• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit?

    2021-05-06 08:55:44BaoxingDuan段寶興XinHuang黃鑫HaitaoSong宋海濤YandongWang王彥東andYintangYang楊銀堂
    Chinese Physics B 2021年4期
    關(guān)鍵詞:寶興海濤

    Baoxing Duan(段寶興), Xin Huang(黃鑫), Haitao Song(宋海濤),Yandong Wang(王彥東), and Yintang Yang(楊銀堂)

    Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: Si/SiC heterojunction,LDMOS,breakdown voltage,specific on-resistance

    1. Introduction

    Lateral double-diffused metal–oxide semiconductor fieldeffect transistor (LDMOS) is easy to integrate with other devices and peripheral circuits. It is widely used in the smart power integrated circuits and high-voltage integrated circuits,which has attracted the attention of people in related fields.[1–5]The conventional silicon(Si)LDMOS has encountered obstacles in the application of the high power due to the mutually restrictive relationship between the specific onresistance (Ron,sp) and the breakdown voltage (BV).[6,7]Silicon carbide(SiC)material has the characteristics of the wide band gap and high BV, so it is used in the field of the highvoltage power devices.[8]However, the development of SiC power devices is limited by gate oxide because SiC has a higher density of dangling Si and C bonds at the SiC/SiO2interface.[9]The emergence of Si/SiC substrate makes it possible to solve the above problems.[10–14]

    A novel Si/SiC heterojunction LDMOS with p-type buried layer (PBL Si/SiC LDMOS) is proposed in this paper for the first time. PBL Si/SiC LDMOS takes full advantages of the Si/SiC substrate by preparing the electrodes on the epitaxial layer of Si, and the drain region of the device is deep into the SiC substrate,avoiding the reliability problems of SiC gate oxide, while also taking advantage of the high critical electric field of the SiC. The drain region penetrates into the SiC substrate,that is,the breakdown point transfer(BPT)terminal technology, which modulates the vertical electric field of the device.[9,15]Meanwhile, a p-type buried layer is introduced at the Si/SiC interface to optimize the surface lateral electric field of PBL Si/SiC LDMOS.The combination of the two technologies improve the BV of the device. The structure of PBL Si/SiC LDMOS achieves a breakthrough in the limit of Si. Under the same drift region length,the novel device has higher BV and lower Rsp,oncompared to the conventional Si LDMOS and Si/SiC LDMOS with deep drain region.[16]

    2. Device structure and description

    The cross section of PBL Si/SiC LDMOS in Fig.1. Different from the conventional Si LDMOS,the proposed device uses p-type lightly doped SiC as the substrate,the active region of the device is prepared in the Si epitaxial layer,the drain region is deep into the SiC substrate,and a p-type buried layer is introduced at the interface between Si and SiC.SiC substrate plays three roles: first, p-doped SiC participates in depletion of n-type drift region,or the reduced surface field(RESURF)technology.[17,18]Second,it participates in modulation of vertical electric field,and deep drain region makes vertical breakdown point transfer from the edge of drain to heterojunction.Third, SiC material has high thermal conductivity, which can be used for heat dissipation of power devices. The p-type buried layer modulates the surface lateral electric field of the device to make its distribution more uniform,which increases the BV of the device.

    In order to study the characteristics of PBL Si/SiC LDMOS,ISE-TCAD is used to simulate the proposed device,and the proposed device is compared with the conventional Si LDMOS and Si/SiC LDMOS with deep drain region. In this simulation,the p-type SiC substrate potential is always zero voltage. When the forward conduction characteristic is simulated,the positive gate voltage is applied to make the channel open;The gate voltage is zero when the breakdown characteristics are simulated. The standard of reverse breakdown of the device is that the drain current density exceeds 1×10?7A/μm,and the 4H–SiC parameters are used for the sic material.The physical models used in this simulation include mobility(DopingDep HighFieldsat Enormal), effective intrinsic density(OldSlotboom),and recombination(Shockley–Read–Hall(DopingDep) auger avalanche (Eparal)). The important parameters of the three devices are shown in Table 1.

    The key processes of fabricating PBL Si/SiC LDMOS are presented in Fig.2. The p-type buried layer is located inside the device,so the doping process of p-type buried layer should be completed before the wafer-bonding. The formation of the Si/SiC substrate can be realized by the method in Ref.[10]and the simplified wafer-bonding processes are as follows: (a)initial SiC wafer and epitaxial growth of the Si substrate,(b)ion implantation to form the drain region in the SiC substrate and form the p-type buried layer in the Si epitaxial layer,(c)wafer bonding and wafer splitting. The remaining key processes are similar to those of the conventional Si LDMOS,which can be summarized as follows: (d) ion implantation to form the pwell and N-drift, (e) ion implantation to form the other part of the drain,(f)gate oxide and field oxide growth and ion implantation to form the source.

    Fig.1. Cross section of PBL Si/SiC LDMOS.

    Table 1. Important parameters used in device simulation.

    Fig.2. Simplified key processes of fabricating PBL Si/SiC LDMOS.

    3. Result and discussion

    In this paper,the lateral and vertical electric fields of LDMOS are optimized to improve the device performances. The proposed device introduces a p-type doped buried layer at the boundary between the drift region and the substrate, and the new buried layer will be depleted with the drift region and generate an additional electric field in the drift region. The additional electric field optimizes the surface lateral electric field of the device.[19]The drain region of the device is deep into the SiC substrate, the peak value of the vertical electric field of the device is transferred from Si to SiC. The critical electric field of SiC is larger than that of Si,thereby achieving an increase in the vertical BV.

    Fig.3. The influence p-type buried layer on the surface lateral electric field distribution of BPL Si/SiC LDMOS: (a) Surface electric field distributions at different TP values of the novel structure: LP=8μm. (b)Surface electric field distributions at different LP values of the novel structure: TP=1.5μm.

    The effect of the size of the p-type buried layer on the lateral electric field of the device is studied. The relationship between the lateral electric field distribution of the proposed device and the p-type buried layer is shown in Fig.3.In particular,when the p-type buried layer thickness(TP)equals 0μm,the proposed device degenerates to Si/SiC LDMOS with deep drain region.Compared with the U-shaped lateral electric field of the conventional(Cov.) Si LDMOS,it is found that the ptype buried layer introduces a new electric field peak in the middle of the surface lateral electric field of the device. Figure 3(a)shows the effect of TPon the new peak in the middle of the surface lateral electric field. When TPchanges from 0.5 μm to 1.5 μm, the new peak electric field gradually increases. The peak of the electric field is caused by the PN junction formed at the interface between the right end of the p-type buried layer and the drift region. The thicker the buried layer,the stronger the peak of the electric field. When the device works in withstand voltage mode, the interface electric field of the reverse biased PN junction and the lateral electric field of Si/SiC LDMOS with deep drain region constitute the lateral electric field of PBL Si/SiC LDMOS. The BV is the integration of the electric field along the path, and the flatter lateral electric field leads to the increase of BV.

    Figure 3(b)shows the relationship between the lateral position of the new peak electric field and p-type buried layer length(LP). The location of the peak of the new electric field coincides with the end position of the p-type buried layer.That is, the location of the peak of the new electric field is determined by the LP. In order to obtain a uniform lateral electric field distribution curve,the peak position of the electric field is expected to appear at the valley of the U-shaped later electric field,so the LPshould not be set too long or too short. In this simulation,when the LPis 8μm,the maximum BV can reach 440 V.

    Fig.4. Vertical field distributions at different TD values of BPL Si/SiC LDMOS:LP=8μm,TP=1.5μm.

    The influence of the drain region depth(TD)on the vertical electric field distribution of the proposed device has also been studied. Figure 4 shows the relationship between the vertical electric field and the TD. Compared with the conventional Si LDMOS,PBL Si/SiC LDMOS has a higher vertical peak electric field,because the bottom of the drain end of the proposed device is located on the SiC substrate with a higher critical electric field. With the increase of the TD, the position of the vertical electric field peak is farther away from the device surface(the device surface ordinate y=0). A PN junction is formed on the contact surface of the drain region and the substrate, and the vertical electric field peak is located at the interface of the PN junction. The change of the TDcauses the position of the drain liner PN junction interface to change.This is the reason why the vertical peak electric field changes with TD. The doping distribution of drain is Gaussian doping profiles, and the doping concentration decreases with the increase of diffusion depth. Therefore, with the increase of the drain region depth (TD), the doping concentration in the bottom area of the drain becomes lower, which leads to the decrease of the drain-substrate PN junction interface electric field peak. In addition, figure 4 also shows the change of the BV of the proposed device with the TDunder the given p-type buried layer parameters. When TD=6μm, the proposed device has the largest BV. When TDincreases to 8 μm, the BV of the proposed device decreases,so the drain depth should be set reasonably.

    The p-type buried layer of PBL Si/SiC LDMOS will assist the depletion of the n-type drift region. When the size of the p-type buried layer changes, in order to fully deplete the n-type drift region, the concentration of the p-type buried layer and the concentration of the n-type drift region need to be readjusted,which leads the each point in Fig.5 has different ptype buried layer concentration and N drift concentration with other devices.The BV and FOM of the device change with the LPas shown in Fig.5. In the variation range of the thickness and length of the p-type buried layer shown in Fig.5, when LP=20 μm, no matter how the TPchanges, the BV of PBL Si/SiC LDMOS is higher than that of Si/SiC LDMOS with deep drain region. Under different p-type buried layer thicknesses,the maximum BV of PBL Si/SiC LDMOS corresponds to different p-type buried layer lengths. When LP=8 μm,TP=1.5 μm, PBL Si/SiC LDMOS with a drift zone length of 20 μm has a maximum BV =440 V. In this case, the surface lateral electric field of the proposed device is maximized optimization. Moreover,when LP=10μm,TP=1μm,PBL Si/SiC LDMOS with a drift zone length of 20μm has a maximum FOM=6.86 MW/cm2. In this case,the concentration of the drift region and the concentration of the p-type buried layer cause Ron,spof the proposed device to be smaller than that corresponding to the maximum BV, and the surface lateral electric field of the device is also optimized.

    Fig.5. The relationship between FOM and BV of PBL Si/SiC LDMOS with LP.

    The effect of the drift region length(LD)on BV,Ron,spand FOM of different devices is shown in Fig.6. Compared with Si/SiC LDMOS with deep drain region and the conventional Si LDMOS, PBL Si/SiC LDMOS has larger BV at the same LD. For Si/SiC LDMOS with deep drain region and the conventional Si LDMOS,the growth rate of BV decreases rapidly with LD;And PBL Si/SiC LDMOS has a steeper slope of BV compared with Si/SiC LDMOS with deep drain region and the conventional Si LDMOS. In addition, when LDis greater than 25 μm, PBL Si/SiC LDMOS has a smaller Ron,spthan Si/SiC LDMOS with deep drain region and the conventional Si LDMOS under the same LD. The growth rate of Ron,spof PBL Si/SiC LDMOS is slower than that of Si/SiC LDMOS with deep drain region and the conventional Si LDMOS.PBL Si/SiC LDMOS optimizes the surface lateral electric field and vertical electric field, which leads to an increase in BV and a reduction in Ron,sp. In addition,it can be seen from Fig.6 that when LD=20 μm, PBL Si/SiC LDMOS can take the maximum FOM value.

    Fig.6. BV, Ron,sp, and FOM as a function of LD. Ron,sp is achieved@Vgs=10 V,Vds=20 V.

    Fig.7. Forward I–V characteristics and reverse I–V characteristics of PBL Si/SiC LDMOS with different concentrations of interfacial charges.

    According to the experimental results of literature,[20,21]the Si/SiC interface charges are introduced into the substrate fabrication process.[20,21]Therefore,this simulation considers the influence of acceptor-like traps in the interface on the performance of the novel device. As shown in Fig.7, the interface charges have little effect on the forward I–V characteristics of the device. It can be seen from Fig.7 that the specific on-resistance (Ron,sp) of the device changes very little under the three interface charges concentrations in this simulation.When the acceptor-like traps concentration(Nit)is lower than 1×1011cm?2,it has little effect on the BV of the device;when the Nitis higher than 1×1012cm?2,the device breaks down in advance. The BV is reduced from 440 V to 370 V, and the drain current increases rapidly,which fails to meet our design requirements. Therefore, improving the substrate fabrication process to reduce the acceptor-like traps density is the next step work.

    Figure 8 shows the relationship between BV, Ron,sp, and ideal silicon limit for different devices. In the conventional LDMOS which satisfied the RESURF technology, the relationship between BV and Ron,spis Ron,sp∝BV2.[22]New structure breaks silicon limit at multiple drift zone lengths. The p-type buried layer makes the lateral electric field distribution of the device more uniform,resulting in an increase in the BV of the proposed device. At the same time, the p-type buried layer participates in the depletion of the drift region, so that the concentration of the drift region increases,which leads to a reduction in the Ron,spof the proposed device. Although the interface charges reduce the BV of the proposed device,when the Nitdoes not exceed 5×1011cm?2, PBL Si/SiC LDMOS still breaks the silicon limit.

    Fig.8. Ron,sp versus BV with the ideal silicon limit line. Ron,sp is achieved@Vgs=10 V,Vds=20 V.

    4. Conclusion

    In this paper,a novel Si/SiC LDMOS with a p-type buried layer has been proposed,which combines the electric field optimization technology of the p-type buried layer and the BPT terminal technology to increase the BV of the device and reduce the Ron.spof the device.The BV is significantly increased from 249 V of the conventional Si LDMOS to 440 V of the proposed structure with a drift length of 20 μm, while Ron.spis slightly increased. And the BV is increased from 384 V of Si/SiC LDMOS to 440 V of the proposed structure with a drift length of 20μm,and Ron.spreduces from 34.6 m?·cm2to 30.4 m?·cm2. The silicon limit is broken by PBL Si/SiC LDMOS.The influence of the p-type buried layer on the surface lateral electric field of the device and the influence of the drain region depth on the vertical electric field are studied. The high concentration of acceptor-like traps makes the BV drop. Reducing the acceptor-like traps density at the Si/SiC interface or eliminating the effect of the acceptor-like traps is the focus of future research.

    猜你喜歡
    寶興海濤
    基于改進(jìn)YOLOv3的果樹(shù)樹(shù)干識(shí)別和定位
    羅海濤作品
    Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
    Novel fast-switching LIGBT with P-buried layer and partial SOI?
    天降白玉 寶藏興業(yè)——四川寶興漢白玉掠影
    石材(2020年10期)2021-01-08 09:20:02
    四川寶興網(wǎng)絡(luò)招商推出漢白玉產(chǎn)業(yè)
    石材(2020年4期)2020-05-25 07:08:48
    圓圓的世界
    感受肌理
    Resurrection of the Genus Leptomantis, with Description of a New Genus to the Family Rhacophoridae (Amphibia: Anura)
    通過(guò)反思尋求最優(yōu)解
    夜夜躁狠狠躁天天躁| 悠悠久久av| 久久国产乱子伦精品免费另类| 国产精品一及| www.www免费av| aaaaa片日本免费| 国内精品一区二区在线观看| 国内少妇人妻偷人精品xxx网站 | x7x7x7水蜜桃| 波多野结衣巨乳人妻| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人的私密视频| 变态另类丝袜制服| 亚洲欧美日韩高清专用| svipshipincom国产片| 麻豆一二三区av精品| 日韩中文字幕欧美一区二区| 美女黄网站色视频| 国产精品久久视频播放| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 男女下面进入的视频免费午夜| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看| 天堂影院成人在线观看| 中文亚洲av片在线观看爽| 美女午夜性视频免费| 天天添夜夜摸| 可以在线观看的亚洲视频| 亚洲天堂国产精品一区在线| 中文亚洲av片在线观看爽| 亚洲美女视频黄频| 亚洲黑人精品在线| www.精华液| 亚洲自偷自拍图片 自拍| 亚洲av成人不卡在线观看播放网| 男女床上黄色一级片免费看| 国产亚洲精品久久久com| 亚洲国产中文字幕在线视频| 日韩国内少妇激情av| 神马国产精品三级电影在线观看| 噜噜噜噜噜久久久久久91| 亚洲国产色片| 国产成人精品久久二区二区免费| 免费在线观看影片大全网站| 亚洲18禁久久av| 一个人观看的视频www高清免费观看 | 成年女人毛片免费观看观看9| 午夜日韩欧美国产| 18禁观看日本| 90打野战视频偷拍视频| 国产日本99.免费观看| 日日摸夜夜添夜夜添小说| 亚洲国产欧美一区二区综合| 亚洲成人久久爱视频| 99热这里只有是精品50| 我的老师免费观看完整版| 亚洲av美国av| 久久天躁狠狠躁夜夜2o2o| 午夜福利成人在线免费观看| 亚洲色图av天堂| 中文字幕人成人乱码亚洲影| 国产成人精品无人区| 精品久久蜜臀av无| 亚洲午夜精品一区,二区,三区| 亚洲美女黄片视频| 免费看美女性在线毛片视频| 亚洲欧美精品综合久久99| 国产精品99久久久久久久久| 美女午夜性视频免费| 国产伦人伦偷精品视频| 国产单亲对白刺激| 白带黄色成豆腐渣| 国产精品,欧美在线| 国产精品久久视频播放| 久久久精品大字幕| 日韩欧美 国产精品| 亚洲av免费在线观看| 高清毛片免费观看视频网站| 中文字幕久久专区| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| netflix在线观看网站| 我的老师免费观看完整版| 亚洲国产欧洲综合997久久,| 无人区码免费观看不卡| 国产精品99久久久久久久久| 婷婷六月久久综合丁香| 欧美xxxx黑人xx丫x性爽| 日韩欧美在线二视频| 激情在线观看视频在线高清| 免费av毛片视频| 精品久久久久久久末码| 精品久久久久久久久久免费视频| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 给我免费播放毛片高清在线观看| 国产精品野战在线观看| 嫩草影视91久久| 成人特级av手机在线观看| 精品一区二区三区视频在线 | 亚洲电影在线观看av| 亚洲,欧美精品.| 禁无遮挡网站| 日韩欧美在线乱码| www日本黄色视频网| 国产高清有码在线观看视频| 欧美中文日本在线观看视频| 99国产精品一区二区三区| 亚洲成人中文字幕在线播放| 国产成人精品无人区| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| 老汉色av国产亚洲站长工具| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 精品人妻1区二区| 国产精品精品国产色婷婷| 日本黄色片子视频| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产| 18禁裸乳无遮挡免费网站照片| 最新美女视频免费是黄的| 午夜福利在线观看免费完整高清在 | 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 精品国产乱码久久久久久男人| 午夜福利免费观看在线| 亚洲黑人精品在线| 久久久久性生活片| 亚洲欧美日韩高清在线视频| 欧美绝顶高潮抽搐喷水| 午夜福利高清视频| 欧美av亚洲av综合av国产av| 他把我摸到了高潮在线观看| a级毛片a级免费在线| 高清毛片免费观看视频网站| 久久草成人影院| 99热精品在线国产| 白带黄色成豆腐渣| 国产一级毛片七仙女欲春2| 最新中文字幕久久久久 | 欧美成人一区二区免费高清观看 | 亚洲专区中文字幕在线| 免费看a级黄色片| 国产精品免费一区二区三区在线| 搡老妇女老女人老熟妇| 亚洲精品久久国产高清桃花| 青草久久国产| 给我免费播放毛片高清在线观看| 亚洲avbb在线观看| 香蕉久久夜色| 国产熟女xx| 老熟妇仑乱视频hdxx| 亚洲激情在线av| 亚洲黑人精品在线| 热99re8久久精品国产| 一本精品99久久精品77| 久久精品国产综合久久久| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 老汉色av国产亚洲站长工具| 久久天躁狠狠躁夜夜2o2o| 97超级碰碰碰精品色视频在线观看| 亚洲第一电影网av| 搡老熟女国产l中国老女人| 999久久久国产精品视频| 精品人妻1区二区| 美女高潮喷水抽搐中文字幕| av视频在线观看入口| 三级毛片av免费| 久久人妻av系列| 精品久久久久久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 亚洲av免费在线观看| 九九热线精品视视频播放| 一本一本综合久久| 伦理电影免费视频| 国产精品乱码一区二三区的特点| 国内精品美女久久久久久| 草草在线视频免费看| 岛国在线免费视频观看| www.www免费av| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 波多野结衣高清无吗| 床上黄色一级片| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器 | 亚洲av五月六月丁香网| 99re在线观看精品视频| 男女午夜视频在线观看| 成在线人永久免费视频| 一进一出抽搐动态| 淫妇啪啪啪对白视频| 嫩草影院精品99| 亚洲精品美女久久av网站| 亚洲精品久久国产高清桃花| 97超级碰碰碰精品色视频在线观看| 国产97色在线日韩免费| 天堂影院成人在线观看| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲av香蕉五月| 女生性感内裤真人,穿戴方法视频| 午夜精品在线福利| 久久伊人香网站| 国产精品1区2区在线观看.| 热99在线观看视频| 51午夜福利影视在线观看| 国产亚洲欧美98| 91在线观看av| 午夜福利在线在线| 久久久久久国产a免费观看| 十八禁人妻一区二区| 九色国产91popny在线| 动漫黄色视频在线观看| 久久99热这里只有精品18| 午夜福利在线观看吧| 国产精品久久电影中文字幕| 99视频精品全部免费 在线 | 日本撒尿小便嘘嘘汇集6| 超碰成人久久| 18禁黄网站禁片免费观看直播| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 成人精品一区二区免费| www日本在线高清视频| 午夜免费成人在线视频| 床上黄色一级片| bbb黄色大片| 中文字幕av在线有码专区| 大型黄色视频在线免费观看| 国产午夜精品久久久久久| 亚洲欧美日韩高清专用| 国产久久久一区二区三区| 免费av不卡在线播放| 国产亚洲av高清不卡| 久久婷婷人人爽人人干人人爱| 欧美性猛交╳xxx乱大交人| 免费在线观看成人毛片| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 久久中文看片网| 久久九九热精品免费| www.熟女人妻精品国产| 国产成人精品久久二区二区免费| 亚洲一区二区三区色噜噜| 久久精品影院6| 麻豆av在线久日| 日韩欧美国产在线观看| 国产亚洲精品久久久久久毛片| 18禁观看日本| 99热只有精品国产| 在线观看午夜福利视频| 国产又黄又爽又无遮挡在线| 久久久色成人| 久久久久性生活片| 亚洲自偷自拍图片 自拍| 国产一区在线观看成人免费| 97超视频在线观看视频| www.www免费av| 黑人欧美特级aaaaaa片| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 一进一出抽搐动态| 高清在线国产一区| 久久香蕉精品热| 亚洲av成人av| 亚洲成人久久爱视频| 久久精品国产综合久久久| 美女免费视频网站| 久久中文看片网| tocl精华| 麻豆一二三区av精品| 男人舔奶头视频| 亚洲自拍偷在线| а√天堂www在线а√下载| 成人三级做爰电影| 变态另类成人亚洲欧美熟女| 此物有八面人人有两片| 90打野战视频偷拍视频| 精品久久蜜臀av无| h日本视频在线播放| 午夜免费观看网址| 又大又爽又粗| 夜夜夜夜夜久久久久| 国产综合懂色| 国产高潮美女av| 琪琪午夜伦伦电影理论片6080| 一进一出抽搐动态| 欧美日本视频| 久久亚洲精品不卡| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 看片在线看免费视频| 神马国产精品三级电影在线观看| 一进一出好大好爽视频| 性色av乱码一区二区三区2| 91麻豆av在线| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 最近视频中文字幕2019在线8| 亚洲人成伊人成综合网2020| 黑人操中国人逼视频| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 色av中文字幕| 亚洲人成网站在线播放欧美日韩| 欧美黄色片欧美黄色片| tocl精华| 国产精品亚洲美女久久久| 人妻夜夜爽99麻豆av| a级毛片a级免费在线| 久久久久国产一级毛片高清牌| 小说图片视频综合网站| 国产成年人精品一区二区| 国产美女午夜福利| 亚洲欧美日韩东京热| 免费电影在线观看免费观看| 欧美日韩一级在线毛片| 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| а√天堂www在线а√下载| 国产综合懂色| www.自偷自拍.com| 搡老妇女老女人老熟妇| 观看免费一级毛片| 欧美又色又爽又黄视频| 亚洲av成人av| 国产成人欧美在线观看| 国内精品一区二区在线观看| 久久中文看片网| 午夜激情福利司机影院| 韩国av一区二区三区四区| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 老司机午夜十八禁免费视频| 久久久久国产精品人妻aⅴ院| 丰满人妻一区二区三区视频av | 一区福利在线观看| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看 | 欧美日韩一级在线毛片| 好看av亚洲va欧美ⅴa在| 久久久成人免费电影| 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区色噜噜| 亚洲精品美女久久av网站| www国产在线视频色| 免费无遮挡裸体视频| 19禁男女啪啪无遮挡网站| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 性色av乱码一区二区三区2| 91麻豆av在线| 黄色 视频免费看| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 国产成人精品无人区| 淫妇啪啪啪对白视频| 悠悠久久av| 欧美成人性av电影在线观看| 婷婷丁香在线五月| 999精品在线视频| 免费观看人在逋| 国产aⅴ精品一区二区三区波| av在线蜜桃| 51午夜福利影视在线观看| 亚洲av成人精品一区久久| 日韩成人在线观看一区二区三区| 丝袜人妻中文字幕| 丁香六月欧美| 日韩欧美精品v在线| 又大又爽又粗| 一本综合久久免费| 在线免费观看的www视频| 久久九九热精品免费| 在线观看舔阴道视频| 欧美午夜高清在线| 免费在线观看成人毛片| 小说图片视频综合网站| 极品教师在线免费播放| 免费在线观看亚洲国产| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 法律面前人人平等表现在哪些方面| 国产高潮美女av| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 18禁美女被吸乳视频| 啦啦啦观看免费观看视频高清| 国产真人三级小视频在线观看| 久99久视频精品免费| 国语自产精品视频在线第100页| 极品教师在线免费播放| 久久伊人香网站| 男女午夜视频在线观看| 久久性视频一级片| 久久久久国产精品人妻aⅴ院| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 亚洲av五月六月丁香网| 午夜福利免费观看在线| 中文在线观看免费www的网站| 午夜影院日韩av| 亚洲国产色片| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 亚洲色图 男人天堂 中文字幕| 天天一区二区日本电影三级| 国产精品九九99| 黄色丝袜av网址大全| av中文乱码字幕在线| 两个人视频免费观看高清| 国产伦精品一区二区三区四那| 久久这里只有精品中国| 亚洲人成伊人成综合网2020| 日本黄色视频三级网站网址| 长腿黑丝高跟| 99热这里只有精品一区 | 亚洲狠狠婷婷综合久久图片| 黑人欧美特级aaaaaa片| 少妇丰满av| 亚洲人成伊人成综合网2020| 亚洲一区二区三区色噜噜| 一个人观看的视频www高清免费观看 | 成人三级做爰电影| 嫩草影视91久久| 后天国语完整版免费观看| 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 99精品欧美一区二区三区四区| 国产精品永久免费网站| av在线蜜桃| 国产精华一区二区三区| 精品福利观看| 日本a在线网址| 波多野结衣巨乳人妻| 精品久久久久久成人av| 婷婷亚洲欧美| 我要搜黄色片| 亚洲在线自拍视频| 亚洲片人在线观看| 国产69精品久久久久777片 | 久久久国产成人免费| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 性欧美人与动物交配| 伊人久久大香线蕉亚洲五| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| cao死你这个sao货| 亚洲自偷自拍图片 自拍| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清在线视频| 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 一区二区三区激情视频| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 成年女人永久免费观看视频| 欧美另类亚洲清纯唯美| 色在线成人网| 午夜激情福利司机影院| 黄色 视频免费看| 桃红色精品国产亚洲av| 激情在线观看视频在线高清| 91av网站免费观看| 亚洲午夜理论影院| 综合色av麻豆| 亚洲人成网站高清观看| 久久久久久久久久黄片| 精品久久久久久成人av| 国产精品久久久av美女十八| 国产亚洲欧美98| 99国产极品粉嫩在线观看| 可以在线观看的亚洲视频| 身体一侧抽搐| 亚洲色图 男人天堂 中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲五月天丁香| 亚洲av五月六月丁香网| 亚洲欧美日韩卡通动漫| 一本综合久久免费| 99国产综合亚洲精品| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 中文字幕久久专区| 长腿黑丝高跟| 可以在线观看毛片的网站| 黄片小视频在线播放| 老司机福利观看| 亚洲精品一区av在线观看| 成人性生交大片免费视频hd| 亚洲国产精品合色在线| 日韩欧美免费精品| netflix在线观看网站| 欧美一区二区国产精品久久精品| 久久久精品大字幕| 国产91精品成人一区二区三区| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片| 首页视频小说图片口味搜索| 一区二区三区激情视频| 国模一区二区三区四区视频 | 一二三四社区在线视频社区8| 亚洲在线观看片| 久久久久久久久久黄片| xxx96com| 色吧在线观看| 国产高清三级在线| 少妇丰满av| 欧美另类亚洲清纯唯美| 午夜a级毛片| 国产成人啪精品午夜网站| 99re在线观看精品视频| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 在线观看免费午夜福利视频| 日韩欧美 国产精品| 后天国语完整版免费观看| av在线蜜桃| 精品一区二区三区视频在线 | 国产三级中文精品| 欧美色视频一区免费| 亚洲中文字幕日韩| 青草久久国产| 悠悠久久av| 亚洲成人久久爱视频| 欧美又色又爽又黄视频| 国产亚洲欧美98| 国产真人三级小视频在线观看| 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站| 欧美日韩福利视频一区二区| 18禁观看日本| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线观看二区| 又爽又黄无遮挡网站| 国内揄拍国产精品人妻在线| 亚洲天堂国产精品一区在线| 久久精品国产亚洲av香蕉五月| 日韩欧美国产在线观看| 欧美一区二区精品小视频在线| 在线观看日韩欧美| 日韩精品青青久久久久久| x7x7x7水蜜桃| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 国产高清激情床上av| av片东京热男人的天堂| 国产三级在线视频| 久久久久国产一级毛片高清牌| 久久这里只有精品中国| 国产aⅴ精品一区二区三区波| 五月玫瑰六月丁香| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 香蕉久久夜色| 岛国在线免费视频观看| 成年版毛片免费区| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站 | 日本免费一区二区三区高清不卡| 国产成人av教育| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 久久久成人免费电影| 啦啦啦观看免费观看视频高清| 长腿黑丝高跟| 欧美乱码精品一区二区三区| 色播亚洲综合网| 国产精品乱码一区二三区的特点| 亚洲国产精品成人综合色| 亚洲熟女毛片儿| 一进一出抽搐动态| 女人高潮潮喷娇喘18禁视频| 午夜福利成人在线免费观看| 久久精品国产清高在天天线| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 久久久精品欧美日韩精品| 日韩国内少妇激情av| 天天躁日日操中文字幕| 午夜两性在线视频| 可以在线观看的亚洲视频| 无遮挡黄片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 亚洲欧洲精品一区二区精品久久久| 床上黄色一级片| 99精品在免费线老司机午夜| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 夜夜爽天天搞| 老汉色∧v一级毛片| 免费在线观看亚洲国产| 在线观看一区二区三区| 亚洲在线自拍视频| 亚洲九九香蕉| 婷婷亚洲欧美| 亚洲国产色片| 搡老岳熟女国产| 亚洲av成人精品一区久久| 国产精品自产拍在线观看55亚洲| 曰老女人黄片|