• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edge detection of magnetic tile cracks based on wavelet①

    2015-04-17 06:37:50LinLijun林麗君HeMinggeYinYing
    High Technology Letters 2015年3期

    Lin Lijun (林麗君), He Mingge, Yin Ying

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    ?

    Edge detection of magnetic tile cracks based on wavelet①

    Lin Lijun (林麗君)*, He Mingge**, Yin Ying②

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background, an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed. At first, a new Butterworth high pass filter (BHPF) with adaptive cutoff frequency is produced, because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively, and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency. And then, the best decomposition scale is obtained by the level determination function to prevent edge information from missing. At last, edge points are got by double threshold after obtaining the wavelet modulus maxima, and then the edge image is linked by the edge points to ensure the edge continuity and veracity. Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm, and the edge detection algorithm can also detect other defects, and lays the foundation for defecting auto- recognition.

    edge detection, wavelet transform, textures processing, magnetic tile, information entropy

    0 Introduction

    Magnetic tile is an important part of the motor, and its surface defects must be removed which affects the motor safety performance directly. And most companies use the artificial vision to detect the defections due to the magnetic tile with gray color and low image contrast. At present, adopting machine vision to complete the defect detection is a hot research on the nondestructive testing, and the image edge information extraction is the key of image processing[1,2], thus many edge detection algorithms have been applied evolutionarily to all kinds of image edge features extraction[3-5]. Ref.[6] uses Sobel and Canny algorithm to locate the locked weld edge for avoiding outside interruptions. Ref.[7] employs the wavelet multi-scale analysis to extract the feature points on X-ray cephalometric, and gets the desired effect on the automatic location. Ref.[8] presents local modulus maxima and dynamic threshold to solve the wavelet edge detection’s shortage such as inaccurate location. Ref.[9] has employed an independent component analysis (ICA) and a particle swarm optimization (PSO) to detect the LCD panel defects, and the proposed algorithm is suitable for the defects with large size and low image contrast. The research on magnetic tile defects detection is quite few due to the magnetic tile characteristics.

    In Ref.[10], it proposes a defect extraction method based on adaptive morphological filter. Defects are removed or weakened by the adaptive morphological filtering to get the image background, and then the surface defects are extracted after comparing the original image with the background image, but it can’t get the accurate classification when the gray variety in small defects is big. Ref.[11] presents a texture analysis method to detect the defects on the magnetic tile surface. In this way, the original image is divided into several equal sized squares decomposed by the fast discrete curvelet transform(FDCT) at different scales and orientations, and then the coefficients are calculated as the feature vector of the support vector machine(SVM) classifier. However, it can’t get the desired result when defects percentage is less than 1/64 in magnetic tile image. Ref.[12] presents the learning vector quantization (LVQ) neural network to classify the magnetic tile defects, but it doesn’t explain how to extract the defects edge information correctly.

    A new edge detection algorithm of the magnetic tile crack is proposed in this paper. The BHPF filter’s cutoff frequency is changed adaptively by the image gradient variance weighted information entropy, so the background texture and noise are restrained adequately. To make good use of the feature of the wavelet multi-scale resolution, the original image is transformed by the translation invariance binary wavelet to calculate the wavelet modulus maxima, and then the level determination function (LDF) is adopted to decrease the interference from the wavelet level. At last, the edge points of crack are got by the double threshold, and then it can get the crack edge image by linking the edge points. The experimental results show that the proposed algorithm can decrease the influence from the background, and extract the crack edge accurately and effectively.

    1 The image preprocessing

    The crack is one of the most typical magnetic tile defects, some cracks are slight and mixed with the background, and are difficult to be identified. Due to the energy difference between the crack and background, the crack’s energy stays in high frequency area. The ideal high pass filter (IHPF) has ringing effect at the cut-off frequency, while the exponential high pass filter (EHPF) brings noise. The BHPF is proposed in this paper to process the original image, which can restrain the interference from random textures and smooth the curve more effectively while the cutoff frequency is increasing, so the cracks are enhanced[13].The n level BHPF filter is defined as

    (1)

    where the crack image isf(x, y), and its filtering is

    g(x, y)=F-1{F[f(x, y)]·H(u, v)}

    (2)

    In Eq.(2), F is Fourier transform, and F-1is inverse transform of F, g(x, y) is the filtered crack image.

    1.1 The texture estimation

    Information entropy can describe the image’s information content efficiently, but it ignores the space information of gray distribution[14]. The weighted entropy not only expresses the image’s average information content, but also reflects how the high gray value affects the image information entropy. The crack has high gray value and contains the noise, and the gray value is one of the standards about the image’s complexity degree.

    If the image has 256 gray levels, gray value s is the weighting factor, so the weighted information entropy is

    (if ps=0, pslogps=0)

    (3)

    In Eq.(3), S is the set of pixel values, psis the probability of the gray value s appearing in S.

    In order to describe the texture complexity more objectively, and the gradient variance can reflect the changes of the texture detail, the weighted information entropy adjusted by the gradient variance can describe the texture details clarity qualitatively. Image gradient variance is

    (4)

    gradAVR=

    (5)

    So the image gradient variance weighted information entropy (IGVWIE) can be expressed as

    (6)

    (7)

    The gradient variance is a reflection of the degree that the pixel gray value deviates from its average gray value, as the variance is bigger, the difference among the pixels is bigger, and the details of the image are more.

    1.2 The texture description

    In order to explain the reliability of the IGVWIE describing the different image background, the following is the analysis about this method.

    H(S)=

    (8)

    (9)

    Eq.(9) indicates that the whole intensity feature can reflect the background complexity at the same gray level.

    1.3 The adjusting cutoff frequency correction

    As a result, the system chart of the adjusting BHPF cutoff frequency is in Fig.1. According to the prior knowledge, the cutoff frequency of some typical magnetic tile crack which has different complexity are got, and then stored in the system. The weighted information entropy and the cutoff frequency is fitted by the segment linear interpolation while the system is running, and the relationship of the nonlinear function between them is determined. So it can get the cutoff frequency corresponding to the information entropy values of the different crack background, and the parameters of the BHPF is changed adaptively to realize the quantitative analysis of the energy change for the crack image.

    Fig.1 The system chart of adjusting BHPF cutoff frequency

    2 The edge detection principle

    Binary wavelet edge detection is that the waiting detection signal is transformed by the second differential smooth function, and the image edge points are got through the wavelet modulus maximum[15].

    Assume that the wavelet function ψ(t) and the signal f(t) is real function, and ψ(t) is the first derivation of smooth function θ(t), that ψ(t)=dθ(t)/dt, the f(t) binary wavelet transform is defined as follows

    (10)

    2.1 The wavelet modulus maxima

    For a binary wavelet transform sequence Wf(2j,0), Wf(2j,1), …, Wf(2j,n), if it satisfies the following conditions.

    (11)

    Also Eq.(11) can’t take equal at the same time, so the wavelet coefficients can get the modulus maxima at the point m(0≤m≤n).

    2.2 The optimal decomposition scale

    Because the crack edge information is influenced by the wavelet decomposition scale greatly, so it needs an optimal decomposition scale got through the level determination function (LDF)[17]. The function is

    (12)

    2.3 The threshold determination

    The threshold is the criterion of detecting the image edge, and affects the quality of the edge detection directly. Seeking the wavelet modulus’ maximum and minimum, and their average is the initial threshold T0.The window n×n scans image D, then it can get the wavelet coefficient Wj,k, so the threshold is

    (13)

    In Eq.(13), δ is the impact factor, and δ=0.5.

    3 The magnetic tile crack edge detection

    If crack D has N×N pixels, D={dn,m|n,m=0,1,…,N-1}, so the process of crack D multi-scale edge detection is as following:

    (1) Image D is filtered by the new BHPF, then it can get image D1.

    (2) Image D1is transformed by 2-D wavelet at 2j, W1f(2j, n, m), W2f(2j, n, m), n, m=0,1,…,N-1,1≤j≤J=log2N。

    (3) Modulus Mf(2j, n, m) and the tangent value tanAf(2j, n, m) are got at pixel point (n,m).

    (4) The optimal decomposition scale of image D1is determined by Eq.(12), and its flowchart is shown as Fig.2.

    Fig.2 The flowchart of getting the optimal decomposition scale

    (5) Threshold T got by Eq.(13) divides image D1into two parts. Modulus less than T are region R1, and the others are region R2. Also threshold T1in region R1and threshold T2in region R2can be got by Eq.(13), if T1

    (6) The boundary points at one scale are got. If one pixel’s gray value in image D1is less than threshold T1, the gray value is 0, then image D1is changed into image I1, at the same way, it can get image I2at threshold T2. The image I2is the base, the image I1is the supplement for image I2, and t The flowchart of finding the contour line is shown as Fig.3.

    Fig.3 The flowchart of seeking the boundary points

    (7) Connect all edge points at scale 2j, it can get the modulus maxima line.

    (8) The gray value of edge points meeting the algorithm is set as 255, and the others are set as 0, then the edge image I is got.

    4 The analysis of experimental results

    4.1 The analysis of filter result

    Fig.4 is the axial crack of magnetic tile, and Fig.5 is the crack filtered by BHPF. Fig.5 shows that the defect is enhanced, and the random texture and noise of background is reduced effectively.

    Fig.4 The axial crack

    Fig.5 The axial crack filtered by BHPF

    4.2 The analysis of edge detection results

    The magnetic tile image from the production line is analyzed by the proposed method, and the image size is 256×128, the used PC is powered by a 3.2GHz Intel Core i5 Quad processor. This experiment is realized by the Matlab R2013a encoding.

    The algorithm proposed in this paper is applied to the edge extraction of three crack defects, and the result is shown in Fig.6. From Fig.6(a), cracks can be seen on the end face and outside surface of magnetic tile obviously. The detection results of the Sobel operator in Fig.6(b) shows the crack defects can’t be extracted correctly, because the crack defects is multi-directional while the classical Sobel operator using only the horizontal direction and vertical direction template. It must add a new template to increase the direction detection information. Moreover, the false edges are smoothed by the Sobel operator, and the real edges are lost as well. On the other hand, because of lacking of the adaptability for different images, the threshold of the classical Sobel operator is determined by one’s experience. The results tested by Canny operator are shown in Fig.6(c), which shows the crack edges are interfered by the texture, and the real crack can’t be extracted correctly. That is because the traditional Canny operator calculates the gradient amplitude by using a finite difference average, which is sensitive to the noise and is easy to cause the real edge details lost or the false edge detected. The low contrast of magnetic tile makes the double threshold Canny algorithm based on gradient amplitude difficult to suppress the noise while preserving the edge in low-intensity, so that the effects of edge detection are affected. Tested results using the proposed algorithm are shown in Fig.6(d), in which the cracks are detected accurately, and the tested results are better than Sobel algorithm and Canny algorithm and achieve the desired effect.

    Fig.6 Comparison of the proposed algorithm with other algorithm

    There are 160 pieces of the magnetic tile, and the accepted products are 78, while the others have crack defects. The ones detected from the accepted magnetic tile is 72, so the false positive rate is (78-72)/78×100%=7.7%, and it indicates that there are 6 pieces of magnetic tile judged falsely because of the influence from the watermark or the dust on the magnetic tile surface. It can detect 77 pieces of the magnetic tile from the defects, and the missing rate is (82-77)/82×100%=6.1%, the reason of missing is that the direction of some cracks is consistent with the direction of grinding.

    5 Conclusion

    Using the image gradient variance to modify the weighted information entropy has made estimating the complexity of the magnetic tile crack defects background more accurately. The BHPF filter performance has been improved adaptively, and the background texture has been eliminated effectively. This paper uses the modulus maxima algorithm based on the wavelet transform to extract the crack edges, and the crack edge information is optimally retained because of the application of the optimal decomposition scale, and the double threshold has made finding the crack edges points more precisely. The experiment proves that the proposed algorithm of the edge detection is better than the classical edge detection algorithm, so it has laid the foundation for other magnetic tile defects detections.

    [ 1] Lin K Y, Si H P, Zhou Q, et al. Plant leaf edge detection based on fuzzy logic. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):227-231

    [ 2] Xiang R, Ying Y B, Jiang H Y, et al. Recognition of overlapping tomatoes based on edge curvature analysis. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3):157-162 (In Chinese)

    [ 3] Selvathi D, Dharani J. Realization of beamlet transform edge detection algorithm using FPGA. In: Proceedings of the 2013 International Conference on Signal Processing, Image Processing and Pattern Recognition, Coimbatore, India, 2013. 131-135

    [ 4] Hussain P S J, Ayesha S. Analysis of edge detection algorithm for feature extraction in satellite images. In: Proceedings of the 2013 3rd IEEE International Conference on Space Science and Communication, IconSpace2013, Melaka, Malaysia, 2013. 238-242

    [ 5] Zhao X F, Yin G F, Yin X Y, et al. Image edge detection based on support vector machine and cellular automata. Journal of Sichuan University (Engineering Science Edition), 2011, 43(1):137-142

    [ 6] Kong M, Chen S B, Lin T. Weld seam edge detection based on composite edge detectors. Journal of Shanghai Jiaotong University, 2009, 43(5):693-696 (In Chinese)

    [ 7] Ling X F, Yang J, Lu Y. Characteristic points extraction of X-Ray skull image based on wavelet multiscale analysis. Journal of Shanghai Jiaotong University, 2001, 35(9):1350-1354 (In Chinese)

    [ 8] Fan Y J, Wu X H, Luo D S. A modified image edge detection algorithm based on wavelet transform. Journal of Sichuan University (Natural Science Edition), 2012, 49(6):1264-1268 (In Chinese)

    [ 9] Tsneg Y H, Tsai D M. Defect detection of uneven brightness in low-contrast images using basis image representation. Pattern Recognition, 2010, 43(3):1129-1141

    [10] Yu Y W, Yin G F, Jiang H H, et al. Defect extraction method of arc magnet surface image based on adaptive morphological filtering. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3):351-356 (In Chinese)

    [11] Jiang H H, Yin G F, Liu P Y, et al. Defect detection on magnetic tile surface based on fast discrete curvelet transform and support vector machine. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3):147-152 (In Chinese)

    [12] Yan J L, Zheng X X, Li T Y. Application of LVQ neural network in classification of surface defects for arc segments ceramic magnet. Computer & Digital Engineering, 2009, 37(12):147-150 (In Chinese)

    [13] Rafael C G, Richard E W. Digital Image Processing. Third Edition. Beijing: Publishing House of Electronics Industry, 2011. 305-308

    [14] Li X Z, Yu H D, Yu Z J, et al. Optimal inspection method for surface defects of micro-components. Acta Armamentarii, 2011, 32(7):872-877 (In Chinese)

    [15] Sun Y K. Wavelet and Image Processing Technology. Beijing: Tsinghua University Press, 2012. 185-186 (In Chinese)

    [16] Maria P, Josef K. Optimal edge detectors for ramp edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5):483-491

    [17] Zhang X, Wang H L. Stationary lifting wavelet de-noising method based on optimal decomposition level. High Voltage Engineering, 2009, 35(3):501-508 (In Chinese)

    Lin Lijun, born in 1985. She is a Ph.D candidate of Sichuan University. She received her B.E. and M.E. degrees from Southwest Petroleum University in 2008 and 2011. Her research focuses on intelligent control and image processing.

    10.3772/j.issn.1006-6748.2015.03.005

    ①Supported by the National Natural Science Foundation of China (No. 51205265).

    ②To whom correspondence should be addressed. E-mail: kevin_yying@hotmail.com Received on Mar. 19, 2014*, Yin Xiangyun*, Yin Guofu*

    亚洲成a人片在线一区二区| 国产成人a区在线观看| 亚洲一区二区三区不卡视频| 亚洲av二区三区四区| 少妇人妻一区二区三区视频| 午夜福利免费观看在线| 免费在线观看亚洲国产| 亚洲欧美日韩高清在线视频| 国产极品精品免费视频能看的| 男女下面进入的视频免费午夜| 在线观看美女被高潮喷水网站 | 国产精品乱码一区二三区的特点| 久久久久精品国产欧美久久久| 最新美女视频免费是黄的| 18禁裸乳无遮挡免费网站照片| 熟女人妻精品中文字幕| 成人亚洲精品av一区二区| 最新美女视频免费是黄的| netflix在线观看网站| 国产精品乱码一区二三区的特点| 亚洲男人的天堂狠狠| 99热6这里只有精品| 一进一出抽搐动态| 欧美黄色淫秽网站| 欧美一级毛片孕妇| 蜜桃亚洲精品一区二区三区| 蜜桃久久精品国产亚洲av| 尤物成人国产欧美一区二区三区| 99热精品在线国产| 久久精品亚洲精品国产色婷小说| 中文字幕av在线有码专区| 日日夜夜操网爽| 亚洲一区二区三区不卡视频| 麻豆一二三区av精品| 中文资源天堂在线| 韩国av一区二区三区四区| 一个人看视频在线观看www免费 | 夜夜爽天天搞| 亚洲av不卡在线观看| 国产伦一二天堂av在线观看| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 91麻豆av在线| av天堂中文字幕网| 精品乱码久久久久久99久播| 亚洲欧美日韩高清专用| 真人做人爱边吃奶动态| 精品人妻1区二区| 天天添夜夜摸| 最新在线观看一区二区三区| 国产精品亚洲美女久久久| av天堂在线播放| 舔av片在线| 国产中年淑女户外野战色| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 超碰av人人做人人爽久久 | 国内精品美女久久久久久| 深夜精品福利| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 精品电影一区二区在线| 国产黄a三级三级三级人| 亚洲欧美日韩高清专用| 91在线观看av| www日本黄色视频网| 18禁美女被吸乳视频| 色综合欧美亚洲国产小说| 在线国产一区二区在线| 精品久久久久久,| 在线观看美女被高潮喷水网站 | 真实男女啪啪啪动态图| 12—13女人毛片做爰片一| 九色成人免费人妻av| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 此物有八面人人有两片| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式 | 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 午夜免费观看网址| 成人av在线播放网站| 99久久精品一区二区三区| 一进一出抽搐gif免费好疼| 国产精品av视频在线免费观看| 国产国拍精品亚洲av在线观看 | 国产精品久久久久久久电影 | 欧美高清成人免费视频www| 亚洲精品在线观看二区| 男女视频在线观看网站免费| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 男女床上黄色一级片免费看| 免费在线观看亚洲国产| h日本视频在线播放| 欧美午夜高清在线| 操出白浆在线播放| 757午夜福利合集在线观看| 在线观看一区二区三区| 1024手机看黄色片| 欧美日韩国产亚洲二区| 久久亚洲精品不卡| 亚洲欧美日韩高清专用| 国产成+人综合+亚洲专区| 国产成人系列免费观看| 99riav亚洲国产免费| 久久国产精品人妻蜜桃| 波多野结衣高清无吗| 乱人视频在线观看| 亚洲不卡免费看| 欧美区成人在线视频| 久久久久久久久久黄片| 国产亚洲欧美98| 天天一区二区日本电影三级| 免费av毛片视频| 国产亚洲av嫩草精品影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩人妻高清精品专区| 欧美激情在线99| 国产精品 欧美亚洲| 全区人妻精品视频| 国内毛片毛片毛片毛片毛片| 中文在线观看免费www的网站| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 免费在线观看亚洲国产| 日韩国内少妇激情av| 久久精品国产自在天天线| 欧美成人一区二区免费高清观看| 看片在线看免费视频| 精品国产超薄肉色丝袜足j| 国产黄a三级三级三级人| aaaaa片日本免费| 757午夜福利合集在线观看| 国产精品一及| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点| 亚洲av免费在线观看| 18禁黄网站禁片午夜丰满| 亚洲国产日韩欧美精品在线观看 | 少妇人妻精品综合一区二区 | 国产成人影院久久av| 色综合欧美亚洲国产小说| 在线观看舔阴道视频| 免费一级毛片在线播放高清视频| 色尼玛亚洲综合影院| 又爽又黄无遮挡网站| 欧美精品啪啪一区二区三区| 3wmmmm亚洲av在线观看| 国产精品女同一区二区软件 | 欧美三级亚洲精品| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 国产日本99.免费观看| 在线观看舔阴道视频| 亚洲国产欧美网| 久久精品国产亚洲av香蕉五月| 男女床上黄色一级片免费看| 免费看十八禁软件| 国内久久婷婷六月综合欲色啪| 成人国产综合亚洲| 亚洲成人久久性| 国产成人福利小说| 久9热在线精品视频| 最近最新中文字幕大全电影3| 又黄又爽又免费观看的视频| 日韩 欧美 亚洲 中文字幕| 99热只有精品国产| 99riav亚洲国产免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久综合精品五月天人人| 成人精品一区二区免费| 国产精品亚洲一级av第二区| 国产一区在线观看成人免费| av视频在线观看入口| 最近最新中文字幕大全免费视频| 99久久综合精品五月天人人| 国产欧美日韩精品一区二区| 精品国产亚洲在线| 欧美黑人欧美精品刺激| 桃红色精品国产亚洲av| 69人妻影院| 女警被强在线播放| 亚洲在线自拍视频| 在线播放无遮挡| 国内精品美女久久久久久| 香蕉av资源在线| www.色视频.com| 狠狠狠狠99中文字幕| 日韩亚洲欧美综合| 亚洲av不卡在线观看| 亚洲av中文字字幕乱码综合| 亚洲午夜理论影院| 午夜免费男女啪啪视频观看 | 好男人电影高清在线观看| 午夜视频国产福利| 69人妻影院| 午夜福利在线观看吧| 欧美中文综合在线视频| 又黄又爽又免费观看的视频| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 丰满人妻熟妇乱又伦精品不卡| 九色国产91popny在线| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| 免费看美女性在线毛片视频| 日本一二三区视频观看| 3wmmmm亚洲av在线观看| 国产精品自产拍在线观看55亚洲| 麻豆成人午夜福利视频| 变态另类丝袜制服| 欧美xxxx黑人xx丫x性爽| 欧美国产日韩亚洲一区| 成人欧美大片| 一区二区三区国产精品乱码| 日日夜夜操网爽| 日本黄色视频三级网站网址| 老汉色av国产亚洲站长工具| 一本一本综合久久| 午夜视频国产福利| 久久精品国产自在天天线| www.www免费av| 脱女人内裤的视频| 国产高潮美女av| 淫秽高清视频在线观看| 俺也久久电影网| 成年女人毛片免费观看观看9| 九色国产91popny在线| 999久久久精品免费观看国产| 悠悠久久av| 国产蜜桃级精品一区二区三区| 亚洲真实伦在线观看| 九九热线精品视视频播放| 可以在线观看的亚洲视频| 中文字幕高清在线视频| 国内精品美女久久久久久| 色综合站精品国产| 久久久色成人| 十八禁人妻一区二区| 在线观看午夜福利视频| 国产精品永久免费网站| 91在线观看av| 大型黄色视频在线免费观看| 少妇的逼好多水| 亚洲黑人精品在线| 国产日本99.免费观看| 最新美女视频免费是黄的| 精品国产亚洲在线| 国产三级黄色录像| 成年人黄色毛片网站| 亚洲不卡免费看| 两个人看的免费小视频| 老司机在亚洲福利影院| 国产高清激情床上av| 最近最新免费中文字幕在线| 亚洲欧美日韩高清在线视频| 日本五十路高清| 成人无遮挡网站| 99精品在免费线老司机午夜| 亚洲精品亚洲一区二区| av视频在线观看入口| 亚洲不卡免费看| 一区二区三区高清视频在线| 亚洲av电影在线进入| 国产精品久久久久久久久免 | 天堂影院成人在线观看| 国产精品98久久久久久宅男小说| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 麻豆一二三区av精品| 国产野战对白在线观看| 一区二区三区免费毛片| a级一级毛片免费在线观看| 国语自产精品视频在线第100页| 99久久久亚洲精品蜜臀av| 露出奶头的视频| 久久草成人影院| 动漫黄色视频在线观看| 男女下面进入的视频免费午夜| 免费人成视频x8x8入口观看| 午夜精品一区二区三区免费看| 亚洲真实伦在线观看| 色播亚洲综合网| 欧美一级a爱片免费观看看| 国产高潮美女av| 日本a在线网址| 久久人妻av系列| 亚洲一区二区三区色噜噜| 久久久国产精品麻豆| 欧美成人免费av一区二区三区| 国产探花极品一区二区| 久久久成人免费电影| 精品无人区乱码1区二区| 757午夜福利合集在线观看| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 欧美高清成人免费视频www| 成人三级黄色视频| 午夜精品在线福利| 丁香六月欧美| av在线蜜桃| 免费观看人在逋| 欧美成人免费av一区二区三区| 久久久久久国产a免费观看| 真人一进一出gif抽搐免费| 亚洲国产欧美网| 91麻豆精品激情在线观看国产| 热99re8久久精品国产| 激情在线观看视频在线高清| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 国语自产精品视频在线第100页| 亚洲精品成人久久久久久| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| 欧美日韩国产亚洲二区| 国产av在哪里看| 久久久久九九精品影院| 好看av亚洲va欧美ⅴa在| 99精品欧美一区二区三区四区| 最近在线观看免费完整版| 夜夜躁狠狠躁天天躁| 99视频精品全部免费 在线| 99国产精品一区二区三区| 色老头精品视频在线观看| 99精品欧美一区二区三区四区| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 偷拍熟女少妇极品色| 色尼玛亚洲综合影院| 一进一出抽搐gif免费好疼| 久久久国产精品麻豆| 婷婷丁香在线五月| 久久香蕉精品热| 天天添夜夜摸| 精品人妻一区二区三区麻豆 | 97超级碰碰碰精品色视频在线观看| av福利片在线观看| 欧美一区二区国产精品久久精品| 制服人妻中文乱码| 免费看a级黄色片| 成人无遮挡网站| 国产亚洲精品综合一区在线观看| 日韩欧美三级三区| 国产成人啪精品午夜网站| 亚洲成人精品中文字幕电影| 成年人黄色毛片网站| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 日本 av在线| 三级毛片av免费| 麻豆成人av在线观看| 国产成人福利小说| 国内久久婷婷六月综合欲色啪| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 岛国在线观看网站| 超碰av人人做人人爽久久 | 高清在线国产一区| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 欧美一级a爱片免费观看看| 久久99热这里只有精品18| 久久久久性生活片| 1000部很黄的大片| 免费看十八禁软件| 欧美+日韩+精品| 宅男免费午夜| 色av中文字幕| 91字幕亚洲| 国产精品女同一区二区软件 | 99久久无色码亚洲精品果冻| 18+在线观看网站| 搡女人真爽免费视频火全软件 | 99热这里只有精品一区| 成人高潮视频无遮挡免费网站| 色哟哟哟哟哟哟| 久久久久亚洲av毛片大全| 1024手机看黄色片| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 国产成人啪精品午夜网站| 欧美区成人在线视频| 69人妻影院| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 欧美黄色淫秽网站| 久久欧美精品欧美久久欧美| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 一进一出好大好爽视频| 在线看三级毛片| ponron亚洲| 成人无遮挡网站| 免费无遮挡裸体视频| 19禁男女啪啪无遮挡网站| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 国产视频内射| 成人国产一区最新在线观看| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 天美传媒精品一区二区| 18+在线观看网站| 色综合站精品国产| 真人做人爱边吃奶动态| 一a级毛片在线观看| 99riav亚洲国产免费| 国产精品一区二区三区四区免费观看 | 亚洲无线在线观看| 亚洲第一电影网av| 色在线成人网| 黄色片一级片一级黄色片| 99久久久亚洲精品蜜臀av| 嫁个100分男人电影在线观看| 国产精品亚洲美女久久久| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 男女午夜视频在线观看| 可以在线观看的亚洲视频| 每晚都被弄得嗷嗷叫到高潮| 日韩高清综合在线| 老司机在亚洲福利影院| 亚洲av一区综合| 国产伦精品一区二区三区四那| 岛国视频午夜一区免费看| 一本精品99久久精品77| 午夜福利欧美成人| 中出人妻视频一区二区| 国产三级在线视频| 国产欧美日韩一区二区精品| 在线观看66精品国产| 欧美在线一区亚洲| 午夜免费男女啪啪视频观看 | 国产精品综合久久久久久久免费| 欧美日本视频| 88av欧美| 精品一区二区三区av网在线观看| 久久久久久久久大av| 亚洲人成电影免费在线| 91久久精品电影网| 亚洲成av人片免费观看| 欧美区成人在线视频| 性色avwww在线观看| 麻豆成人av在线观看| 日本 欧美在线| 老司机在亚洲福利影院| 日韩av在线大香蕉| www日本在线高清视频| 亚洲国产精品成人综合色| 日韩国内少妇激情av| 一夜夜www| 好看av亚洲va欧美ⅴa在| 深爱激情五月婷婷| 一区二区三区国产精品乱码| 国产三级黄色录像| 免费一级毛片在线播放高清视频| 国产一区二区亚洲精品在线观看| 成人欧美大片| 成年女人永久免费观看视频| 国产欧美日韩精品一区二区| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 午夜免费观看网址| 精品久久久久久久久久久久久| 免费av毛片视频| av黄色大香蕉| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 一卡2卡三卡四卡精品乱码亚洲| av中文乱码字幕在线| 在线免费观看不下载黄p国产 | 日韩亚洲欧美综合| 国产高潮美女av| 非洲黑人性xxxx精品又粗又长| 国产乱人视频| 热99re8久久精品国产| 亚洲精品一区av在线观看| 一级黄片播放器| 国产爱豆传媒在线观看| 国产真实乱freesex| 成人特级黄色片久久久久久久| 午夜免费激情av| 亚洲 欧美 日韩 在线 免费| 午夜精品久久久久久毛片777| 免费在线观看影片大全网站| 精品一区二区三区视频在线 | 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐动态| 免费在线观看影片大全网站| 熟女人妻精品中文字幕| 午夜免费成人在线视频| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 国产v大片淫在线免费观看| 欧美av亚洲av综合av国产av| 亚洲欧美精品综合久久99| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国产成年人精品一区二区| av专区在线播放| 露出奶头的视频| 又黄又粗又硬又大视频| 久久久国产精品麻豆| 国产伦在线观看视频一区| 久久香蕉国产精品| 久久久久久久久中文| 亚洲无线在线观看| 搞女人的毛片| 国产成人福利小说| 国产成人欧美在线观看| 国产三级在线视频| 性欧美人与动物交配| 啦啦啦免费观看视频1| 亚洲av不卡在线观看| 草草在线视频免费看| 国产成人啪精品午夜网站| 色在线成人网| 日本黄色片子视频| 此物有八面人人有两片| 老司机午夜十八禁免费视频| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 又黄又粗又硬又大视频| 听说在线观看完整版免费高清| 日韩欧美在线乱码| 欧美成人性av电影在线观看| 亚洲专区国产一区二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图av天堂| 国产精品久久视频播放| 亚洲成人久久性| 精品欧美国产一区二区三| 国产乱人视频| 首页视频小说图片口味搜索| 成人三级黄色视频| 欧美中文综合在线视频| 精品国产三级普通话版| 国产精品99久久99久久久不卡| 色综合站精品国产| 亚洲人成网站高清观看| 有码 亚洲区| 亚洲一区二区三区不卡视频| 51午夜福利影视在线观看| 欧美成狂野欧美在线观看| 国产99白浆流出| 一级黄片播放器| 一a级毛片在线观看| 国产精品一区二区免费欧美| 国产亚洲欧美在线一区二区| 国产午夜精品论理片| 男女视频在线观看网站免费| h日本视频在线播放| 美女cb高潮喷水在线观看| 大型黄色视频在线免费观看| 中出人妻视频一区二区| 他把我摸到了高潮在线观看| 欧美最黄视频在线播放免费| 乱人视频在线观看| 亚洲欧美日韩东京热| 国产成人影院久久av| 老汉色∧v一级毛片| 99热6这里只有精品| 亚洲精品成人久久久久久| 国产高清videossex| 变态另类丝袜制服| 国产熟女xx| 99久久无色码亚洲精品果冻| 在线观看免费视频日本深夜| 亚洲av免费高清在线观看| 大型黄色视频在线免费观看| 日本黄色片子视频| 久久这里只有精品中国| 日韩欧美国产在线观看| 久久久久久国产a免费观看| 一个人看视频在线观看www免费 | 少妇的逼水好多| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 欧美黄色淫秽网站| 国产私拍福利视频在线观看| 丁香六月欧美| 黄色视频,在线免费观看| 少妇熟女aⅴ在线视频| 男女视频在线观看网站免费| 亚洲一区二区三区色噜噜| e午夜精品久久久久久久| 国产高清激情床上av| 一级毛片女人18水好多| 九九热线精品视视频播放| 在线国产一区二区在线| 欧美激情在线99| 国产99白浆流出| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品大字幕| 国产精品自产拍在线观看55亚洲| 手机成人av网站| 精品一区二区三区视频在线 | 国产精品美女特级片免费视频播放器| 亚洲国产精品999在线| 淫妇啪啪啪对白视频| 舔av片在线| 成年版毛片免费区| 男人和女人高潮做爰伦理| 欧美日本亚洲视频在线播放| 一本精品99久久精品77| 女生性感内裤真人,穿戴方法视频|