• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      復(fù)合井修復(fù)地下水硝酸鹽污染的效果

      2021-06-01 14:54:46劉佩貴曾康輝尚熳廷劉湘?zhèn)?/span>
      關(guān)鍵詞:管井試驗(yàn)裝置硝酸鹽

      劉佩貴,曾康輝,尚熳廷,劉湘?zhèn)?,?yáng) 輝

      復(fù)合井修復(fù)地下水硝酸鹽污染的效果

      劉佩貴1,曾康輝1,尚熳廷2※,劉湘?zhèn)?,陽(yáng) 輝3

      (1. 合肥工業(yè)大學(xué)土木與水利工程學(xué)院,合肥 230009;2. 合肥工業(yè)大學(xué)汽車與交通工程學(xué)院,合肥 230009;3. 西藏自治區(qū)水文水資源勘測(cè)局,拉薩 850000)

      為探尋更適用于農(nóng)田周邊硝酸鹽污染地下水的原位生物修復(fù)技術(shù),該研究構(gòu)建了A、B、C3套試驗(yàn)裝置,分別刻畫管井(A)、大口井與管井組成的復(fù)合井(B、C)?;?套物理試驗(yàn)?zāi)P停繉?duì)比分析了管井與復(fù)合井修復(fù)地下水硝酸鹽污染的效果。結(jié)果表明:受水力停留時(shí)間的影響,相同流速條件下,A、B、C三套修復(fù)系統(tǒng)的硝酸鹽負(fù)荷分別介于75~100、100~125、125~150 mg/L之間;在允許硝酸鹽負(fù)荷范圍內(nèi),去除率均可達(dá)到95%以上,且不會(huì)出現(xiàn)亞硝酸鹽累積及氨氮超標(biāo)現(xiàn)象,表明了復(fù)合井修復(fù)系統(tǒng)的可行性,可以實(shí)現(xiàn)地下水開采與修復(fù)同步進(jìn)行,提高了地下水水源地供水安全保證率。

      地下水;污染;硝酸鹽去除;反硝化作用;復(fù)合井;水力停留時(shí)間

      0 引 言

      受農(nóng)業(yè)長(zhǎng)期施肥及土壤中微生物的影響,遷移能力較強(qiáng)的硝酸鹽易隨水分運(yùn)動(dòng)進(jìn)入到飽和帶,致使農(nóng)田周邊地下水面臨被硝酸鹽氮污染的威脅,影響到地下水水源地的供水安全[1-4]。為解決該問題,眾多研究學(xué)者基于物理吸附[5-8]、化學(xué)反應(yīng)[9-12]和生物轉(zhuǎn)化[13-16]等原理提出了相應(yīng)的原位或異位修復(fù)技術(shù),其中,原位生物修復(fù)方法以去除率高、碳源經(jīng)濟(jì)安全、無二次污染或二次污染危害程度低、占地空間小等優(yōu)點(diǎn)成為研究熱點(diǎn)?,F(xiàn)階段常用的修復(fù)介質(zhì)載體可概括為原位反應(yīng)帶(In-situ Reactive Zone,IRZ)[17-18]和可滲透反應(yīng)墻(Permeable Reactive Barrier,PRB)[19-20]兩大類,通過擴(kuò)大IRZ的面積或者增加PRB的厚度均可以有效提高硝酸鹽污染地下水的修復(fù)效果,但受含水層空間展布情況和修復(fù)工程經(jīng)濟(jì)成本等的影響,實(shí)際工程運(yùn)行過程中,多存在去除效率與修復(fù)介質(zhì)載體體積及工程運(yùn)維成本之間的矛盾,制約了該技術(shù)的推廣與應(yīng)用。此外,已有的修復(fù)技術(shù)和方法多是圍繞切斷污染源展開,然而,因農(nóng)作物生長(zhǎng)和產(chǎn)量需求,農(nóng)業(yè)化肥面源污染不易阻截,進(jìn)一步增加了農(nóng)田區(qū)域地下水硝酸鹽污染修復(fù)的難度。劉明朝[21]設(shè)計(jì)了原位水平井修復(fù)系統(tǒng),該系統(tǒng)實(shí)現(xiàn)了地下水開采與修復(fù)的同步進(jìn)行,破解了需要切斷污染源才可修復(fù)地下水污染的問題,但該系統(tǒng)的不足是水平井成井結(jié)構(gòu)技術(shù)要求較高,操作復(fù)雜,亟需尋求施工工藝相對(duì)簡(jiǎn)單、修復(fù)效果佳的原位修復(fù)介質(zhì)。

      為此,本文基于管井和大口井的適用條件,借助生物修復(fù)技術(shù),通過設(shè)計(jì)管井與大口井組成的復(fù)合井,構(gòu)建室內(nèi)物理試驗(yàn)?zāi)P?,研究?fù)合井原位生物修復(fù)地下水硝酸鹽污染的效果,探討該類井結(jié)構(gòu)應(yīng)用于實(shí)際工程的可行性和適用性,以期提出一種簡(jiǎn)便易操作的原位生物修復(fù)地下水污染系統(tǒng),為解決農(nóng)田周邊地下水硝酸鹽污染問題提供切實(shí)可行的技術(shù)與方法。

      1 材料與方法

      1.1 試驗(yàn)裝置與運(yùn)行

      為構(gòu)建復(fù)合井原位修復(fù)系統(tǒng),自制了3套試驗(yàn)裝置(圖1和表1),每套裝置均由井、儲(chǔ)液池、蠕動(dòng)泵、乙醇注入桶組成,其中裝置A模擬的是一口直徑7 cm的管井,裝置B和C模擬的是由直徑14 cm的大口井和直徑7?cm的管井組成的復(fù)合井,井的材料均為亞克力板材。

      試驗(yàn)所用含水介質(zhì)為粒徑<0.25 mm的均質(zhì)細(xì)砂,為保證3個(gè)系統(tǒng)的滲透性能一致,試驗(yàn)中采用相同均質(zhì)砂的干容重分層填砂,邊壓實(shí)邊填入A、B、C試驗(yàn)裝置的管井中,保證管井中均填入相同體積和高度的細(xì)砂(細(xì)砂高度均為12 cm),裝置B和C的大口井中介質(zhì)填充高度分別為4?cm和8?cm的介質(zhì),壓實(shí)度與管井相同。管井和大口井底部密封,側(cè)壁通過過濾器進(jìn)水,每個(gè)管井上部安裝蠕動(dòng)泵模擬抽水,3組試驗(yàn)裝置抽水期間不形成干擾井。本文的目標(biāo)是分析井的類型對(duì)硝酸鹽修復(fù)效果的影響,為了保證其他因素完全相同,3套試驗(yàn)裝置放置于同一模擬硝酸鹽污染地下水的儲(chǔ)液池中,盡可能保證外界環(huán)境完全相同。

      表1 試驗(yàn)運(yùn)行參數(shù)

      注:S1~S6表示反應(yīng)階段。

      Note : S1-S6 represent the reaction stages.

      1.2 試驗(yàn)方法

      自然界中廣泛存在反硝化微生物,為提高復(fù)合井原位系統(tǒng)中生物反硝化作用的效果及反應(yīng)速率,需要人為添加碳源,對(duì)比固態(tài)、液態(tài)碳源的優(yōu)缺點(diǎn)[22-24],本次選用無毒無害、經(jīng)濟(jì)實(shí)惠的乙醇作為反硝化碳源,根據(jù)公式(1)計(jì)算試驗(yàn)運(yùn)行一定時(shí)間內(nèi)需要注入的乙醇量

      為避免地下水中其他離子成分對(duì)反硝化作用的干擾,采用去離子水與KNO3(分析純)配置模擬不同濃度硝酸鹽污染地下水。試驗(yàn)開始前將3套試驗(yàn)裝置靜置于模擬硝酸鹽污染地下水的儲(chǔ)液池中,使水流從下往上緩慢飽和介質(zhì),并保證排空介質(zhì)中的空氣,待試驗(yàn)柱充分飽水后開始試驗(yàn)。首先,進(jìn)行第一個(gè)試驗(yàn)段(S1),啟動(dòng)乙醇注入泵,為保證碳源分析的均勻性,將傳輸乙醇直徑為1cm的軟管在大口井中部纏繞一圏,軟管側(cè)壁均勻打孔,以便使乙醇均勻擴(kuò)散到介質(zhì)中;然后啟動(dòng)補(bǔ)水泵和抽水泵。該階段為生物自然掛膜階段,通過自然馴化優(yōu)勢(shì)菌種實(shí)現(xiàn)反應(yīng)系統(tǒng)中的反硝化作用[25]。試驗(yàn)期間每天8:00從抽水泵中取樣,使用哈希DR6000型紫外可見光分光光度計(jì)檢測(cè)NO3--N、NO2--N、NH4+-N(總稱為三氮)的濃度,待三氮濃度穩(wěn)定后結(jié)束該階段。然后,保持所有泵正常工作,增大儲(chǔ)液池內(nèi)NO3--N濃度至50 mg/L(S2階段),乙醇的注入量根據(jù)公式(1)作相應(yīng)的調(diào)整,繼續(xù)試驗(yàn)過程,重復(fù)取樣和檢測(cè)過程,待出口處三氮濃度穩(wěn)定后再進(jìn)入S3階段,依次進(jìn)行,直至出口處硝酸鹽的濃度超過標(biāo)準(zhǔn)限值才停止試驗(yàn)。本文硝酸鹽的限值采用世界衛(wèi)生組織(WHO)規(guī)定的硝酸鹽氮濃度(11.3 mg/L)。

      2 結(jié)果與分析

      2.1 修復(fù)效果分析

      根據(jù)生物反應(yīng)過程,將原位生物修復(fù)硝酸鹽過程分為自然掛膜和正常運(yùn)行兩個(gè)階段。為保障自然掛膜效果,初始管井進(jìn)水流速為0.13?m/d,NO3--N濃度為25?mg/L,3套反應(yīng)系統(tǒng)的NO3--N濃度均在第4 d降至1.0?mg/L以下,去除率大于97%,持續(xù)穩(wěn)定4 d后,認(rèn)為掛膜成功。由于進(jìn)水流速將對(duì)反硝化作用效果產(chǎn)生一定的影響[21],硝酸鹽修復(fù)過程中不宜使進(jìn)水流速過大,根據(jù)本次試驗(yàn)的介質(zhì)條件,正常運(yùn)行階段進(jìn)水流速控制為0.26 m/d。根據(jù)反硝化作用程度及NO3--N濃度,本次試驗(yàn)自然掛膜和正常運(yùn)行共包括6個(gè)階段。

      由圖2的NO3--N濃度變化過程可以看出,每個(gè)反應(yīng)階段NO3--N濃度均隨著反應(yīng)時(shí)間的增加和進(jìn)水NO3--N濃度的變化,出現(xiàn)先上升后逐漸下降并逐漸趨于穩(wěn)定的狀態(tài)。當(dāng)反應(yīng)階段發(fā)生變化,即瞬時(shí)增大硝酸鹽濃度時(shí),濃度變化情況表明反應(yīng)介質(zhì)中的微生物基本在1d內(nèi)即可完成篩選優(yōu)勢(shì)菌種,以便適應(yīng)硝酸鹽負(fù)荷條件的變化,提高反硝化能力。

      S1和S2兩個(gè)階段A、B、C3套修復(fù)系統(tǒng)NO3--N的去除率均大于97%,當(dāng)進(jìn)水NO3--N濃度增大至75 mg/L時(shí),僅反應(yīng)系統(tǒng)A的去除率略有降低,約為89%,但此時(shí)硝酸鹽氮濃度的檢測(cè)值為7.94 mg/L,仍小于WHO規(guī)定的限值11.3?mg/L,滿足水質(zhì)要求。繼續(xù)增大進(jìn)水NO3--N濃度至100?mg/L時(shí)(S4),系統(tǒng)A、B、C持續(xù)反應(yīng)11d后NO3--N濃度分別穩(wěn)定在50?mg/L、3?mg/L、0.5?mg/L,表明A系統(tǒng)內(nèi)的反硝化菌群的處理能力已不能滿足標(biāo)準(zhǔn)限值的要求,超出了其最大硝酸鹽處理負(fù)荷。其他兩個(gè)復(fù)合井系統(tǒng)去除率仍大于97%,修復(fù)效果仍非常好,此后停止試驗(yàn)裝置A的運(yùn)行。當(dāng)進(jìn)水NO3--N濃度增大至125?mg/L(S5)時(shí),裝置B的NO3--N去除率由97%降至68%(圖3),穩(wěn)定濃度超過了11.3?mg/L,表明地下水硝酸鹽濃度超過了裝置B的處理能力即承載負(fù)荷,停止裝置B的試驗(yàn)。此時(shí),系統(tǒng)C的去除率仍接近98%,表明硝酸鹽濃度還可以繼續(xù)增大。當(dāng)進(jìn)水NO3--N濃度持續(xù)增大至150?mg/L,待試驗(yàn)穩(wěn)定后去除率下降至70%,出水濃度約45?mg/L,超過了WHO的標(biāo)準(zhǔn)限值。由此得出,A、B、C3套試驗(yàn)裝置,以0.26?m/d的流速穩(wěn)定運(yùn)行時(shí)的硝酸鹽負(fù)荷分別介于75~100、100~125、125~150?mg/L之間。

      NO2--N是微生物反硝化過程的中間產(chǎn)物,裝置A、B、C分別在S3、S4、S6階段出現(xiàn)NO2--N的累積現(xiàn)象(圖3),特別在S4階段A和B兩個(gè)系統(tǒng)中NO2--N濃度均大于10 mg/L,出現(xiàn)了NO2--N嚴(yán)重累積問題。但S1-S5反應(yīng)階段3個(gè)修復(fù)系統(tǒng)的NH4+-N濃度基本在0~1 mg/L之間,僅在裝置處理能力小于硝酸鹽負(fù)荷時(shí)NH4+-N濃度才增大至地下水III類水限值(0.5?mg/L)以上。

      2.2 修復(fù)效果差異性分析

      綜合圖2~圖3的結(jié)果可以看出,3套試驗(yàn)裝置的硝酸鹽負(fù)荷和去除率總體效果C>B>A。造成系統(tǒng)間差異的主要原因是由于B、C兩個(gè)裝置中的取水建筑物為管井與大口井組成的復(fù)合井。從管井中抽水,被硝酸鹽污染的地下水通過過濾器首先進(jìn)入大口井,經(jīng)過反硝化作用后才進(jìn)入管井,管井中的地下水在微生物的作用下進(jìn)一步降低了硝酸鹽的濃度,復(fù)合井增大了反硝化作用的面積、延長(zhǎng)了微生物反硝化時(shí)間。三個(gè)試驗(yàn)裝置反應(yīng)介質(zhì)的體積比為1﹕2﹕3,管井和大口井的直徑相同,試驗(yàn)裝置表現(xiàn)在介質(zhì)填充厚度不同,裝置C大口井的厚度是裝置B的2倍,流速相同條件下,水力停留時(shí)間()之比為1 ﹕2﹕4,C>B>A,而水力停留時(shí)間是決定修復(fù)效果的重要因素[26]。從3套試驗(yàn)裝置可處理的硝酸鹽負(fù)荷(NL)也可以看出,NLC>NLB>NLA。由此得出,裝置C的修復(fù)效果最優(yōu),B次之,A最差,復(fù)合井的修復(fù)能力和效果明顯優(yōu)于管井。

      NO2--N的濃度主要受反應(yīng)速率、生物菌群、還原酶的影響,試驗(yàn)后期出現(xiàn)了NO2--N積累現(xiàn)象,可能是由于NO2--N的降解速率小于NO3--N的降解速率[27],因?yàn)檫M(jìn)行異化硝酸鹽還原的異樣細(xì)菌可分為兩類,a類菌群只含有硝酸鹽還原酶,b類菌群含有反硝化中的全部酶系。當(dāng)某些因素抑制b類菌群的生長(zhǎng)而對(duì)a類菌群影響較小時(shí),就會(huì)造成NO2--N積累[28],且硝酸鹽還原酶的活性比亞硝酸鹽還原酶的活性更高[29],隨著微生物的不斷生長(zhǎng),修復(fù)系統(tǒng)內(nèi)能夠反應(yīng)NO3--N的生物量遠(yuǎn)遠(yuǎn)多于能夠反應(yīng)NO2--N的生物量,反應(yīng)優(yōu)先進(jìn)行NO3--N→NO2--N,此后才發(fā)生NO2--N→NO的過程。

      造成部分階段NH4+-N濃度增大的主要原因是由于異化還原成銨作用(Dissimilatory Nitrate Reduction to Ammonium, DNRA)[30-31]。由于反硝化作用與DNRA作用均需要有機(jī)質(zhì)提供電子供體,故二者呈競(jìng)爭(zhēng)關(guān)系。根據(jù)細(xì)菌將選擇獲取能量較大的反應(yīng)這一理論[32],細(xì)菌從反硝化作用中獲得的能量(2 333.84?kJ/mol)遠(yuǎn)高于從DNRA作用中獲得的(679.605?kJ/mol),因此優(yōu)先發(fā)生反硝化作用。故在修復(fù)系統(tǒng)的硝酸鹽負(fù)荷范圍內(nèi),NH4+-N積累程度較低,DNRA作用較弱,反硝化作用呈主體作用,而超過硝酸鹽負(fù)荷范圍后,反硝化作用減弱,DNRA作用增強(qiáng),NH4+-N積累程度有所增加。

      2.3 復(fù)合井的應(yīng)用性探討

      常見的取水建筑物有管井、大口井、滲渠、輻射井,其中管井和大口井適用范圍廣、適用性強(qiáng)[33],因此,本次研究過程中選用了管井和大口井。大口井一般適用于地下水埋藏較淺、含水層厚度不大和富水性好的地區(qū),實(shí)際應(yīng)用中井徑多在5~10m,具有較大的反硝化面積,較管井存在施工條件要求高、基建費(fèi)用高的缺點(diǎn)。管井適用范圍較廣、成井工藝相對(duì)簡(jiǎn)單,但反硝化面積有限,影響修復(fù)效果,因此,本文結(jié)合兩種類型井的優(yōu)勢(shì),構(gòu)建了大口井與管井組成的復(fù)合井,用其開展原位修復(fù)地下水硝酸鹽污染,試驗(yàn)結(jié)果表明了復(fù)合井的去除率和處理負(fù)荷明顯優(yōu)于管井。

      決定裝置修復(fù)效果的關(guān)鍵因素是反硝化面積和時(shí)間,類比分析,理論上可以僅建立一個(gè)大口井開展地下水的修復(fù)和開采,但從成井成本和便于管理角度,一般不采用大口井開采地下水,但為了滿足地下水供水中硝酸鹽標(biāo)準(zhǔn)限值的要求,建議借助本次研究中提出的復(fù)合井結(jié)構(gòu)提升修復(fù)效果。實(shí)際成井結(jié)構(gòu)示意圖如圖4所示,施工過程中底部的大口井可以通過擴(kuò)孔解決,實(shí)際應(yīng)用中大口井的口徑由含水層中地下水硝酸鹽污染的濃度和去除率共同決定。

      3 結(jié) 論

      本文通過構(gòu)建管井和大口井組成的復(fù)合井原位生物修復(fù)系統(tǒng),研究了復(fù)合井原位生物修復(fù)地下水硝酸鹽污染的效果及硝酸鹽負(fù)荷。在試驗(yàn)裝置尺寸條件下,當(dāng)以0.26?m/d的水流流速抽水時(shí),三個(gè)試驗(yàn)裝置的硝酸鹽負(fù)荷分別介于75~100、100~125、125~150?mg/L之間。因復(fù)合井的水力停留時(shí)間和體積是管井的2倍,增加了反硝化時(shí)間和面積,修復(fù)能力和效果明顯優(yōu)于管井。當(dāng)試驗(yàn)裝置的硝酸鹽負(fù)荷小于其處理能力時(shí),去除率均可達(dá)到95%以上,且未出現(xiàn)亞硝酸鹽累積及氨氮超標(biāo)現(xiàn)象,從而表明了復(fù)合井修復(fù)系統(tǒng)的可行性,并對(duì)其應(yīng)用性進(jìn)行了探討,設(shè)計(jì)了實(shí)際工程應(yīng)用中建議的成井結(jié)構(gòu)示意圖,在不需要切斷農(nóng)業(yè)面源污染條件下,可以實(shí)現(xiàn)地下水開采與修復(fù)同步進(jìn)行,提高了地下水水源地供水安全保證率。此外,復(fù)合井為管井與大口井的組合,不僅成井工藝相對(duì)簡(jiǎn)單,適用范圍也廣(包括潛水、承壓水),可以根據(jù)含水層厚度、需水量大小、硝酸鹽污染地下水的程度等調(diào)整大口井的井徑及反應(yīng)介質(zhì)載體高度,在不影響開采量的同時(shí)保障硝酸鹽的去除效果。

      受試驗(yàn)時(shí)間的限制,物理試驗(yàn)不可能窮盡所有的試驗(yàn)方案,因此,基于物理試驗(yàn)?zāi)P?,本文僅確定了三個(gè)修復(fù)系統(tǒng)的最大硝酸鹽負(fù)荷區(qū)間,未明確具體的硝酸鹽負(fù)荷。后續(xù)工作中將通過建立水文地球化學(xué)模擬模型,精確確定不同復(fù)合井修復(fù)系統(tǒng)的最大硝酸鹽負(fù)荷,并探討介質(zhì)的非均質(zhì)性對(duì)修復(fù)效果的影響程度。

      [1]嚴(yán)冬冬,徐從海,黃永軍,等. 郯城縣農(nóng)村飲用水源地硝酸鹽污染及防治對(duì)策[J]. 環(huán)境研究與監(jiān)測(cè),2020,33(3):59-63. Yan Dongdong, Xu Conghai, Huang Yongjun, et al. Nitrate pollution in rural drinking water sources in Tancheng county and countermeasures[J]. Environmental Research and Monitoring, 2020, 33(3): 59-63. (in Chinese with English abstract)

      [2]孟春霞,鄭西來,馬振宇,等. 青島市農(nóng)村供水中硝酸鹽氮污染狀況及健康風(fēng)險(xiǎn)評(píng)價(jià)[J]. 水利水電技術(shù),2014,45(9):24-26. Meng Chunxia, Zheng Xilai, Ma Zhenyu, et al. Assessment on status of nitrate pollution in rural water supply of Qingdao and its healthy risk[J]. Water Resoures and Hydropower Engineering, 2014, 45(9): 24-26. (in Chinese with English abstract)

      [3]Liu Jiutan,Peng Yuming,Li Changsuo,et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health-ScienceDirect[J]. Environmental Pollution, 2021, 268: 115947.

      [4]Cameira M D R, Rolim J, Valente F, et al. Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones-ScienceDirect[J]. Agriculture, Ecosystems & Environment, 2021, 30: 107204.

      [5]Bergquist A M, Choe J K, Strathmann T J, et al. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water[J]. Water Research, 2016, 96(1): 177-187.

      [6]Shafiekhani H, Barjoizadeh R. Modification of activated carbon by ZnCl2, CaCl2, MgCl2and their applications in removal of nitrate ion from drinking water[J]. Asian Journal of Green Chemistry, 2019, 3: 1-12.

      [7]Lékéné R B N, Nsami J N, R A, et al. Optimization conditions of the preparation of activated carbon based Egusi (Naudin) seed shells for nitrate ions removal from wastewater[J]. American Journal of Analytical Chemistry, 2018, 9(10): 439-463.

      [8]趙爽. 給水廠污泥改性活性炭去除硝酸鹽氮的性能研究[D]. 北京:北京建筑大學(xué),2020. Zhao Shuang. Study on the Performance of Water Treatment Residuals Modified Granular Activated Carbon to Remove Nitrate[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. (in Chinese with English abstract)

      [9]沈靜,項(xiàng)凱民,繆澤群,等. 鈷卟啉催化硝酸鹽電化學(xué)還原反應(yīng)[J]. 湖南科技大學(xué)學(xué)報(bào):自然科學(xué)版,2020,35(4):89-95. Shen Jing, Xiang Kaimin, Mou Zequn, et al. Nitrate electrochemical reduction catalyzed by cobalt protoporphyrin[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2020, 35(4): 89-95. (in Chinese with English abstract)

      [10]Sheydaei M, Ayoubi-Feiz B. Nitrate reduction through the visible-light photoelectrocatalysis and photoelectrocatalysis/reverse osmosis processes: Assessment of graphene/Ag/N-TiO2nanocomposite[J]. Journal of Water Process Engineering, 2021, 39: 101856.

      [11]Dortsiou M, Katsounaros I, Polatides C, et al. Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate[J]. Environmental Technology, 2013, 34: 373-381.

      [12]王樂樂. 納米電極制備及電化學(xué)去除地下水中硝酸鹽行為與機(jī)理[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京),2020. Wang Lele. Preparation of Nano Electrode and Behavior and Mechanism for Electrochemical Reduction of Nitrate in Groundwater[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract)

      [13]張?zhí)m河,莊艷萍,王旭明,等. 溫度對(duì)改良A2/O工藝反硝化除磷性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):213-219. Zhang Lanhe, Zhuang Yanping, Wang Xuming, et al. Effect of temperature on denitrifying phosphorus removal efficiency using modified A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 213-219. (in Chinese with English abstract)

      [14]Yan S, Cheng K Y, Ginige M P, et al. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control[J]. Journal of Hazardous Materials, 2020, 402: 123770.

      [15]Zhang Yichong, Xu Qiang, Huang Guangtuan, et al. Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34099-34109.

      [16]易能,邸攀攀,王巖,等. 富氧灌溉池塘中反硝化細(xì)菌豐度晝夜垂直變化特征分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):80-86. Yi Neng, Di Panpan, Wang Yan, et al. Diel vertical variability analysis of denitrifying bacteria abundance in oxygen-enriched irrigation pond[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 80-86. (in Chinese with English abstract)

      [17]Khan I A, Spalding R F. Development of a procedure for sustainable in situ aquifer denitrification[J]. Remediation Journal, 2003, 13(2): 53-69.

      [18]Kim Y, Kim J H, Son B H, et al. A single well push-pull test method for in situ determination of denitrification rates in a nitrate-contaminated groundwater aquifer[J]. Water Science & Technology, 2005, 52(8): 77-86.

      [19]何培芬. 絲瓜絡(luò)作為模擬可滲透反應(yīng)墻介質(zhì)處理地下水中硝酸鹽研究[D]. 廣州:廣州大學(xué),2019. He Peifen, Study on Removal of Nitrogen from Groundwater by Loofah Sponge Solid Carbon as Simulate Permeable Reactive Barrier Media[D]. Guangzhou: Guangzhou University, 2019. (in Chinese with English abstract)

      [20]Liu Yong, Liu Yajing, Ma Lei, et al. Corncob PRB for on-site nitrate removal in groundwater[J]. Arabian Journal of Geosciences, 2020, 13(20): 1-11.

      [21]劉明朝. 地下水水源地硝酸鹽污染的原位修復(fù)試驗(yàn)研究[D]. 合肥:合肥工業(yè)大學(xué),2019. Liu Mingchao. Experimental Study on In-situ Remediation of Nitrate Pollution in Groundwater Well Field[D]. Hefei: Hefei University of Technology, 2019. (in Chinese with English abstract)

      [22]姜婷婷. 乙醇作為生活污水同步硝化反硝化脫氮外碳源可行性研究[J]. 環(huán)境科學(xué)與管理,2019,44(1):128-131. Jiang Tingting. Feasibility study of using ethanol as external carbon source for simultaneous nitrification and denitrification of domestic sewage[J]. Environmental Science and Management, 2019, 44(1): 128-131. (in Chinese with English abstract)

      [23]余猛,楊鳳根. PRB修復(fù)受硝酸鹽污染地下水的碳源材料研究進(jìn)展[J]. 凈水技術(shù),2020,39(4):96-101,107. Yu Meng, Yang Fenggen. Research progress of PRB carbon source materials for groundwater rehabilitation polluted by nitrate[J]. Water Purification Technology, 2020, 39(4): 96-101, 107. (in Chinese with English abstract)

      [24]黃駿宇. 利用米酒為碳源去除飲用地下水中硝酸鹽的現(xiàn)場(chǎng)試驗(yàn)研究[D]. 桂林:桂林理工大學(xué),2018. Huang Junyu. An In-situ Test Study on Nitrate Removal from the Drinking Groundwater by Using Rice Wine as Carbon Source[D]. Guilin: Guilin University of Technology, 2018. (in Chinese with English abstract)

      [25]徐佩. 外加碳源生物濾池處理城市污水廠尾水脫氮試驗(yàn)研究[D]. 武漢:武漢科技大學(xué),2011. Xu Pei. The Study on Nitrogen Removal in Biological Filter of Extra Carbon Source for The Secondary Effluent of Municipal Wastewater Treatment Plant[D]. Wuhan: Wuhan University of Science and Technology, 2011. (in Chinese with English abstract)

      [26]Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns[J]. Water Research, 2003, 37(8): 1818-1830.

      [27]付昆明,曹相生,孟雪征,等. 污水反硝化過程中亞硝酸鹽的積累規(guī)律[J]. 環(huán)境科學(xué),2011,32(6):1660-1664. Fu Kunming, Cao Xiangsheng, Meng Xuezheng, et al. Characteristics of nitrite accumulation during wastewater denitrification[J]. Environmental Science, 2011, 32(6): 1660-1664. (in Chinese with English abstract)

      [28]Payne W J. Reduction of nitrogenous oxides by microorganisms[J]. Bacteriol Rev, 1974, 37(4): 409.

      [29]Bock E, Sundermeyer-Klinger H, Stackebrandt E. New facultative lithotrophic nitrite oxydizing bacteria[J]. Archives of Microbiology, 1983, 136(4): 281-284.

      [30]Woods D D. The reduction of nitrate to ammonia by Clostridium welchii[J]. Biochemical Journal, 1938, 32(11): 2000-2012.

      [31]Li Xiaowen, Song Chunlei, Zhou Zijun, et al. Comparison of community and function of dissimilatory nitrate reduction to ammonium (DNRA) bacteria in Chinese Shallow Lakes with Different Eutrophication Degrees[J]. Water, 2020, 12(1): 174.

      [32]斯塔姆. 水化學(xué):天然水體化學(xué)平衡導(dǎo)論[M]. 湯鴻宵,譯. 北京:科學(xué)出版社,1987.

      [33]王威,楊在文,楊廣焱,等. 地下水取水工程驗(yàn)收技術(shù)要點(diǎn)分析[J]. 地下水,2017,39(6):98-99,157. Wang Wei, Yang Zaiwen, Yang Guangyan, et al. Analysis of technical points for acceptance of groundwater intake engineering[J]. Ground water, 2017, 39(6): 98-99, 157. (in Chinese with English abstract)

      Remediation effects of compound well on nitrate pollution in groundwater

      Liu Peigui1, Zeng Kanghui1, Shang Manting2※, Liu Xiangwei3, Yang Hui3

      (1.,,230009,;2.,,230009,; 3.,,850000,)

      Nitrate pollution has posed a great threat to groundwater near farmlands, due mainly to the long-term agricultural fertilization and soil microorganisms. Nitrates with strong migration ability have entered the zone of saturation along with water movement. High concentrations of nitrates aredirectly detrimental to the safety of groundwater source areas. In this study, three systems A, B, and C were constructed to explore an in-situ bioremediation technology for the detection of nitrate-contaminated groundwater around farmland. Every system consisted of wells, storage tanks, and peristaltic pumps. System A was used to simulate a tube well with a diameter of 7 cm. System B and C were used to simulate compound wells, where there were a large well with a diameter of 14 and a tube well with a diameter of 7 cm. Every tube well was filled with fine sand in the same volume and height, where the height of fine sand was 12cm. The large diameter wells in system B and C were filled with fine sand with the heights of 4 cm and 8 cm, respectively. Both tube wells and large wells were used to simulate the complete penetration wells. The bottom of the wells was sealed, where water flowed in from the side walls. The peristaltic pumps were installed on the top of wells to simulate water pumping. The volume ratio of the reaction medium was 1:2:3 in three systems. The ratio of hydraulic retention time was also 1:2:4 under the same flow rate. The biofilm was naturally domesticated. Ethanol was used as the carbon source. A total of 6 groups were set in the reaction stage, including 25, 50, 75, 100, 125 and 150 mg/L, according to the concentration gradients of nitrate nitrogen. The test results showed that the microorganisms in the reaction medium could basically select the dominant strains within one day when the nitrate concentration increased instantaneously, leading to match the changes in nitrate loading conditions for the better denitrification capacity. In-situ bioremediation systems were also constructed with compound wells including tube wells and large diameter wells, in order to repair nitrate-contaminated groundwater and the nitrate loading of every system. The nitrate loadings of three remediation systems A-C were 75-100 mg/L, 100-125 mg/L, and 125-150 mg/L at the flow rate of 0.26 m/d. The removal rate of remediation systems reached more than 95% within nitrate loading. There was no accumulation of nitrite and excessive ammonia nitrogen, indicating the feasibility of repair systems with compound wells. Groundwater mining and remediation were carried out simultaneously without the need to cut off agricultural non-point source pollution, indicating high security for groundwater source area. In addition, a combination of tube wells and large diameter wells can be installed to compound wells with a relatively simple well drilling (including phreatic water and confined water). The diameter of wells and height of the reaction medium can be adjusted for better removal of nitrates, according to the thickness of the aquifer, the amount of water demand, and the level of nitrate-contaminated groundwater. Physical test models were used to determine the nitrate loading intervals of three remediation systems. In the future work, the hydrogeochemical model will be established to accurately determine the maximum nitrate loadings of repair systems with compound wells, together with the influence of medium heterogeneity on the remediation performance.

      groundwater; pollution; nitrate removal; denitrification; compound wells; hydraulic retention time

      劉佩貴,曾康輝,尚熳廷,等. 復(fù)合井修復(fù)地下水硝酸鹽污染的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):214-219.doi:10.11975/j.issn.1002-6819.2021.06.026 http://www.tcsae.org

      Liu Peigui, Zeng Kanghui, Shang Manting, et al. Remediation effects of compound well on nitrate pollution in groundwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 214-219. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.026 http://www.tcsae.org

      2020-01-21

      2021-03-01

      水文水資源與水利工程科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室“一帶一路”水與可持續(xù)發(fā)展科技基金(2018nkms06)

      劉佩貴,博士,副教授,主要研究方向?yàn)樗Y源評(píng)價(jià)。Email:liupg2512@163.com

      尚熳廷,博士,副教授,主要研究方向?yàn)橥寥浪诌\(yùn)動(dòng)物理規(guī)律模擬。Email:hfut_smt@163.com

      10.11975/j.issn.1002-6819.2021.06.026

      S152.7

      A

      1002-6819(2021)-06-0214-06

      猜你喜歡
      管井試驗(yàn)裝置硝酸鹽
      硝酸鹽并不致癌還或有益處
      中老年保健(2022年3期)2022-11-21 09:40:36
      排滲管井在尾礦庫(kù)中的應(yīng)用
      秋千動(dòng)載性能試驗(yàn)裝置的研制
      自行車車閘的試驗(yàn)裝置的概述
      自行車前叉組件的疲勞試驗(yàn)裝置的專利分布
      家畜硝酸鹽和亞硝酸鹽中毒的診斷、鑒別和防治
      2MV陡前沿沖擊試驗(yàn)裝置同步技術(shù)研究
      短期水分脅迫影響巴旦杏植株對(duì)硝酸鹽的吸收
      管井降水技術(shù)在洪河倒虹吸施工中的應(yīng)用
      河南科技(2014年13期)2014-02-27 14:11:08
      淺析以ARM9為核心的管井遠(yuǎn)程監(jiān)控系統(tǒng)
      河南科技(2014年10期)2014-02-27 14:09:18
      苏尼特右旗| 全椒县| 屏东市| 门源| 鹿泉市| 延吉市| 衡阳县| 贵南县| 红河县| 呈贡县| 贡觉县| 措勤县| 太白县| 高雄县| 叶城县| 个旧市| 马龙县| 新郑市| 上饶县| 烟台市| 扬州市| 秀山| 长宁县| 新兴县| 开化县| 武清区| 中宁县| 衡山县| 榆林市| 枞阳县| 鸡泽县| 兴义市| 阜宁县| 于都县| 安平县| 古交市| 油尖旺区| 濉溪县| 鄂州市| 长泰县| 南郑县|