邱 威,孫 浩,孫玉慧,廖洋洋,周良富,聞楨杰
低矮果園環(huán)流式循環(huán)風(fēng)送噴霧機(jī)設(shè)計(jì)與試驗(yàn)
邱 威1,孫 浩1,孫玉慧1,廖洋洋1,周良富2,聞楨杰1
(1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210095;2. 南京工業(yè)職業(yè)技術(shù)大學(xué)工程技術(shù)實(shí)訓(xùn)中心,南京 210023)
傳統(tǒng)果園風(fēng)送施藥氣流輸送模式為出風(fēng)口到冠層的一維流動(dòng),氣流經(jīng)過冠層時(shí)會(huì)衰減、停滯,存在穿透難、內(nèi)膛與葉片背面沉積難等問題。該研究采用頂置風(fēng)機(jī)方式,利用風(fēng)機(jī)負(fù)壓吸風(fēng)引導(dǎo)氣流在冠層內(nèi)改變運(yùn)動(dòng)方向,實(shí)現(xiàn)霧滴由外及內(nèi)、再由下而上運(yùn)動(dòng)。在分析環(huán)流作用下霧滴運(yùn)動(dòng)的基礎(chǔ)上,設(shè)計(jì)一種適應(yīng)于低矮果園的環(huán)流循環(huán)風(fēng)送噴霧機(jī),并開展氣流場(chǎng)的分布規(guī)律分析與田間試驗(yàn)。試驗(yàn)結(jié)果表明:在冠層內(nèi)膛(高度0.8~1.8 m)、樹干中心線兩側(cè)0.25 m的中心區(qū)域氣流角度變化較大,氣流環(huán)繞對(duì)內(nèi)膛平均風(fēng)速有顯著性影響(<0.05)。相較于無氣流環(huán)繞模式,氣流環(huán)繞風(fēng)送施藥的冠層總體葉片背面霧滴平均覆蓋率提高了33.7%;冠層內(nèi)膛葉片正面霧滴平均覆蓋率提高了42.9%,葉片背面霧滴平均覆蓋率提高了40.4%。研究結(jié)果可為果園風(fēng)送式施藥提供新的思路。
噴霧;設(shè)計(jì);環(huán)流式;輔助氣流;氣流運(yùn)動(dòng);果樹冠層
病蟲害防治作為果園中重要的管理作業(yè),每年噴施農(nóng)藥次數(shù)多達(dá)8~15次。頻繁的化學(xué)防治有效控制病蟲害發(fā)生的同時(shí),也造成施藥量過大、污染嚴(yán)重與農(nóng)藥殘留等諸多問題[1-3]。風(fēng)送式噴霧技術(shù)借助高速氣流將霧化藥液輸送到冠層,顯著提升了霧滴在果樹冠層的沉積效果,是現(xiàn)階段果園農(nóng)藥“增效減施”的最重要技術(shù)措施之一[4-5]。Zhu等[6]設(shè)計(jì)了一種五指風(fēng)送噴霧裝置,可以使幼苗期作物的上中下部都能達(dá)到很好的霧滴沉積。董祥等[7]綜合超聲波靶標(biāo)探測(cè)、多柔性出風(fēng)管風(fēng)送施藥等技術(shù),成功研制了3WPZ-4型葡萄噴霧機(jī),相比較無風(fēng)送模式其藥液平均沉積率提高了17.2%,平均地面流失率降低了16.56%,平均飄移率降低了28.87%。曲峰等[8]對(duì)傳統(tǒng)的果園風(fēng)送噴霧進(jìn)行了改進(jìn)設(shè)計(jì),實(shí)現(xiàn)了靶標(biāo)邊界氣流速度仿形化分布。姜紅花等[9]設(shè)計(jì)了一種單風(fēng)機(jī)多風(fēng)管旁路調(diào)風(fēng)系統(tǒng),實(shí)現(xiàn)了基于果樹冠層特征的風(fēng)量實(shí)時(shí)調(diào)整,相比較自動(dòng)對(duì)靶風(fēng)送噴霧模式,冠層表面沉積量提高了17.3%。Qiu等[10]開發(fā)了一種適應(yīng)于丘陵果園的履帶式多通道風(fēng)送噴霧機(jī),實(shí)現(xiàn)了機(jī)具在丘陵果園作業(yè)的高穩(wěn)定性與氣霧流多通道單元化控制及流場(chǎng)仿形化分布。相比于傳統(tǒng)漫射型風(fēng)送式噴霧機(jī),霧滴覆蓋均勻度提高了19.4%,地面沉積量和空中飄移量降低了26.8%。
但目前果樹風(fēng)送施藥依然存在“冠層外側(cè)霧滴沉積過量,而病蟲害多發(fā)區(qū)域的內(nèi)膛與葉片背面霧滴沉積不夠”等問題[11-14]。究其原因,可以歸納為:1)受冠層幅寬和生物量密度影響,氣流在冠層內(nèi)膛的末速度較弱、擾動(dòng)不夠,霧滴在冠層內(nèi)膛與葉片背面沉積不夠[15-16];2)現(xiàn)階段冠層需風(fēng)標(biāo)準(zhǔn)仍然沿用多年前提出的末速度原則,只考慮到達(dá)冠外的氣流速度[17-19]。氣流經(jīng)過冠層時(shí),其能量必會(huì)發(fā)生變化,也勢(shì)必影響霧滴在冠層沉積分布。所以,提高冠層內(nèi)膛風(fēng)速,引導(dǎo)氣流在冠內(nèi)的多維流動(dòng)與擾動(dòng),使冠內(nèi)各區(qū)域氣流速度與內(nèi)膛、葉片背面霧滴沉積滿足噴霧要求,對(duì)進(jìn)一步改善施藥效果和減少藥液噴施量有重要意義。
基于此,本文采用頂置風(fēng)機(jī)方式,利用風(fēng)機(jī)進(jìn)風(fēng)口負(fù)壓實(shí)現(xiàn)霧滴由外及內(nèi)、再由下而上運(yùn)動(dòng),設(shè)計(jì)一種低矮果園環(huán)流式循環(huán)風(fēng)送噴霧機(jī)并進(jìn)行性能測(cè)試,旨在探索果樹氣流環(huán)繞風(fēng)送施藥技術(shù)方法,解決冠層內(nèi)膛與葉片背面霧滴沉積難的困境,推進(jìn)果園植保作業(yè)的減量增效。
為了實(shí)現(xiàn)霧滴由外及內(nèi)、再由下而上運(yùn)動(dòng)與脫靶霧滴的回收,本文設(shè)計(jì)的低矮果園環(huán)流式循環(huán)風(fēng)送噴霧機(jī)主要由氣流環(huán)繞型風(fēng)送系統(tǒng)、藥液噴施及回收系統(tǒng)、液壓驅(qū)動(dòng)系統(tǒng)、履帶式底盤組成,機(jī)具整體呈“門”型結(jié)構(gòu),如圖1所示。
噴霧機(jī)跨行自走作業(yè),由柴油發(fā)動(dòng)機(jī)提供動(dòng)力,通過多聯(lián)齒輪泵將動(dòng)力傳輸給各系統(tǒng),使風(fēng)機(jī)、液泵、行走裝置、尺寸調(diào)節(jié)裝置等按設(shè)計(jì)的功率與速度協(xié)調(diào)工作。液壓油缸實(shí)現(xiàn)支撐門架的尺寸調(diào)節(jié),以適應(yīng)于不同的果園種植模式。風(fēng)機(jī)進(jìn)風(fēng)口面向冠層頂部,出風(fēng)口連接風(fēng)道,將氣流輸送至8個(gè)出風(fēng)口;同時(shí)通過風(fēng)機(jī)進(jìn)風(fēng)口產(chǎn)生負(fù)壓,促使氣流在冠層內(nèi)由下而上運(yùn)動(dòng)。擋罩下方布置承液槽,承接部分飄失的藥液,藥液回收泵將回收的藥液輸送到副藥箱中,以減小霧滴飄失帶來的環(huán)境污染。噴霧機(jī)主要技術(shù)參數(shù)如表1所示。
為保證噴霧機(jī)門型工作空間存在氣流環(huán)繞效果,要求軸流風(fēng)機(jī)進(jìn)風(fēng)區(qū)囊括整個(gè)門型工作空間。軸流風(fēng)機(jī)工作時(shí),門型工作空間內(nèi)的氣體按一定收縮角被吸入風(fēng)機(jī),如圖2所示,氣流收縮直徑沿射程變化規(guī)律如下:
置換原則是普遍采用的一種計(jì)算果園風(fēng)送噴霧機(jī)風(fēng)量的方法[20-21],其原理為:噴霧機(jī)以一定速度工作時(shí),噴出的帶有藥滴的氣流能完全驅(qū)除并置換作業(yè)區(qū)內(nèi)包含的全部空氣,如圖2。根據(jù)下式進(jìn)行噴霧機(jī)風(fēng)量的計(jì)算。
式中為軸流風(fēng)機(jī)風(fēng)量,m3/h;為氣體損失系數(shù),=1.2~1.6[21]。
注:h為兩側(cè)出風(fēng)口之間距離的一半,m;為進(jìn)風(fēng)口到最底端出風(fēng)口的垂直距離,m;R為風(fēng)機(jī)進(jìn)風(fēng)口半徑,m;F為作業(yè)速度,m·s-1;α為射流極角,(°)。 Note: h is the half the distance between the two sides relative to the air outlet, m; is the vertical distance between the inlet and the lowest outlet, m; R is the inlet radius of the fan, m; F is the operation speed, m·s-1; α is the jet cone angle,(°).
出口風(fēng)速是果園風(fēng)送式施藥的重要參數(shù),決定施藥作業(yè)質(zhì)量。目前風(fēng)送式噴霧機(jī)出口風(fēng)速多采用“到達(dá)冠層表面的氣流速度”作為評(píng)價(jià)依據(jù)。通過前期試驗(yàn)發(fā)現(xiàn),霧滴群到達(dá)冠層內(nèi)膛的水平氣流速度2=1.0~2.0 m/s,氣流具備一定能量擾動(dòng)枝葉,使霧滴有效沉積于葉片上。由于本文中噴霧機(jī)出風(fēng)口到冠層邊緣距離較短,冠層外氣流能量衰減可忽略不計(jì)。將冠層等效為多孔介質(zhì)[22],通過動(dòng)量附加源項(xiàng)S修正的動(dòng)量方程,用來表征氣流沿水平軸經(jīng)過冠層后的動(dòng)量損失,如式(3)所示。
化簡式(5)~(6)可得:
環(huán)流風(fēng)送施藥既要求出口氣流具備一定動(dòng)能,以到達(dá)冠層內(nèi)膛,也要求進(jìn)風(fēng)口具備一定負(fù)壓,引導(dǎo)氣流由下而上運(yùn)動(dòng)。圖3為環(huán)流風(fēng)送系統(tǒng)氣流阻力分布示意圖,氣體在門型工作空間內(nèi)的環(huán)繞流動(dòng)依靠風(fēng)機(jī)提供壓力實(shí)現(xiàn),風(fēng)機(jī)壓力一部分用來克服沿程摩擦壓力損失,另一部分提供風(fēng)機(jī)進(jìn)風(fēng)口的動(dòng)壓。
聯(lián)立式(8)~(9)可得,為使氣體在門型工作空間內(nèi)呈環(huán)繞流動(dòng)效果,軸流風(fēng)機(jī)所提供的壓力應(yīng)不小于857.8 Pa。
門型機(jī)架整體尺寸為2.3 m×1.0 m×2.0 m。頂部轉(zhuǎn)角處用鋼管支撐形成“四面體”結(jié)構(gòu),兩側(cè)鋼管之間焊接橫向鋼管,以增強(qiáng)門型機(jī)架的抗彎和抗扭能力,門型機(jī)架頂部使用錳鋼方管,長度2.3 m,規(guī)格8 cm×8 cm,許用應(yīng)力160 MPa。
藥液噴施與回收系統(tǒng)由主藥箱、柱塞泵、分配閥、噴頭組、承液槽、回流導(dǎo)管、副藥箱、回收液泵等組成。施藥作業(yè)時(shí),未噴施到果樹冠層的藥液經(jīng)兩側(cè)門型擋罩的阻隔被收集到承液槽,通過回收液泵將承液槽內(nèi)的藥液回收到副藥箱中。藥液噴施及回收流程如圖4所示。
為了防止機(jī)具運(yùn)行觸碰果樹,根據(jù)機(jī)具整體尺寸確定承液槽長度為1.2 m,寬度為0.45 m,深度3 cm;門型擋罩與承液槽焊接一起,長度為1.2 m,高度為1.4 m,如圖5所示。
1.主藥箱 2.噴頭 3.承液槽 4.回收液泵 5.壓力表 6.分配閥 7.柱塞泵 8.副藥箱
為了明晰氣流流向與速度分布規(guī)律,在南京農(nóng)業(yè)大學(xué)植保機(jī)械工程技術(shù)實(shí)驗(yàn)室(2020年9月22-24日)與南京市六合區(qū)祝玉三和家庭農(nóng)場(chǎng)(2021年3月20-21日)利用TSI 9565風(fēng)速儀(TSI Inc.,Minnesota,USA,量程:1.27~78.7 m/s,精度:讀數(shù)的± 2%,分辨率:0.01 m/s)開展氣流場(chǎng)分布試驗(yàn)。
根據(jù)機(jī)具最下側(cè)出風(fēng)口離地高度,在離地0.8 m高度上設(shè)置一平行于地面的水平采樣層,沿高度方向向上每隔0.4 m布置一個(gè)水平采樣層,共設(shè)置4個(gè)水平采樣層。在每個(gè)水平采樣層上,選取軸流風(fēng)機(jī)進(jìn)風(fēng)口正下方投影點(diǎn)為中心采樣點(diǎn),并沿著兩側(cè)出風(fēng)口的連線方向,在中心采樣點(diǎn)左右兩側(cè)每間隔0.14 m設(shè)置一個(gè)采樣點(diǎn),每側(cè)設(shè)置5個(gè),每層11個(gè),共計(jì)44個(gè)。如圖6所示。
1.風(fēng)道 2.軸流風(fēng)機(jī) 3.擋罩 4.噴頭 5.五孔測(cè)針 6.可移動(dòng)支架
由圖7可知,氣流從噴嘴射出后,受到門型工作空間外部大氣壓的影響,出風(fēng)口風(fēng)向非水平吹出,出風(fēng)口風(fēng)向與樹干方向的夾角的平均絕對(duì)值為74°。從出風(fēng)口至中心區(qū)域氣流夾角的平均絕對(duì)值總體逐漸減小,氣流風(fēng)向與豎直方向的夾角在不斷縮小,呈現(xiàn)豎直變化的趨勢(shì),說明進(jìn)風(fēng)口負(fù)壓區(qū)產(chǎn)生的軸向吸力使氣流方向趨于豎直狀態(tài)。在冠層內(nèi)膛即高度(0.8~1.8 m)、樹干中心線兩側(cè)0.25 m的中心區(qū)域氣流角度變化較大,變化范圍為7~12°。綜合氣流的運(yùn)動(dòng)軌跡可知,在進(jìn)風(fēng)口的負(fù)壓吸力作用下,氣流實(shí)現(xiàn)了由外及內(nèi)、再由下而上的運(yùn)動(dòng)。
采用絲帶法(即在各布樣區(qū)域布置絲帶,通過高速攝像方式記錄絲帶初始位置角度與風(fēng)送作業(yè)狀態(tài)下的最大角度)對(duì)有無氣流環(huán)繞的氣流流向進(jìn)行對(duì)比試驗(yàn),將絲帶豎直放置在冠層的不同區(qū)域,通過翻轉(zhuǎn)頂部軸流風(fēng)機(jī)設(shè)置有無環(huán)繞氣流,比較有無氣流環(huán)繞的氣流下絲帶的角度改變量,結(jié)果如圖8所示。
試驗(yàn)結(jié)果表明,有、無氣流環(huán)繞的2種模式下,頂端3個(gè)點(diǎn)(1,2,3)的平均角度變化量分別為107°與1.67°,中部3個(gè)點(diǎn)(4,5,6)的平均角度變化量為27.33°與15.67°,底部3個(gè)點(diǎn)(7,8,9)的平均角度變化量為54°與24.33°。對(duì)比2種氣流模式下的角度變化可以看出,相比于無氣流環(huán)繞模式,氣流環(huán)繞可以使各區(qū)域絲帶產(chǎn)生更大擾動(dòng),尤其頂部區(qū)域絲帶產(chǎn)生垂直向上的運(yùn)動(dòng),說明氣流在冠層內(nèi)由下向上運(yùn)動(dòng)。
為了進(jìn)一步驗(yàn)證有無氣流環(huán)繞對(duì)冠層內(nèi)氣流速度分布的影響,將冠層劃分為8個(gè)區(qū)域(圖9),其中內(nèi)膛包括4個(gè)測(cè)量區(qū)域(1、4、5、8)。冠層下端采樣點(diǎn)區(qū)域的中心距離地面高度為1.0 m,沿著高度方向每隔0.4 m布置一個(gè)采樣區(qū)域。
設(shè)置風(fēng)機(jī)轉(zhuǎn)速為800、1 000和1 200 r/min,利用TSI 9565風(fēng)速儀(TSI Inc.,Minnesota,USA)測(cè)量氣流環(huán)繞狀態(tài)下3個(gè)風(fēng)機(jī)轉(zhuǎn)速下冠層內(nèi)各采樣點(diǎn)風(fēng)速。同時(shí),記錄冠層內(nèi)各樣點(diǎn)位置信息,繼續(xù)測(cè)量無氣流環(huán)繞狀態(tài)下的各采樣點(diǎn)風(fēng)速。每個(gè)采樣點(diǎn)測(cè)3次取平均值。
利用Matlab對(duì)冠層內(nèi)氣流速度進(jìn)行方差分析,結(jié)果如表2??梢钥闯?,提高風(fēng)機(jī)轉(zhuǎn)速能顯著提升冠層內(nèi)平均風(fēng)速,<0.05,氣流環(huán)繞對(duì)風(fēng)速有顯著影響。
表2 冠層內(nèi)氣流速度方差分析
2019年8月在南京逸夫農(nóng)業(yè)發(fā)展有限公司的山楂園進(jìn)行田間試驗(yàn),如圖10。該果園種植行距5 m、株距3 m、果樹冠形為紡錘形,平均冠幅1.6 m、平均樹高2.0 m。噴霧機(jī)橫跨果樹,通過調(diào)節(jié)支撐門架,使出風(fēng)口到冠層的距離1 m,且進(jìn)風(fēng)口面向冠層頂部。同時(shí)設(shè)置無氣流環(huán)繞組(風(fēng)機(jī)進(jìn)風(fēng)口朝向天空)為對(duì)照組。
霧滴覆蓋率試驗(yàn)采樣點(diǎn)布置同氣流速度分布試驗(yàn)(圖9),每個(gè)采樣點(diǎn)選取一片葉子,在正、反面放置紙卡(76 mm×76 mm,M&G Stationery Inc.,Shanghai,China)。
試驗(yàn)時(shí)機(jī)具參數(shù)為行駛速度1 m/s左右,噴霧壓力0.5 MPa,噴霧流量1.5 L/min,噴施質(zhì)量分?jǐn)?shù)為0.5%的麗春紅2R水溶液(SSS Reagent Co.,Ltd.,Shanghai,China)。試驗(yàn)發(fā)現(xiàn)風(fēng)機(jī)轉(zhuǎn)速為800 r/min,氣流對(duì)葉片的擾動(dòng)較小,風(fēng)機(jī)轉(zhuǎn)速為1 200 r/min時(shí),冠層頂部的葉片翻轉(zhuǎn)幅度較大,不利于1、2、3分區(qū)藥液的沉積,故將風(fēng)機(jī)轉(zhuǎn)速調(diào)至1 000 r/min進(jìn)行霧滴覆蓋率試驗(yàn),每組試驗(yàn)測(cè)試3棵山楂樹。噴霧試驗(yàn)結(jié)束后用高拍儀(Microtek Technology Co.,Ltd.,Shanghai,China)采集紙卡上的圖像信息,結(jié)合Matlab處理得到冠層內(nèi)各采樣點(diǎn)的霧滴覆蓋率,結(jié)果如圖11。
由圖11可知,風(fēng)機(jī)轉(zhuǎn)速為1 000 r/min時(shí),冠層葉片的霧滴覆蓋率在有、無氣流環(huán)繞的影響下差異較大,其中冠層內(nèi)膛(1、4、5、8分區(qū))霧滴覆蓋率提升效果較為明顯,葉片正面霧滴覆蓋率平均提高了42.9%,葉片背面霧滴覆蓋率平均提高了40.4%;冠層總體葉片背面霧滴覆蓋率,平均提高了33.7%。氣流環(huán)繞能夠有效提高果樹冠層各區(qū)域的霧滴覆蓋率。
無氣流環(huán)繞時(shí),4、5、8分區(qū)的葉片正面覆蓋率較低,分別為36.1%、36.5%、24.1%,主要由于4、5、8分區(qū)處于冠層內(nèi)膛,霧滴難以穿透沉積,而其他分區(qū)處于冠層外側(cè),霧滴容易沉積。對(duì)于葉片背面,6、7、8分區(qū)處于冠層最底部,位于氣流場(chǎng)邊緣位置,路面高度不平等因素會(huì)影響出風(fēng)口氣流的噴施角度,導(dǎo)致底部區(qū)域的個(gè)別采樣點(diǎn)霧滴沉積較少,造成葉片背面霧滴沉積率較低。可以看出在無氣流環(huán)繞時(shí)霧滴在各區(qū)域的沉積不均勻。有環(huán)繞氣流時(shí),8個(gè)分區(qū)的葉片正背面的霧滴沉積均得到了不同程度的提高。尤其8分區(qū)正面覆蓋率提升最為明顯,提高了95.4%。
結(jié)合氣流流向與速度分布試驗(yàn)可以看出,在風(fēng)機(jī)進(jìn)風(fēng)口負(fù)壓吸力的作用下,氣流運(yùn)動(dòng)在冠內(nèi)發(fā)生了改變,冠層內(nèi)氣流速度也得到了明顯增強(qiáng),氣流產(chǎn)生了由下而上的運(yùn)動(dòng),冠層各區(qū)域葉片正、反面的霧滴沉積率明顯提高。
果園風(fēng)送式施藥氣流運(yùn)動(dòng)包含冠層外與冠層內(nèi)2部分,目前大多研究多聚焦冠層外氣流運(yùn)動(dòng)[7,20,23,25],以到達(dá)果樹冠層表面的氣流速度為依據(jù)來評(píng)價(jià)氣流輔助效果,雖然總體霧滴沉積覆蓋滿足作業(yè)要求,但冠層外側(cè)霧滴沉積過量、而內(nèi)膛與葉片背面明顯不足。冠層內(nèi)氣流運(yùn)動(dòng)的調(diào)控可以促進(jìn)霧滴與冠層深度融合,進(jìn)而提高冠層內(nèi)膛和葉片的背面霧滴沉積率。本文以低矮果樹為研究目標(biāo),設(shè)計(jì)了一種果園環(huán)流式循環(huán)風(fēng)送噴霧機(jī),通過頂置風(fēng)機(jī)負(fù)壓吸風(fēng)調(diào)控冠層內(nèi)氣流運(yùn)動(dòng),并實(shí)現(xiàn)脫靶藥液的回收,取得了較好的試驗(yàn)效果。該研究驗(yàn)證了氣流環(huán)繞風(fēng)送施藥技術(shù)方案的可行性與有效性,但環(huán)繞氣流與冠層間定量作用關(guān)系及噴霧機(jī)結(jié)構(gòu)設(shè)計(jì)還存在一些要完善的地方,團(tuán)隊(duì)也將在后續(xù)的研究中還應(yīng)重點(diǎn)關(guān)注以下問題:
1)氣流環(huán)繞風(fēng)送施藥時(shí),冠層特征會(huì)顯著影響氣流在冠層內(nèi)阻力與衰減。風(fēng)機(jī)進(jìn)口負(fù)壓能否有效克服冠層阻力實(shí)現(xiàn)氣霧流環(huán)繞運(yùn)動(dòng)受果樹冠層密度、葉柄力學(xué)特性及冠層大小等諸多因素影響。所以,需進(jìn)一步探明氣流環(huán)繞風(fēng)送施藥技術(shù)的限制因素與適應(yīng)場(chǎng)景,明確氣流在冠層內(nèi)衰減規(guī)律與進(jìn)出口氣流配比策略。
2)由于該機(jī)具采用門型結(jié)構(gòu)與跨置式作業(yè)模式,難以滿足大型果樹的施藥要求,機(jī)具體積增大也帶來結(jié)構(gòu)抗扭強(qiáng)度的挑戰(zhàn),所以還需進(jìn)一步完成門型框架結(jié)構(gòu)的輕量化設(shè)計(jì),實(shí)現(xiàn)風(fēng)送霧化裝置與拖拉機(jī)配套的懸掛式作業(yè)。
3)需要進(jìn)一步研究適于近距離施藥的風(fēng)送霧化系統(tǒng),保證霧滴到達(dá)靶標(biāo)前有良好的分散度,例如調(diào)整出風(fēng)口形狀與進(jìn)、出風(fēng)口之間相對(duì)位置等。
綜上所述,氣流環(huán)繞風(fēng)送施藥本質(zhì)上是改變傳統(tǒng)氣流由出風(fēng)口到靶標(biāo)的運(yùn)動(dòng)模式,引導(dǎo)氣流在冠層內(nèi)部的運(yùn)動(dòng),對(duì)改善冠層內(nèi)膛與葉片背面霧滴沉積效果有顯著優(yōu)勢(shì),但是環(huán)繞氣流形成的制約因素及多場(chǎng)景適應(yīng)性還需進(jìn)一步被探明與驗(yàn)證。在本研究基礎(chǔ)上,還可以進(jìn)一步研究氣流在冠層內(nèi)衰減規(guī)律、氣流環(huán)繞風(fēng)送霧化技術(shù)、多角度風(fēng)送施藥[26]與仿形風(fēng)送技術(shù)[17,27]等,以完善果樹風(fēng)送施藥基礎(chǔ)理論與技術(shù)體系,為果園風(fēng)送噴霧技術(shù)提供新的思路,提升果園植保作業(yè)裝備水平。
1)設(shè)計(jì)了一種低矮果園環(huán)流式循環(huán)風(fēng)送噴霧機(jī),機(jī)具作業(yè)空間尺寸在一定范圍內(nèi)可調(diào)節(jié),適應(yīng)于不同種植模式的果園。同時(shí),藥液回收裝置可回收脫靶藥液。
2)通過頂置風(fēng)機(jī)負(fù)壓吸風(fēng),實(shí)現(xiàn)了果樹施藥氣流由外及內(nèi)、再由下而上的運(yùn)動(dòng),在冠層內(nèi)膛即高度(0.8~1.8 m)、樹干中心線兩側(cè)0.25 m的中心區(qū)域氣流角度變化顯著,氣流環(huán)繞對(duì)內(nèi)膛平均風(fēng)速有顯著影響。
3)相較于無氣流環(huán)繞模式,氣流環(huán)繞風(fēng)送施藥的冠層葉片背面霧滴平均覆蓋率提高了33.7%,冠層內(nèi)膛葉片正面霧滴平均覆蓋率提高了42.9%,葉片背面平均覆蓋率提高了40.4%,氣流環(huán)繞能夠有效提高果樹冠層內(nèi)膛、葉片背面等病蟲害多發(fā)區(qū)域的霧滴覆蓋率。
[1]董晶. 果樹病蟲害防治現(xiàn)狀與對(duì)策[J]. 農(nóng)業(yè)開發(fā)與裝備,2019(3):75.
[2]韓景紅. 我國植保機(jī)械和施藥技術(shù)的現(xiàn)狀問題及對(duì)策[J]. 農(nóng)業(yè)與技術(shù),2018,38(12):91.
[3]Se-Woon Hong, Lingying Zhao, Heping Zhu. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2018, 149: 121-132.
[4]Marchesini E, Montepaone G, Schiatti P, et al. Habitat management of organic vineyard in Northern Italy: The role of cover plants management on arthropod functional biodiversity[J]. Bulletin of Entomological Research, 2016, 106(6):1-10.
[5]周良富,丁為民,周晴晴,等. 3WQ-400型雙氣流輔助靜電果園噴霧機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):45-53. Zhou Liangfu, Ding Weimin, Zhou Qingqing, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 45-53. (in Chinese with English abstract)
[6]Zhu H, Brazee R D, Derksen R C, et al. A Specially designed air-assisted sprayer to improve spray penetration and air jet velocity distribution inside dense nursery crops[J]. Transactions of the ASAE, 2006, 49(5): 1285?1294
[7]董祥,張鐵,燕明德,等. 3WPZ-4型風(fēng)送式葡萄噴霧機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(S1):205-213. Dong Xiang, Zhang Tie, Yan Mingde, et al. Design and experiment of 3WPZ-4 type air-assisted grape sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 205-213. (in Chinese with English abstract)
[8]曲峰,盛希宇,李熙,等. 3WZF-400A型果園風(fēng)送噴霧機(jī)改進(jìn)設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(S1):15-21. Qu Feng, Sheng Xiyu, Li Xi, et al. Improved design of 3WZF-400A orchard air-assisted sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 15-21. (in Chinese with English abstract)
[9]姜紅花,牛成強(qiáng),劉理民,等. 果園多風(fēng)管風(fēng)送噴霧機(jī)風(fēng)量調(diào)控系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S2):298-307. Jiang Honghua, Niu Chengqiang, Liu Limin, et al. Design and experiment of air volume control system of orchard multi-pipe air sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 298-307. (in Chinese with English abstract)
[10]Qiu W, Li X L, Li C, et al. Design and test of a novel crawler-type multi-channel air-assisted orchard sprayer[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(6): 60–67.
[11]顧家冰,丁為民,邱威,等. 果園變量施藥機(jī)械及施藥技術(shù)研究現(xiàn)狀與趨勢(shì)[J]. 果樹學(xué)報(bào),2014,31(6):1154-1157. Gu Jiabing, Ding Weimin, Qiu Wei, et al. Current research situation and development trend of equipment and technology for orchard spraying[J]. Journal of Fruit Science, 2014, 31(6): 1154-1157. (in Chinese with English abstract)
[12]苑進(jìn),趙新學(xué),李明,等. 高地隙噴桿式與隧道式一體噴霧機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):60-68. Yuan Jin, Zhao Xinxue, Li Ming, et al. Design and test of high clearance boom-tunnel type sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 60-68. (in Chinese with English abstract)
[13]魏新華,邵菁,解祿觀,等. 棉花分行冠內(nèi)冠上組合風(fēng)送式噴桿噴霧機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1): 101-107,90. Wei Xinhua, Shao Jing, Xie Luguan, et al. Design and experiment of air-assisted cotton boom sprayer with separating row and spraying in inside an upper canopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 101-107, 90. (in Chinese with English abstract)
[14]劉冬梅,楊杭旭,周宏平,等. 密植矮化茶園地面低容量仿形噴霧液滴沉積性能研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):96-105. Liu Dongmei, Yang Hangxu, Zhou Hongping, et al. Droplet deposition performance of low-capacity profiling spray in densely planted dwarf tea plantation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 96-105. (in Chinese with English abstract)
[15]賈衛(wèi)東,胡化超,陳龍,等. 風(fēng)幕式靜電嘖桿噴霧噴頭霧化與霧滴沉積性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):53-59. Jia Weidong, Hu Huachao, Chen Long, et al. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 53-59. (in Chinese with English abstract)
[16]翟長遠(yuǎn),趙春江,Ning Wang,等. 果園風(fēng)送噴霧精準(zhǔn)控制方法研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):1-15. Zhai Changyuan, Zhao Chunjiang, Ning Wang, et al. Research progress on precision control methods of air-assisted spraying in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 1-15. (in Chinese with English abstract)
[17]邱威,何家敏,孫玉慧,等. 多通道農(nóng)藥噴施角度對(duì)果樹靶標(biāo)仿形氣、霧流場(chǎng)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,43(2):379-386. Qiu Wei, He Jiamin, Sun Yuhui, et al. Effect of spray angles on profiling-flow field distribution from a multi-channel air-assistant sprayer in fruit tree applications[J]. Journal of Nanjing Agricultural University, 2020, 43(2): 379-386. (in Chinese with English abstract)
[18]Ashenafi T, Ruysen K, Dekeyser D, et al. Spray deposition profiles in pome fruit trees: effects of sprayerdesign, training system and tree canopy characteristics[J]. Crop Protection, 2015, 67: 200-213.
[19]龍?zhí)煊?,流體力學(xué)[M]. 北京: 中國建筑工業(yè)出版社,2004.
[20]丁素明,傅錫敏,薛新宇,等. 低矮果園自走式風(fēng)送噴霧機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):18-25. Ding Suming, Fu Ximin, Xue Xinyu, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 18-25. (in Chinese with English abstract)
[21]戴奮奮. 風(fēng)送噴霧機(jī)風(fēng)量的選擇與計(jì)算[J]. 植物保護(hù),2008,34(6):124-127. Dai Fenfen. Selection and calculation of the air volume of the air blower sprayer[J]. Plant Protection, 2008, 34(6): 124-127. (in Chinese with English abstract)
[22]李波,楊慶山,徐志,等. 樹木對(duì)低矮房屋風(fēng)荷載的遮擋作用[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2016,37(S1):33-38. Li Bo, Yang Qingshan, Xu Zhi, et al. Windbreak performance of tree on wind load on low-rise building[J]. Journal of Building Structures, 2016, 37(S1): 33-38. (in Chinese with English abstract)
[23]Maruyama T. Large eddy simulation of turbulent flow around a windbreak[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96 (10/11 ) : 1998-2006.
[24]陳德敏,李柏均,吳益曉. 氣體管道波紋型阻火器多孔隙阻力研究[J]. 煤礦機(jī)械,2018,39(8):13-15.
[25]丁天航,曹曙明,薛新宇,等. 果園噴霧機(jī)單雙風(fēng)機(jī)風(fēng)道氣流場(chǎng)仿真與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):62-68. Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 62-68. (in Chinese with English abstract)
[26]Svensson S A, Brazee R D, Fox R D, et al. Air jet velocities in and beyond apple trees from a two-fan cross-flow sprayer[J]. Transactions of the ASAE, 2003, 46(3): 611-621.
[27]呂曉蘭,張美娜,常有宏,等. 果園風(fēng)送噴霧機(jī)導(dǎo)流板角度對(duì)氣流場(chǎng)三維分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):81-87. Lyu Xiaolan, Zhang Meina, Chang Youhong, et al. Influence of deflector angles for orchard air-assisted sprayer on 3D airflow distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 81-87. (in Chinese with English abstract)
Design and test of circulating air-assisted sprayer for dwarfed orchard
Qiu Wei1, Sun Hao1, Sun Yuhui1, Liao Yangyang1, Zhou Liangfu2, Wen Zhenjie1
(1.,,210095,; 2.,,210023,)
Conventional air-assisted spraying declines rapidly to stagnate in general, particularly when the droplets reach the canopy in an orchard. Unfavorable spray effects thus often occur, such as "difficult to penetrate" and "difficult to deposit inside the canopy and the back of leaves". In this study, a new idea was proposed to form multi-source wind disturbance for the direction change of airflow inside the canopy, namely, "from outside to inside, and then from bottom to top". Firstly, the movement tracking of droplet flow under the surrounding airflow was analyzed to determine the structure of a sprayer and the key parameters. The sprayer with a "door" type structure was composed of a surrounding air-assisted system, a spraying and recovery system, a hydraulic drive system, and a crawler chassis. An axial flow fan was placed at the top of the canopy. Specifically, the air inlet of the fan was facing the top of the canopy, whereas, the air outlet of the fan was connected with an air duct to transport the air into eight subsequent outlets. Meanwhile, the negative-pressure suction was generated through the air inlet of the fan, thereby moving the air flow "from bottom to top" in the canopy. Four flumes were arranged below the shields to receive the lost droplets. Two pumps were utilized to transfer the recovered droplets into the auxiliary tank for environmental protection. The size of the gate-type opening was adjusted in a certain range for various planting patterns in an orchard. The key parameters of the surrounding air-assisted system were also optimized using the displacement theory of air volume and jets. The air velocity of the outlet was determined to be 10-20 m/s, while, the wind pressure provided by the axial flow fan cannot be less than 857.8 Pa. Secondly, the stress of the gantry frame was analyzed under the service condition to meet the user needs, where the bending and torsion resistance were verified in the theoretical evaluation. Thirdly, the five-hole probes and ribbon method were selected to field test the distribution of flow direction in a prototype of the sprayer. Meanwhile, the velocity distribution of the airflow field was also measured to verify whether the sprayer can produce the droplets flow from the outside to the inside and from the bottom to the top. It was found that the airflow angle changed significantly inside the canopy, especially in the height of 0.8-1.8 m and the center area of 0.25 m on both sides of the center line of a trunk. There was an obvious increase in airflow velocity under the surrounding air-assisted spraying. Finally, the spraying effects with and without surrounding air-assisted were compared at the fan speed of 1 000 r·min-1, where the coverage rate of the droplet was selected as an evaluation index. The coverage rate of the droplet on the leaf face increased by 42.9%, while that of the leaf back increased by 40.4%, where the overall leaf back increased by 33.7%, compared with traditional air-assisted spraying. It infered that the surrounding airflow significantly improved the droplets deposition coverage in the center of a canopy and leaf back. The findings can provide an insightful design idea for the surrounding air-assisted sprayer to produce the airflow suitable for plant protection in an orchard with dwarfed fruit trees. Follow-up experiments can be performed on the canopies of different sizes and thicknesses to clarify the influence of boundary conditions on the surrounding air-assisted spraying.
spray; design; circulating type; air-assisted; airflow movement; fruit tree canopy
邱威,孫浩,孫玉慧,等. 低矮果園環(huán)流式循環(huán)風(fēng)送噴霧機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):18-25. doi:10.11975/j.issn.1002-6819.2021.06.003 http://www.tcsae.org
Qiu Wei, Sun Hao, Sun Yuhui, et al. Design and test of circulating air-assisted sprayer for dwarfed orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 18-25. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.003 http://www.tcsae.org
2020-10-22
2021-02-10
國家自然科學(xué)基金項(xiàng)目(51805271);江蘇省農(nóng)業(yè)自主創(chuàng)新基金項(xiàng)目(CX181007);南京農(nóng)業(yè)大學(xué)SRT專項(xiàng)計(jì)劃(S20190037)
邱威,副教授,博士,主要研究方向?yàn)橹脖C(jī)械與施藥技術(shù)。Email:qiuwei@njau.edu.cnz
10.11975/j.issn.1002-6819.2021.06.003
S147.2
A
1002-6819(2021)-06-0018-08