• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edge detection of magnetic tile cracks based on wavelet①

    2015-04-17 06:37:50LinLijun林麗君HeMinggeYinYing
    High Technology Letters 2015年3期

    Lin Lijun (林麗君), He Mingge, Yin Ying

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    ?

    Edge detection of magnetic tile cracks based on wavelet①

    Lin Lijun (林麗君)*, He Mingge**, Yin Ying②

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background, an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed. At first, a new Butterworth high pass filter (BHPF) with adaptive cutoff frequency is produced, because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively, and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency. And then, the best decomposition scale is obtained by the level determination function to prevent edge information from missing. At last, edge points are got by double threshold after obtaining the wavelet modulus maxima, and then the edge image is linked by the edge points to ensure the edge continuity and veracity. Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm, and the edge detection algorithm can also detect other defects, and lays the foundation for defecting auto- recognition.

    edge detection, wavelet transform, textures processing, magnetic tile, information entropy

    0 Introduction

    Magnetic tile is an important part of the motor, and its surface defects must be removed which affects the motor safety performance directly. And most companies use the artificial vision to detect the defections due to the magnetic tile with gray color and low image contrast. At present, adopting machine vision to complete the defect detection is a hot research on the nondestructive testing, and the image edge information extraction is the key of image processing[1,2], thus many edge detection algorithms have been applied evolutionarily to all kinds of image edge features extraction[3-5]. Ref.[6] uses Sobel and Canny algorithm to locate the locked weld edge for avoiding outside interruptions. Ref.[7] employs the wavelet multi-scale analysis to extract the feature points on X-ray cephalometric, and gets the desired effect on the automatic location. Ref.[8] presents local modulus maxima and dynamic threshold to solve the wavelet edge detection’s shortage such as inaccurate location. Ref.[9] has employed an independent component analysis (ICA) and a particle swarm optimization (PSO) to detect the LCD panel defects, and the proposed algorithm is suitable for the defects with large size and low image contrast. The research on magnetic tile defects detection is quite few due to the magnetic tile characteristics.

    In Ref.[10], it proposes a defect extraction method based on adaptive morphological filter. Defects are removed or weakened by the adaptive morphological filtering to get the image background, and then the surface defects are extracted after comparing the original image with the background image, but it can’t get the accurate classification when the gray variety in small defects is big. Ref.[11] presents a texture analysis method to detect the defects on the magnetic tile surface. In this way, the original image is divided into several equal sized squares decomposed by the fast discrete curvelet transform(FDCT) at different scales and orientations, and then the coefficients are calculated as the feature vector of the support vector machine(SVM) classifier. However, it can’t get the desired result when defects percentage is less than 1/64 in magnetic tile image. Ref.[12] presents the learning vector quantization (LVQ) neural network to classify the magnetic tile defects, but it doesn’t explain how to extract the defects edge information correctly.

    A new edge detection algorithm of the magnetic tile crack is proposed in this paper. The BHPF filter’s cutoff frequency is changed adaptively by the image gradient variance weighted information entropy, so the background texture and noise are restrained adequately. To make good use of the feature of the wavelet multi-scale resolution, the original image is transformed by the translation invariance binary wavelet to calculate the wavelet modulus maxima, and then the level determination function (LDF) is adopted to decrease the interference from the wavelet level. At last, the edge points of crack are got by the double threshold, and then it can get the crack edge image by linking the edge points. The experimental results show that the proposed algorithm can decrease the influence from the background, and extract the crack edge accurately and effectively.

    1 The image preprocessing

    The crack is one of the most typical magnetic tile defects, some cracks are slight and mixed with the background, and are difficult to be identified. Due to the energy difference between the crack and background, the crack’s energy stays in high frequency area. The ideal high pass filter (IHPF) has ringing effect at the cut-off frequency, while the exponential high pass filter (EHPF) brings noise. The BHPF is proposed in this paper to process the original image, which can restrain the interference from random textures and smooth the curve more effectively while the cutoff frequency is increasing, so the cracks are enhanced[13].The n level BHPF filter is defined as

    (1)

    where the crack image isf(x, y), and its filtering is

    g(x, y)=F-1{F[f(x, y)]·H(u, v)}

    (2)

    In Eq.(2), F is Fourier transform, and F-1is inverse transform of F, g(x, y) is the filtered crack image.

    1.1 The texture estimation

    Information entropy can describe the image’s information content efficiently, but it ignores the space information of gray distribution[14]. The weighted entropy not only expresses the image’s average information content, but also reflects how the high gray value affects the image information entropy. The crack has high gray value and contains the noise, and the gray value is one of the standards about the image’s complexity degree.

    If the image has 256 gray levels, gray value s is the weighting factor, so the weighted information entropy is

    (if ps=0, pslogps=0)

    (3)

    In Eq.(3), S is the set of pixel values, psis the probability of the gray value s appearing in S.

    In order to describe the texture complexity more objectively, and the gradient variance can reflect the changes of the texture detail, the weighted information entropy adjusted by the gradient variance can describe the texture details clarity qualitatively. Image gradient variance is

    (4)

    gradAVR=

    (5)

    So the image gradient variance weighted information entropy (IGVWIE) can be expressed as

    (6)

    (7)

    The gradient variance is a reflection of the degree that the pixel gray value deviates from its average gray value, as the variance is bigger, the difference among the pixels is bigger, and the details of the image are more.

    1.2 The texture description

    In order to explain the reliability of the IGVWIE describing the different image background, the following is the analysis about this method.

    H(S)=

    (8)

    (9)

    Eq.(9) indicates that the whole intensity feature can reflect the background complexity at the same gray level.

    1.3 The adjusting cutoff frequency correction

    As a result, the system chart of the adjusting BHPF cutoff frequency is in Fig.1. According to the prior knowledge, the cutoff frequency of some typical magnetic tile crack which has different complexity are got, and then stored in the system. The weighted information entropy and the cutoff frequency is fitted by the segment linear interpolation while the system is running, and the relationship of the nonlinear function between them is determined. So it can get the cutoff frequency corresponding to the information entropy values of the different crack background, and the parameters of the BHPF is changed adaptively to realize the quantitative analysis of the energy change for the crack image.

    Fig.1 The system chart of adjusting BHPF cutoff frequency

    2 The edge detection principle

    Binary wavelet edge detection is that the waiting detection signal is transformed by the second differential smooth function, and the image edge points are got through the wavelet modulus maximum[15].

    Assume that the wavelet function ψ(t) and the signal f(t) is real function, and ψ(t) is the first derivation of smooth function θ(t), that ψ(t)=dθ(t)/dt, the f(t) binary wavelet transform is defined as follows

    (10)

    2.1 The wavelet modulus maxima

    For a binary wavelet transform sequence Wf(2j,0), Wf(2j,1), …, Wf(2j,n), if it satisfies the following conditions.

    (11)

    Also Eq.(11) can’t take equal at the same time, so the wavelet coefficients can get the modulus maxima at the point m(0≤m≤n).

    2.2 The optimal decomposition scale

    Because the crack edge information is influenced by the wavelet decomposition scale greatly, so it needs an optimal decomposition scale got through the level determination function (LDF)[17]. The function is

    (12)

    2.3 The threshold determination

    The threshold is the criterion of detecting the image edge, and affects the quality of the edge detection directly. Seeking the wavelet modulus’ maximum and minimum, and their average is the initial threshold T0.The window n×n scans image D, then it can get the wavelet coefficient Wj,k, so the threshold is

    (13)

    In Eq.(13), δ is the impact factor, and δ=0.5.

    3 The magnetic tile crack edge detection

    If crack D has N×N pixels, D={dn,m|n,m=0,1,…,N-1}, so the process of crack D multi-scale edge detection is as following:

    (1) Image D is filtered by the new BHPF, then it can get image D1.

    (2) Image D1is transformed by 2-D wavelet at 2j, W1f(2j, n, m), W2f(2j, n, m), n, m=0,1,…,N-1,1≤j≤J=log2N。

    (3) Modulus Mf(2j, n, m) and the tangent value tanAf(2j, n, m) are got at pixel point (n,m).

    (4) The optimal decomposition scale of image D1is determined by Eq.(12), and its flowchart is shown as Fig.2.

    Fig.2 The flowchart of getting the optimal decomposition scale

    (5) Threshold T got by Eq.(13) divides image D1into two parts. Modulus less than T are region R1, and the others are region R2. Also threshold T1in region R1and threshold T2in region R2can be got by Eq.(13), if T1

    (6) The boundary points at one scale are got. If one pixel’s gray value in image D1is less than threshold T1, the gray value is 0, then image D1is changed into image I1, at the same way, it can get image I2at threshold T2. The image I2is the base, the image I1is the supplement for image I2, and t The flowchart of finding the contour line is shown as Fig.3.

    Fig.3 The flowchart of seeking the boundary points

    (7) Connect all edge points at scale 2j, it can get the modulus maxima line.

    (8) The gray value of edge points meeting the algorithm is set as 255, and the others are set as 0, then the edge image I is got.

    4 The analysis of experimental results

    4.1 The analysis of filter result

    Fig.4 is the axial crack of magnetic tile, and Fig.5 is the crack filtered by BHPF. Fig.5 shows that the defect is enhanced, and the random texture and noise of background is reduced effectively.

    Fig.4 The axial crack

    Fig.5 The axial crack filtered by BHPF

    4.2 The analysis of edge detection results

    The magnetic tile image from the production line is analyzed by the proposed method, and the image size is 256×128, the used PC is powered by a 3.2GHz Intel Core i5 Quad processor. This experiment is realized by the Matlab R2013a encoding.

    The algorithm proposed in this paper is applied to the edge extraction of three crack defects, and the result is shown in Fig.6. From Fig.6(a), cracks can be seen on the end face and outside surface of magnetic tile obviously. The detection results of the Sobel operator in Fig.6(b) shows the crack defects can’t be extracted correctly, because the crack defects is multi-directional while the classical Sobel operator using only the horizontal direction and vertical direction template. It must add a new template to increase the direction detection information. Moreover, the false edges are smoothed by the Sobel operator, and the real edges are lost as well. On the other hand, because of lacking of the adaptability for different images, the threshold of the classical Sobel operator is determined by one’s experience. The results tested by Canny operator are shown in Fig.6(c), which shows the crack edges are interfered by the texture, and the real crack can’t be extracted correctly. That is because the traditional Canny operator calculates the gradient amplitude by using a finite difference average, which is sensitive to the noise and is easy to cause the real edge details lost or the false edge detected. The low contrast of magnetic tile makes the double threshold Canny algorithm based on gradient amplitude difficult to suppress the noise while preserving the edge in low-intensity, so that the effects of edge detection are affected. Tested results using the proposed algorithm are shown in Fig.6(d), in which the cracks are detected accurately, and the tested results are better than Sobel algorithm and Canny algorithm and achieve the desired effect.

    Fig.6 Comparison of the proposed algorithm with other algorithm

    There are 160 pieces of the magnetic tile, and the accepted products are 78, while the others have crack defects. The ones detected from the accepted magnetic tile is 72, so the false positive rate is (78-72)/78×100%=7.7%, and it indicates that there are 6 pieces of magnetic tile judged falsely because of the influence from the watermark or the dust on the magnetic tile surface. It can detect 77 pieces of the magnetic tile from the defects, and the missing rate is (82-77)/82×100%=6.1%, the reason of missing is that the direction of some cracks is consistent with the direction of grinding.

    5 Conclusion

    Using the image gradient variance to modify the weighted information entropy has made estimating the complexity of the magnetic tile crack defects background more accurately. The BHPF filter performance has been improved adaptively, and the background texture has been eliminated effectively. This paper uses the modulus maxima algorithm based on the wavelet transform to extract the crack edges, and the crack edge information is optimally retained because of the application of the optimal decomposition scale, and the double threshold has made finding the crack edges points more precisely. The experiment proves that the proposed algorithm of the edge detection is better than the classical edge detection algorithm, so it has laid the foundation for other magnetic tile defects detections.

    [ 1] Lin K Y, Si H P, Zhou Q, et al. Plant leaf edge detection based on fuzzy logic. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):227-231

    [ 2] Xiang R, Ying Y B, Jiang H Y, et al. Recognition of overlapping tomatoes based on edge curvature analysis. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3):157-162 (In Chinese)

    [ 3] Selvathi D, Dharani J. Realization of beamlet transform edge detection algorithm using FPGA. In: Proceedings of the 2013 International Conference on Signal Processing, Image Processing and Pattern Recognition, Coimbatore, India, 2013. 131-135

    [ 4] Hussain P S J, Ayesha S. Analysis of edge detection algorithm for feature extraction in satellite images. In: Proceedings of the 2013 3rd IEEE International Conference on Space Science and Communication, IconSpace2013, Melaka, Malaysia, 2013. 238-242

    [ 5] Zhao X F, Yin G F, Yin X Y, et al. Image edge detection based on support vector machine and cellular automata. Journal of Sichuan University (Engineering Science Edition), 2011, 43(1):137-142

    [ 6] Kong M, Chen S B, Lin T. Weld seam edge detection based on composite edge detectors. Journal of Shanghai Jiaotong University, 2009, 43(5):693-696 (In Chinese)

    [ 7] Ling X F, Yang J, Lu Y. Characteristic points extraction of X-Ray skull image based on wavelet multiscale analysis. Journal of Shanghai Jiaotong University, 2001, 35(9):1350-1354 (In Chinese)

    [ 8] Fan Y J, Wu X H, Luo D S. A modified image edge detection algorithm based on wavelet transform. Journal of Sichuan University (Natural Science Edition), 2012, 49(6):1264-1268 (In Chinese)

    [ 9] Tsneg Y H, Tsai D M. Defect detection of uneven brightness in low-contrast images using basis image representation. Pattern Recognition, 2010, 43(3):1129-1141

    [10] Yu Y W, Yin G F, Jiang H H, et al. Defect extraction method of arc magnet surface image based on adaptive morphological filtering. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3):351-356 (In Chinese)

    [11] Jiang H H, Yin G F, Liu P Y, et al. Defect detection on magnetic tile surface based on fast discrete curvelet transform and support vector machine. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3):147-152 (In Chinese)

    [12] Yan J L, Zheng X X, Li T Y. Application of LVQ neural network in classification of surface defects for arc segments ceramic magnet. Computer & Digital Engineering, 2009, 37(12):147-150 (In Chinese)

    [13] Rafael C G, Richard E W. Digital Image Processing. Third Edition. Beijing: Publishing House of Electronics Industry, 2011. 305-308

    [14] Li X Z, Yu H D, Yu Z J, et al. Optimal inspection method for surface defects of micro-components. Acta Armamentarii, 2011, 32(7):872-877 (In Chinese)

    [15] Sun Y K. Wavelet and Image Processing Technology. Beijing: Tsinghua University Press, 2012. 185-186 (In Chinese)

    [16] Maria P, Josef K. Optimal edge detectors for ramp edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5):483-491

    [17] Zhang X, Wang H L. Stationary lifting wavelet de-noising method based on optimal decomposition level. High Voltage Engineering, 2009, 35(3):501-508 (In Chinese)

    Lin Lijun, born in 1985. She is a Ph.D candidate of Sichuan University. She received her B.E. and M.E. degrees from Southwest Petroleum University in 2008 and 2011. Her research focuses on intelligent control and image processing.

    10.3772/j.issn.1006-6748.2015.03.005

    ①Supported by the National Natural Science Foundation of China (No. 51205265).

    ②To whom correspondence should be addressed. E-mail: kevin_yying@hotmail.com Received on Mar. 19, 2014*, Yin Xiangyun*, Yin Guofu*

    欧美黄色淫秽网站| 高潮久久久久久久久久久不卡| 亚洲成av人片免费观看| 国产成年人精品一区二区| 欧美+亚洲+日韩+国产| 啦啦啦韩国在线观看视频| 一进一出抽搐动态| 国产伦人伦偷精品视频| 1000部很黄的大片| 国产av一区在线观看免费| 免费人成视频x8x8入口观看| 色吧在线观看| 亚洲成人久久性| 成人国产综合亚洲| 亚洲人成网站高清观看| 欧美xxxx性猛交bbbb| 我要看日韩黄色一级片| 亚洲精品成人久久久久久| 中文亚洲av片在线观看爽| 国产亚洲精品av在线| 亚洲国产精品久久男人天堂| 久久久色成人| 免费观看人在逋| 国产野战对白在线观看| 国产视频一区二区在线看| 日本在线视频免费播放| 亚洲欧美日韩高清专用| 亚洲性夜色夜夜综合| 少妇人妻一区二区三区视频| 欧美不卡视频在线免费观看| 99热这里只有是精品50| 精品人妻熟女av久视频| 国产一区二区三区在线臀色熟女| 亚洲国产精品sss在线观看| 亚洲专区国产一区二区| 国产探花在线观看一区二区| 久久99热6这里只有精品| 国模一区二区三区四区视频| 亚洲熟妇熟女久久| 亚洲美女黄片视频| 一个人看视频在线观看www免费| 久久精品国产亚洲av天美| 精品欧美国产一区二区三| 欧美一区二区亚洲| 日韩欧美一区二区三区在线观看| 淫秽高清视频在线观看| 中文亚洲av片在线观看爽| 窝窝影院91人妻| 99热这里只有是精品在线观看 | 色av中文字幕| 欧美色视频一区免费| 一个人免费在线观看电影| 久久人人爽人人爽人人片va | 日本 av在线| 每晚都被弄得嗷嗷叫到高潮| 午夜免费男女啪啪视频观看 | 白带黄色成豆腐渣| 欧美最黄视频在线播放免费| 欧洲精品卡2卡3卡4卡5卡区| 国产美女午夜福利| 久久久久国内视频| 有码 亚洲区| 国产精品av视频在线免费观看| 亚洲精品在线美女| 国产毛片a区久久久久| 国产色婷婷99| 亚洲精品在线观看二区| 免费一级毛片在线播放高清视频| 免费看日本二区| 1024手机看黄色片| 亚洲av熟女| 亚洲av电影在线进入| 日韩欧美三级三区| 此物有八面人人有两片| 国产精品一区二区三区四区免费观看 | 可以在线观看毛片的网站| 国产精品亚洲av一区麻豆| 在线观看午夜福利视频| 日本a在线网址| 欧美黑人欧美精品刺激| 亚洲成人精品中文字幕电影| 午夜福利在线观看免费完整高清在 | 黄色配什么色好看| 久久欧美精品欧美久久欧美| 久久久久久九九精品二区国产| 亚洲成av人片在线播放无| 久久久久精品国产欧美久久久| 热99re8久久精品国产| 男女视频在线观看网站免费| 国产精品女同一区二区软件 | 人人妻,人人澡人人爽秒播| 色5月婷婷丁香| 天堂网av新在线| 久久久久精品国产欧美久久久| 中文字幕精品亚洲无线码一区| 免费搜索国产男女视频| 久久久精品欧美日韩精品| 亚洲av免费在线观看| 黄色女人牲交| 少妇人妻一区二区三区视频| 亚洲 国产 在线| 三级男女做爰猛烈吃奶摸视频| 少妇的逼水好多| 亚洲欧美日韩高清在线视频| 欧美高清性xxxxhd video| xxxwww97欧美| 能在线免费观看的黄片| a在线观看视频网站| 深爱激情五月婷婷| 国产精品爽爽va在线观看网站| 黄色女人牲交| 美女大奶头视频| 亚洲精品在线观看二区| 亚洲成人免费电影在线观看| 亚洲,欧美,日韩| 免费av观看视频| 欧美最黄视频在线播放免费| 非洲黑人性xxxx精品又粗又长| 男女下面进入的视频免费午夜| 久久久久久九九精品二区国产| 看十八女毛片水多多多| 亚洲,欧美,日韩| 色综合婷婷激情| 亚洲在线自拍视频| 国产 一区 欧美 日韩| 精品99又大又爽又粗少妇毛片 | 丝袜美腿在线中文| 制服丝袜大香蕉在线| 色播亚洲综合网| 嫩草影院新地址| 免费大片18禁| 亚洲最大成人av| 丰满乱子伦码专区| 国产成人福利小说| 国产精品一区二区三区四区久久| 亚洲美女视频黄频| eeuss影院久久| 五月伊人婷婷丁香| 亚洲真实伦在线观看| 日韩人妻高清精品专区| 国产高潮美女av| 国产精品一区二区性色av| 日本黄色视频三级网站网址| 国产视频一区二区在线看| 亚洲av五月六月丁香网| 成人高潮视频无遮挡免费网站| 午夜日韩欧美国产| 日韩欧美在线乱码| 又紧又爽又黄一区二区| 成人欧美大片| 麻豆一二三区av精品| 波多野结衣巨乳人妻| 国产伦精品一区二区三区四那| 成人美女网站在线观看视频| 精品久久久久久久久久免费视频| 内地一区二区视频在线| 国产成人啪精品午夜网站| 国产69精品久久久久777片| 日本黄色片子视频| 成年免费大片在线观看| 亚洲人与动物交配视频| 中文字幕精品亚洲无线码一区| 男人的好看免费观看在线视频| 69人妻影院| 欧美一区二区亚洲| 免费看美女性在线毛片视频| 在线观看美女被高潮喷水网站 | 两个人视频免费观看高清| 亚洲欧美日韩卡通动漫| 久久久久久久精品吃奶| 搡老妇女老女人老熟妇| 免费观看人在逋| 狠狠狠狠99中文字幕| 日本免费a在线| 欧美激情在线99| 97热精品久久久久久| 亚洲五月婷婷丁香| 禁无遮挡网站| 久9热在线精品视频| 麻豆成人午夜福利视频| 午夜激情福利司机影院| 最新在线观看一区二区三区| 国产日本99.免费观看| 国产成人欧美在线观看| 一卡2卡三卡四卡精品乱码亚洲| 一本精品99久久精品77| 欧美日韩瑟瑟在线播放| 亚洲最大成人中文| 亚洲av五月六月丁香网| 变态另类成人亚洲欧美熟女| 久久香蕉精品热| 国产一区二区三区视频了| 亚洲国产高清在线一区二区三| 三级男女做爰猛烈吃奶摸视频| 伦理电影大哥的女人| 亚洲专区国产一区二区| 白带黄色成豆腐渣| 99视频精品全部免费 在线| 精品国产亚洲在线| 动漫黄色视频在线观看| 国产视频一区二区在线看| 欧美区成人在线视频| 国内精品美女久久久久久| 日本免费一区二区三区高清不卡| 每晚都被弄得嗷嗷叫到高潮| 欧美成人a在线观看| 深爱激情五月婷婷| 久久6这里有精品| 久久久久国内视频| 高清毛片免费观看视频网站| 久久久色成人| 午夜激情福利司机影院| 又爽又黄无遮挡网站| 内地一区二区视频在线| av在线老鸭窝| 真人做人爱边吃奶动态| 小蜜桃在线观看免费完整版高清| 小蜜桃在线观看免费完整版高清| 中文字幕高清在线视频| 国产亚洲精品综合一区在线观看| netflix在线观看网站| 91狼人影院| 婷婷精品国产亚洲av| 999久久久精品免费观看国产| 亚洲第一区二区三区不卡| 91字幕亚洲| 人人妻人人澡欧美一区二区| 中文字幕人成人乱码亚洲影| 国产不卡一卡二| 国产主播在线观看一区二区| 国产精品久久久久久精品电影| 色吧在线观看| 亚洲无线在线观看| 亚洲aⅴ乱码一区二区在线播放| 老鸭窝网址在线观看| 国产精品嫩草影院av在线观看 | 国产欧美日韩一区二区三| 黄片小视频在线播放| 欧美性猛交黑人性爽| 岛国在线免费视频观看| 免费观看的影片在线观看| 精品无人区乱码1区二区| 午夜福利成人在线免费观看| 久久国产精品人妻蜜桃| 啦啦啦韩国在线观看视频| 国产成+人综合+亚洲专区| 又黄又爽又免费观看的视频| 国产老妇女一区| 国产精品综合久久久久久久免费| 男人舔奶头视频| 久久亚洲精品不卡| 亚洲av美国av| 国产一区二区在线av高清观看| 久久久精品欧美日韩精品| 毛片一级片免费看久久久久 | 搡老岳熟女国产| 九九久久精品国产亚洲av麻豆| 久久久久久久久久黄片| 我要看日韩黄色一级片| 久久天躁狠狠躁夜夜2o2o| 毛片女人毛片| 麻豆av噜噜一区二区三区| 天堂影院成人在线观看| 亚洲午夜理论影院| 又黄又爽又免费观看的视频| 不卡一级毛片| 亚洲精品在线观看二区| 国产一区二区在线av高清观看| 简卡轻食公司| 赤兔流量卡办理| 亚洲av成人不卡在线观看播放网| 18禁在线播放成人免费| 国产综合懂色| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 最新在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 麻豆国产97在线/欧美| 日韩 亚洲 欧美在线| 级片在线观看| 天天一区二区日本电影三级| 91字幕亚洲| 黄色女人牲交| 嫩草影院新地址| 欧美xxxx性猛交bbbb| 男女那种视频在线观看| 亚洲av五月六月丁香网| 最好的美女福利视频网| 国产黄a三级三级三级人| 日韩欧美精品免费久久 | 色哟哟哟哟哟哟| 88av欧美| 亚洲一区高清亚洲精品| 国产色爽女视频免费观看| 亚洲最大成人中文| 欧美又色又爽又黄视频| 一二三四社区在线视频社区8| 亚洲欧美日韩卡通动漫| 国产视频内射| 99精品在免费线老司机午夜| 亚洲色图av天堂| 97碰自拍视频| 久久精品影院6| 俺也久久电影网| 日韩欧美在线二视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一区二区三区不卡| 欧美bdsm另类| 欧美日韩乱码在线| 免费在线观看亚洲国产| 日韩大尺度精品在线看网址| 亚洲人成网站在线播放欧美日韩| 深夜a级毛片| 我要看日韩黄色一级片| 一进一出抽搐动态| 观看免费一级毛片| 国产精品1区2区在线观看.| 97人妻精品一区二区三区麻豆| 亚洲国产欧美人成| 欧美色视频一区免费| 国产又黄又爽又无遮挡在线| 在线观看免费视频日本深夜| 国产一区二区亚洲精品在线观看| 性欧美人与动物交配| 亚洲专区国产一区二区| 国产国拍精品亚洲av在线观看| 欧美性猛交╳xxx乱大交人| 亚洲av电影不卡..在线观看| 国产精品乱码一区二三区的特点| 国产高清视频在线播放一区| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 亚洲成a人片在线一区二区| 精品久久久久久成人av| 99久久99久久久精品蜜桃| 亚洲 欧美 日韩 在线 免费| 免费av毛片视频| 99国产精品一区二区蜜桃av| 如何舔出高潮| 日本熟妇午夜| 一级a爱片免费观看的视频| 观看美女的网站| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av| 我要搜黄色片| 一本精品99久久精品77| 亚洲美女黄片视频| 久久6这里有精品| 窝窝影院91人妻| 2021天堂中文幕一二区在线观| 男女之事视频高清在线观看| 最近视频中文字幕2019在线8| 99视频精品全部免费 在线| 精品无人区乱码1区二区| 99riav亚洲国产免费| 午夜福利视频1000在线观看| 亚洲欧美精品综合久久99| 久久久久久久久中文| 亚洲精品在线美女| 免费电影在线观看免费观看| 日本 欧美在线| 亚洲avbb在线观看| 亚洲色图av天堂| 91av网一区二区| 90打野战视频偷拍视频| 别揉我奶头~嗯~啊~动态视频| 成人亚洲精品av一区二区| 久久精品国产亚洲av涩爱 | 欧美日韩综合久久久久久 | 欧美高清成人免费视频www| 999久久久精品免费观看国产| 欧美在线黄色| 狠狠狠狠99中文字幕| xxxwww97欧美| 好看av亚洲va欧美ⅴa在| 深夜a级毛片| 69人妻影院| 极品教师在线视频| 一个人看视频在线观看www免费| 午夜福利高清视频| 国产精品日韩av在线免费观看| 亚洲五月婷婷丁香| 极品教师在线视频| 日本熟妇午夜| 色噜噜av男人的天堂激情| 一级毛片久久久久久久久女| 国产视频内射| 亚洲av中文字字幕乱码综合| 日本黄大片高清| 九色成人免费人妻av| 一进一出抽搐动态| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 18美女黄网站色大片免费观看| 麻豆一二三区av精品| 国产精品久久久久久精品电影| 一本一本综合久久| 在线十欧美十亚洲十日本专区| 美女大奶头视频| 国产亚洲精品久久久com| 婷婷亚洲欧美| 国产三级黄色录像| 又爽又黄a免费视频| av中文乱码字幕在线| 一级作爱视频免费观看| 久久国产精品影院| 99国产综合亚洲精品| 国产伦精品一区二区三区四那| 热99在线观看视频| 午夜激情欧美在线| 成年女人看的毛片在线观看| 久久6这里有精品| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 亚洲国产色片| 国产老妇女一区| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线二视频| 无遮挡黄片免费观看| 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片 | 全区人妻精品视频| 91在线精品国自产拍蜜月| netflix在线观看网站| 他把我摸到了高潮在线观看| 99久国产av精品| 亚洲专区中文字幕在线| 嫩草影院入口| 伊人久久精品亚洲午夜| 我要看日韩黄色一级片| 99精品在免费线老司机午夜| 成人三级黄色视频| 亚洲人与动物交配视频| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 久久久国产成人精品二区| 亚洲精品在线观看二区| 在现免费观看毛片| 在线天堂最新版资源| 免费搜索国产男女视频| 99国产精品一区二区三区| 久久久久久久久久黄片| 亚洲综合色惰| 欧美3d第一页| 一区二区三区高清视频在线| 男插女下体视频免费在线播放| 午夜日韩欧美国产| 免费高清视频大片| 十八禁国产超污无遮挡网站| 国产免费av片在线观看野外av| 性欧美人与动物交配| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 国产伦精品一区二区三区四那| 国产91精品成人一区二区三区| 国产精品久久久久久久久免 | 熟女电影av网| 午夜福利在线观看免费完整高清在 | 日韩国内少妇激情av| 国产一区二区激情短视频| 中出人妻视频一区二区| 中文字幕av成人在线电影| 免费观看的影片在线观看| 亚洲av二区三区四区| 国产一区二区三区在线臀色熟女| 亚洲av不卡在线观看| 久久欧美精品欧美久久欧美| 久9热在线精品视频| 精品福利观看| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看| 国产亚洲av嫩草精品影院| 日韩免费av在线播放| 99在线视频只有这里精品首页| 老熟妇仑乱视频hdxx| 99久久精品国产亚洲精品| 婷婷色综合大香蕉| 观看免费一级毛片| 久久久久久大精品| 成人国产综合亚洲| 欧美成狂野欧美在线观看| 国内少妇人妻偷人精品xxx网站| 无人区码免费观看不卡| 精品久久久久久久久亚洲 | 伊人久久精品亚洲午夜| 青草久久国产| 午夜免费成人在线视频| 精品午夜福利视频在线观看一区| 日本 av在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久国产成人精品二区| 一进一出好大好爽视频| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频 | 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 男人狂女人下面高潮的视频| 国产私拍福利视频在线观看| 在线播放无遮挡| 亚洲黑人精品在线| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 欧美+亚洲+日韩+国产| 久久久色成人| 不卡一级毛片| 欧美一区二区亚洲| 国内精品久久久久精免费| 国产成年人精品一区二区| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 自拍偷自拍亚洲精品老妇| 午夜激情欧美在线| 精品一区二区三区人妻视频| 禁无遮挡网站| 亚洲经典国产精华液单 | 又黄又爽又刺激的免费视频.| 成人三级黄色视频| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 一个人看的www免费观看视频| 国产精品精品国产色婷婷| 看片在线看免费视频| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美| 97人妻精品一区二区三区麻豆| 给我免费播放毛片高清在线观看| 日韩国内少妇激情av| 国产精品久久久久久人妻精品电影| 婷婷亚洲欧美| 国产精品久久久久久人妻精品电影| 中文字幕av在线有码专区| 噜噜噜噜噜久久久久久91| 一个人看视频在线观看www免费| 国产精品女同一区二区软件 | 人妻制服诱惑在线中文字幕| 午夜亚洲福利在线播放| 天天一区二区日本电影三级| 日韩av在线大香蕉| 婷婷精品国产亚洲av| 嫩草影院入口| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品久久久com| 91久久精品电影网| 国产麻豆成人av免费视频| 日本免费一区二区三区高清不卡| 国产精品美女特级片免费视频播放器| 国内少妇人妻偷人精品xxx网站| 精品人妻熟女av久视频| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 日韩成人在线观看一区二区三区| 日韩欧美在线二视频| 露出奶头的视频| 欧美最新免费一区二区三区 | 日本成人三级电影网站| x7x7x7水蜜桃| 88av欧美| 99久久99久久久精品蜜桃| 美女xxoo啪啪120秒动态图 | 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 色播亚洲综合网| 99视频精品全部免费 在线| 欧美色视频一区免费| 亚洲av成人不卡在线观看播放网| 一级作爱视频免费观看| 国产三级在线视频| 日韩欧美在线二视频| 亚洲国产欧洲综合997久久,| 9191精品国产免费久久| 男女之事视频高清在线观看| 国产伦一二天堂av在线观看| 啪啪无遮挡十八禁网站| 欧美激情久久久久久爽电影| 欧美成人一区二区免费高清观看| 亚洲专区国产一区二区| 最后的刺客免费高清国语| 动漫黄色视频在线观看| 久久午夜福利片| 三级国产精品欧美在线观看| 非洲黑人性xxxx精品又粗又长| 此物有八面人人有两片| 性欧美人与动物交配| 黄色女人牲交| 久久人妻av系列| 十八禁网站免费在线| 国产激情偷乱视频一区二区| 最近视频中文字幕2019在线8| 国产伦一二天堂av在线观看| 色播亚洲综合网| 国产午夜福利久久久久久| 精品一区二区三区视频在线| 免费看a级黄色片| 首页视频小说图片口味搜索| 免费看a级黄色片| 国产精品三级大全| 赤兔流量卡办理| 日日干狠狠操夜夜爽| 在线观看66精品国产| 亚洲精华国产精华精| 动漫黄色视频在线观看| 熟女人妻精品中文字幕| 午夜福利18| 内地一区二区视频在线|