久草成人影院| 国产97色在线日韩免费| 最新在线观看一区二区三区| 婷婷丁香在线五月| 精品久久久久久成人av| 免费久久久久久久精品成人欧美视频| 色尼玛亚洲综合影院| 人妻丰满熟妇av一区二区三区| 可以在线观看毛片的网站| 99精品在免费线老司机午夜| 黄片播放在线免费| 国产激情欧美一区二区| 咕卡用的链子| 在线十欧美十亚洲十日本专区| 99国产精品一区二区三区| 国产精品免费视频内射| 身体一侧抽搐| 亚洲专区中文字幕在线| 无遮挡黄片免费观看| 午夜a级毛片| a级片在线免费高清观看视频| 国产欧美日韩精品亚洲av| 国产欧美日韩精品亚洲av| 91成年电影在线观看| 免费女性裸体啪啪无遮挡网站| 免费搜索国产男女视频| 十八禁人妻一区二区| 欧美人与性动交α欧美精品济南到| 这个男人来自地球电影免费观看| 久久香蕉激情| 亚洲免费av在线视频| www.精华液| 久久热在线av| 9191精品国产免费久久| 99国产精品一区二区三区| 一边摸一边做爽爽视频免费| 少妇粗大呻吟视频| 18禁观看日本| 国产成人系列免费观看| 国产高清激情床上av| 亚洲成av片中文字幕在线观看| 嫩草影院精品99| 免费搜索国产男女视频| 香蕉国产在线看| 操美女的视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 9色porny在线观看| 精品卡一卡二卡四卡免费| 国产精品国产高清国产av| 999精品在线视频| 91成人精品电影| av在线播放免费不卡| 人人妻人人爽人人添夜夜欢视频| 午夜福利免费观看在线| 亚洲av第一区精品v没综合| 超色免费av| 操美女的视频在线观看| 伦理电影免费视频| 亚洲av成人一区二区三| 不卡av一区二区三区| 在线观看www视频免费| 免费看a级黄色片| 午夜a级毛片| 亚洲成av片中文字幕在线观看| 99精国产麻豆久久婷婷| 中国美女看黄片| 极品人妻少妇av视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费鲁丝| 国产亚洲精品一区二区www| 777久久人妻少妇嫩草av网站| 国产成人欧美| 天天影视国产精品| 日韩欧美三级三区| 亚洲全国av大片| 国产不卡一卡二| 免费观看人在逋| 丝袜人妻中文字幕| 老司机午夜福利在线观看视频| 午夜免费鲁丝| 黄网站色视频无遮挡免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人爽人人添夜夜欢视频| 男女下面插进去视频免费观看| 国产一区二区在线av高清观看| av超薄肉色丝袜交足视频| 欧美成人性av电影在线观看| 亚洲欧美激情综合另类| 女人精品久久久久毛片| 精品第一国产精品| 国产免费男女视频| 美女国产高潮福利片在线看| 久久人人97超碰香蕉20202| 一a级毛片在线观看| 国产精品九九99| 中国美女看黄片| 黑人猛操日本美女一级片| 午夜福利影视在线免费观看| 日韩免费高清中文字幕av| 久久人人爽av亚洲精品天堂| 亚洲国产精品合色在线| 国产精品影院久久| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 国产亚洲欧美98| 成人18禁在线播放| 在线观看免费高清a一片| 欧美亚洲日本最大视频资源| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 亚洲五月婷婷丁香| 国内久久婷婷六月综合欲色啪| 曰老女人黄片| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 一进一出抽搐动态| 91老司机精品| 99精品在免费线老司机午夜| 欧美最黄视频在线播放免费 | 在线观看舔阴道视频| 国产无遮挡羞羞视频在线观看| 国产不卡一卡二| 亚洲av第一区精品v没综合| 极品人妻少妇av视频| 啦啦啦在线免费观看视频4| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| av超薄肉色丝袜交足视频| 欧美一级毛片孕妇| 午夜91福利影院| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 在线播放国产精品三级| 激情在线观看视频在线高清| 女人高潮潮喷娇喘18禁视频| 欧美在线黄色| 成人亚洲精品一区在线观看| 欧美成狂野欧美在线观看| 免费久久久久久久精品成人欧美视频| 好看av亚洲va欧美ⅴa在| 国产精品影院久久| 久久中文字幕人妻熟女| 别揉我奶头~嗯~啊~动态视频| 日日爽夜夜爽网站| 咕卡用的链子| 不卡一级毛片| 在线观看一区二区三区| 国产av精品麻豆| 波多野结衣一区麻豆| 国产区一区二久久| 欧美乱码精品一区二区三区| 侵犯人妻中文字幕一二三四区| 啦啦啦免费观看视频1| 国产伦人伦偷精品视频| 美女 人体艺术 gogo| 国产精品野战在线观看 | 满18在线观看网站| 三级毛片av免费| 亚洲情色 制服丝袜| www日本在线高清视频| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 91在线观看av| 亚洲成人久久性| 婷婷六月久久综合丁香| 亚洲精品中文字幕一二三四区| aaaaa片日本免费| 可以在线观看毛片的网站| 日韩中文字幕欧美一区二区| 国产成人系列免费观看| 国产精品自产拍在线观看55亚洲| 中文字幕人妻熟女乱码| 国产片内射在线| 亚洲av五月六月丁香网| 日本欧美视频一区| videosex国产| 又大又爽又粗| 两人在一起打扑克的视频| 丝袜美足系列| 国产视频一区二区在线看| 99热只有精品国产| 五月开心婷婷网| 亚洲精华国产精华精| 亚洲一卡2卡3卡4卡5卡精品中文| 在线av久久热| 中文字幕色久视频| www日本在线高清视频| 国产野战对白在线观看| 亚洲精品久久成人aⅴ小说| 亚洲中文日韩欧美视频| 好看av亚洲va欧美ⅴa在| 18禁观看日本| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 欧美日韩亚洲高清精品| 人人妻人人爽人人添夜夜欢视频| 日韩欧美三级三区| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 午夜免费成人在线视频| av有码第一页| 久久午夜亚洲精品久久| 人人妻人人添人人爽欧美一区卜| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 精品国产一区二区久久| 看片在线看免费视频| 久久人人97超碰香蕉20202| videosex国产| 国产区一区二久久| 又黄又粗又硬又大视频| 91成人精品电影| 欧美日韩乱码在线| 中出人妻视频一区二区| 又黄又爽又免费观看的视频| 亚洲第一av免费看| 免费观看人在逋| 少妇的丰满在线观看| 99国产精品一区二区三区| 亚洲国产精品999在线| 69av精品久久久久久| 搡老乐熟女国产| 身体一侧抽搐| 亚洲精品国产精品久久久不卡| 成年人黄色毛片网站| 亚洲情色 制服丝袜| 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| 国产亚洲欧美98| www日本在线高清视频| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区欧美精品| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 欧美日本中文国产一区发布| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| av片东京热男人的天堂| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 免费在线观看视频国产中文字幕亚洲| 在线观看一区二区三区激情| 精品免费久久久久久久清纯| av网站在线播放免费| 国产精品一区二区精品视频观看| 国产精品国产av在线观看| 午夜老司机福利片| 成人永久免费在线观看视频| 美女大奶头视频| 欧美成人性av电影在线观看| 国产精品久久电影中文字幕| 亚洲欧美激情在线| 久久久水蜜桃国产精品网| 狂野欧美激情性xxxx| 国产成人免费无遮挡视频| 欧美日韩一级在线毛片| 亚洲在线自拍视频| 天天躁夜夜躁狠狠躁躁| 国产蜜桃级精品一区二区三区| 桃红色精品国产亚洲av| 国产成人免费无遮挡视频| 久久人人精品亚洲av| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 亚洲av片天天在线观看| 国产野战对白在线观看| av在线天堂中文字幕 | 正在播放国产对白刺激| 亚洲人成网站在线播放欧美日韩| 99热只有精品国产| 麻豆国产av国片精品| 国产1区2区3区精品| 欧美av亚洲av综合av国产av| av超薄肉色丝袜交足视频| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃| 日本a在线网址| 正在播放国产对白刺激| 国产精品综合久久久久久久免费 | av视频免费观看在线观看| 青草久久国产| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片 | 亚洲avbb在线观看| 国产真人三级小视频在线观看| 精品久久久久久电影网| 久久欧美精品欧美久久欧美| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| a级毛片在线看网站| 午夜福利影视在线免费观看| 久久久久久大精品| 一区二区三区国产精品乱码| 久久久水蜜桃国产精品网| 丰满迷人的少妇在线观看| 婷婷六月久久综合丁香| 黑人猛操日本美女一级片| 日本欧美视频一区| 欧美成人免费av一区二区三区| 亚洲精品一区av在线观看| 一级作爱视频免费观看| 欧美一区二区精品小视频在线| 91国产中文字幕| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 亚洲av成人一区二区三| 午夜福利在线免费观看网站| 热re99久久国产66热| 亚洲熟妇熟女久久| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 黄色怎么调成土黄色| 欧美激情 高清一区二区三区| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 欧美丝袜亚洲另类 | 国产一区二区三区在线臀色熟女 | 男女之事视频高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 咕卡用的链子| 免费女性裸体啪啪无遮挡网站| netflix在线观看网站| www.999成人在线观看| www.精华液| x7x7x7水蜜桃| 香蕉久久夜色| 日本免费一区二区三区高清不卡 | 美女高潮到喷水免费观看| 国产国语露脸激情在线看| 久久精品国产综合久久久| 岛国视频午夜一区免费看| 99久久精品国产亚洲精品| 九色亚洲精品在线播放| 啦啦啦 在线观看视频| 精品日产1卡2卡| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 精品国产乱子伦一区二区三区| 久久国产乱子伦精品免费另类| 大香蕉久久成人网| 欧美日韩瑟瑟在线播放| 日本黄色日本黄色录像| 成人亚洲精品av一区二区 | 大码成人一级视频| 日韩欧美国产一区二区入口| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 久久精品aⅴ一区二区三区四区| 美女 人体艺术 gogo| 国产精品免费视频内射| 亚洲狠狠婷婷综合久久图片| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 18美女黄网站色大片免费观看| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 精品一区二区三区四区五区乱码| 国产精品一区二区精品视频观看| 视频区欧美日本亚洲| √禁漫天堂资源中文www| 三上悠亚av全集在线观看| 男女下面插进去视频免费观看| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 十八禁网站免费在线| 午夜免费鲁丝| 欧美日韩中文字幕国产精品一区二区三区 | 免费观看人在逋| 国内毛片毛片毛片毛片毛片| 午夜免费激情av| a级毛片黄视频| 国产成人精品在线电影| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 99久久国产精品久久久| 亚洲 欧美 日韩 在线 免费| 国产精品一区二区三区四区久久 | 中文字幕av电影在线播放| 他把我摸到了高潮在线观看| 亚洲一区高清亚洲精品| 国产欧美日韩一区二区三区在线| www.www免费av| 两性午夜刺激爽爽歪歪视频在线观看 | 另类亚洲欧美激情| e午夜精品久久久久久久| 99久久久亚洲精品蜜臀av| 日本免费a在线| 91大片在线观看| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 在线观看免费高清a一片| 免费在线观看完整版高清| 欧美成人免费av一区二区三区| 嫩草影视91久久| 国产精华一区二区三区| 女性被躁到高潮视频| 成人免费观看视频高清| 国产在线精品亚洲第一网站| 亚洲精品久久成人aⅴ小说| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 国产欧美日韩综合在线一区二区| 亚洲精品中文字幕在线视频| 日韩高清综合在线| 午夜激情av网站| 91av网站免费观看| 精品高清国产在线一区| 99国产精品免费福利视频| 日韩欧美在线二视频| 国产成人系列免费观看| 很黄的视频免费| 国产高清视频在线播放一区| 午夜免费激情av| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 国产日韩一区二区三区精品不卡| av欧美777| 精品久久蜜臀av无| 国产男靠女视频免费网站| 日韩有码中文字幕| 国产无遮挡羞羞视频在线观看| 18美女黄网站色大片免费观看| 久久中文字幕人妻熟女| xxxhd国产人妻xxx| 国产一卡二卡三卡精品| √禁漫天堂资源中文www| 啦啦啦免费观看视频1| 桃色一区二区三区在线观看| 午夜精品国产一区二区电影| 制服诱惑二区| 成人特级黄色片久久久久久久| 亚洲精华国产精华精| 亚洲国产精品合色在线| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 亚洲精品美女久久av网站| 9色porny在线观看| 午夜免费观看网址| 成人三级做爰电影| 成人国产一区最新在线观看| 午夜精品在线福利| 一边摸一边做爽爽视频免费| 日韩人妻精品一区2区三区| 不卡av一区二区三区| 露出奶头的视频| 亚洲欧美日韩高清在线视频| 久热这里只有精品99| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成伊人成综合网2020| 亚洲专区中文字幕在线| 久9热在线精品视频| 精品一区二区三区视频在线观看免费 | 日日干狠狠操夜夜爽| 久久精品国产综合久久久| 90打野战视频偷拍视频| 国产精品野战在线观看 | 日韩欧美一区视频在线观看| 国产亚洲欧美精品永久| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区| 日本五十路高清| 香蕉国产在线看| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品av一区二区 | 91九色精品人成在线观看| 夜夜爽天天搞| 一进一出抽搐gif免费好疼 | 人人妻人人爽人人添夜夜欢视频| 欧美乱码精品一区二区三区| 在线观看午夜福利视频| 日韩欧美国产一区二区入口| 多毛熟女@视频| 19禁男女啪啪无遮挡网站| 不卡av一区二区三区| 桃红色精品国产亚洲av| 国产男靠女视频免费网站| 国产精品 欧美亚洲| 啦啦啦 在线观看视频| 欧美 亚洲 国产 日韩一| 久久久久九九精品影院| 韩国精品一区二区三区| 久久伊人香网站| 老汉色av国产亚洲站长工具| 久久精品亚洲熟妇少妇任你| tocl精华| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 99国产综合亚洲精品| 亚洲五月色婷婷综合| 黄色片一级片一级黄色片| 久久国产精品男人的天堂亚洲| 国产在线精品亚洲第一网站| 免费观看人在逋| 精品少妇一区二区三区视频日本电影| a在线观看视频网站| 亚洲五月色婷婷综合| 嫁个100分男人电影在线观看| 亚洲熟女毛片儿| 在线观看免费日韩欧美大片| 老司机亚洲免费影院| 狠狠狠狠99中文字幕| a级毛片黄视频| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 一级片免费观看大全| 变态另类成人亚洲欧美熟女 | 99香蕉大伊视频| 18禁观看日本| 精品久久久久久电影网| 国产三级在线视频| 国产单亲对白刺激| 美女大奶头视频| 欧美日韩亚洲国产一区二区在线观看| 在线观看免费视频网站a站| 日韩欧美在线二视频| 久久精品国产清高在天天线| 最新美女视频免费是黄的| 国产成年人精品一区二区 | 啦啦啦 在线观看视频| 国产成人精品久久二区二区免费| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| 青草久久国产| 精品电影一区二区在线| 亚洲免费av在线视频| 国产不卡一卡二| 久久人妻av系列| 中文字幕人妻丝袜制服| 久久久久久免费高清国产稀缺| 狂野欧美激情性xxxx| 老汉色av国产亚洲站长工具| 欧美不卡视频在线免费观看 | 欧美黑人精品巨大| 丝袜美足系列| 午夜免费激情av| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大尺度精品在线看网址 | 免费av中文字幕在线| 免费高清在线观看日韩| 日本黄色视频三级网站网址| 中出人妻视频一区二区| 19禁男女啪啪无遮挡网站| 九色亚洲精品在线播放| 操美女的视频在线观看| 99精品欧美一区二区三区四区| 国产免费男女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产主播在线观看一区二区| 精品国产国语对白av| 国产精华一区二区三区| 日本欧美视频一区| 国产成人免费无遮挡视频| 1024视频免费在线观看| 久久久国产欧美日韩av| av国产精品久久久久影院| 电影成人av| 亚洲精品一区av在线观看| 黄色a级毛片大全视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩亚洲国产一区二区在线观看| 国产精品日韩av在线免费观看 | 久久天堂一区二区三区四区| 一本大道久久a久久精品| 一级作爱视频免费观看| 少妇被粗大的猛进出69影院| 成人永久免费在线观看视频| 久久久国产成人免费| 两个人免费观看高清视频| 香蕉久久夜色| 别揉我奶头~嗯~啊~动态视频| av视频免费观看在线观看| 久久精品亚洲精品国产色婷小说| 亚洲一卡2卡3卡4卡5卡精品中文| 国产蜜桃级精品一区二区三区| 午夜福利影视在线免费观看| 99精品久久久久人妻精品| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一级a爱视频在线免费观看| 最新在线观看一区二区三区| 在线天堂中文资源库| 精品少妇一区二区三区视频日本电影| 中文字幕色久视频| 日韩三级视频一区二区三区| 精品少妇一区二区三区视频日本电影| www国产在线视频色| 国产精品日韩av在线免费观看 | 一二三四社区在线视频社区8| 亚洲色图av天堂| 最新在线观看一区二区三区| 在线天堂中文资源库| 一边摸一边做爽爽视频免费| 91麻豆av在线| 免费高清在线观看日韩|