• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel fast-switching LIGBT with P-buried layer and partial SOI?

    2021-03-11 08:33:42HaoranWang王浩然BaoxingDuan段寶興LichengSun孫李誠(chéng)andYintangYang楊銀堂
    Chinese Physics B 2021年2期
    關(guān)鍵詞:寶興

    Haoran Wang(王浩然), Baoxing Duan(段寶興), Licheng Sun(孫李誠(chéng)), and Yintang Yang(楊銀堂)

    Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: P-type buried layer,breakdown voltage,electric field modulation,turn-off time

    1. Introduction

    The lateral insulated gate bipolar transistor(LIGBT)has the advantages of strong conduction ability, high withstand voltage characteristics, and integration. It is widely used in various electronic power systems and is a typical representative of power semiconductor devices.[1–4]With its ideal dielectric isolation (DI) performance, relatively simple dielectric isolation technology and other advantages, Silicon-oninsulator (SOI) technology based LIGBT is widely used in automotive electronics, switching power supplies and other smart power integrated circuits.[5,6]

    Although LIGBT has low forward voltage drop, the existence of a large number of unbalanced carriers in the drift region limits the switching speed, resulting in higher turn-off loss,so reducing turn-off time has always been academia important topic. In order to reduce the turn-off loss and device size, SOI LIGBTs with ideal forward voltage drop (VF) and turn-off time(Toff)are preferred.The dual deep-oxide trenches(DDOT)technology assists in maintaining the electric potential from the collector,has achieved a faster turn-off speed.[7,8]Adding a P-type compensation layer in the drift region of LIGBT is helpful for the rapid recombination of excess carriers, so that the device can obtain lower turn-off losses.[9,10]The proposal of double-RESURF SOI LIGBT with deeptrench-cathode and self-biased PMOS realizes a better tradeoff between VFand Toff.[11]By adjusting the SOI structure,the surface electric field distribution can be optimized by the electric field modulation effect,increasing the breakdown voltage of the device,[12]which is conducive to reducing the size of the device. The influence of the self-heating effect of the SOIbased power device has caused the performance of the device to decline,resulting in serious reliability problems. Therefore,partial-SOI (PSOI) technology is proposed,[13]in which the silicon window under the drain or source helps the device to dissipate heat.

    This paper proposes a novel PSOI LIGBT with a P-type buried layer, called the buried layer PSOI LIGBT (BPSOI LIGBT).The electric field modulation effect generated by the P-type buried layer and the partial-SOI layer result in two new peaks in the surface electric field, which make the surface electric field distribution more uniform. The proposed BPSOI LIGBT improves the breakdown voltage, greatly reduces the drift length which allows the device to store lower carriers in the drift region. When the device is turned off, the reduction in store carriers of drift region decreases the turn-off time. At the same time,BPSOI LIGBT has the characteristics of PSOI structure,which slows down the self-heating effect of the device.

    2. Device structure and description

    Figure 1 is a schematic cross-section of the proposed BPSOI LIGBT. In the substrate of proposed device, the ion implanted P-type buried layer is close to the source end, the P-substrate is located at the middle portion,and the buried SOI layer is close to the drain end. The P-type buried layer, the P-substrate, and the SOI layer each account for one-third of the length of the substrate. In order to meet the RESURF principle,different types of substrates require different optimized concentrations of drift region. The concentration of the P-type buried layer is higher than the concentration of the p-substrate,which means that the optimized drift region concentration is higher. Under the same thickness of the drift region,the isolation substrate requires the optimized drift region concentration to be lower than that of the silicon substrate. Thus, when the substrate is three regions of different types,three drift regions with different optimized concentrations are also required. As seen from Fig.1, it is equivalent to distinguishing the drift region into three regions of the same length with a, b, and c when the concentration of the drift region is constant.The new electric field peaks appear near A and B,causing the bottom of the electric field to rise,so the surface electric field distribution tends to be uniform,which is also the result of the modulation effect of the substrate on the surface electric field. At the same time,due to the appearance of silicon window,the self-heating effect of SOI can be well alleviated.

    Fig.1. The schematic cross-section of the proposed BPSOI LIGBT.

    3. Results and discussion

    Table 1 is the proposed device,conventional PSOI LIGBT and traditional SOI LIGBT simulation parameters. Figure 2 shows the lateral electric field distribution of the three structures. It can be clearly seen that the surface electric field of the BPSOI LIGBT structure has two peaks(near A and B)under the action of the additional electric field generated by the Ptype buried layer charge,which raise the bottom of the electric field and reduces the peak value of the electric field at both ends of the source and drain. Compared with the traditional SOI LIGBT and conventional PSOI LIGBT,electric field distribution of the proposed device is more uniform. The position of the peak is located at the interface between different types of substrates,which improves the lateral withstand voltage of the device.

    Table 1. Device design parameters.

    Fig.2. Lateral electric field distribution of the BPSOI LIGBT,conventional PSOI LIGBT,and traditional SOI LIGBT.

    Figure 3(a)compares the lateral surface potential distribution of the proposed structure with the traditional SOI LIGBT at breakdown. It can be seen that when LD= 5.8 μm, the proposed BPSOI LIGBT can obtain almost the same breakdown voltage (BV = 104 V) as the traditional SOI LIGBT(LD=15 μm), the proposed device makes the device have a smaller size. When LD=15μm,the proposed BPSOI LIGBT obtains a BV of 191 V. It can be concluded that at the same LD, the breakdown voltage of the proposed BPSOI LIGBT is increased by 84%,compared with the traditional SOI LIGBT.This proves that the P-type buried layer and the partial-SOI layer introduced in the proposed device optimizes the surface electric field distribution, makes the electric field distribution more uniform,and obtains a higher breakdown voltage.Therefore, the BPSOI LIGBT obtains narrower LDand higher BV through electric field modulation.

    Figure 3(b)shows the vertical potential distribution at the drain end of three structures, where 0 <y <W is the potential distribution of the device drift region and the buried layer,y>W is the potential distribution of the substrate. The substrate bears a considerable part of the vertical voltage,which is the reason of the BPSOI LIGBT structure has higher withstand voltage than the conventional SOI structure. Lines 1 and 2 indicate the potential difference between the drift area and the buried layer of the conventional PSOI LIGBT and the BPSOI LIGBT.It can be seen that the potential difference between the two structures in this part is similar. However,in the substrate part,the proposed BPSOI LIGBT has a more obvious potential than the conventional PSOI LIGBT.The increase is due to the optimization of the surface electric field by the P buried layer of the BPSOI LIGBT (as shown in Fig.2). In this way, the proposed BPSOI LIGBT improves the lateral withstand voltage by optimizing the surface electric field.

    Fig.3. (a) Lateral surface potential distribution of the proposed structure and traditional SOI IGBT at breakdown. (b)Vertical potential distribution of the drain ends of BPSOI LIGBT, PSOI LIGBT, and SOI LIGBT,point W at y=2.5μm.

    Fig.4. Relationship between the doping concentration of the P-type buried layer and breakdown voltage of the BPSOI LIGBT.

    Figure 4 shows the relationship between the concentration of the P-type buried layer and breakdown voltage of the BPSOI LIGBT. Point A, point B, and point C on the dotted line represent the situation when NP=1×1014cm?3, which are the breakdown voltage of the conventional PSOI LIGBT.It can be seen from the figure that as NPincreases, the effect of the buried layer on the drift region gradually increases,and the surface electric field gradually tends to optimize.The highest peak of the electric field distribution on both sides gradually decreases,and the middle part gradually increases,which makes the breakdown voltage increase gradually. When NPoptimizes the electric field as shown in Fig.2,the breakdown voltage reaches the maximum.At this time,increasing NPwill cause the peak value of the electric field near the source end to be too high,thereby reducing the breakdown voltage. It can be seen from Fig.4 that the breakdown voltage of the BPSOI structure is increased by 26% compared to the conventional PSOI LIGBT.

    Fig.5. Relationship between the thickness of buried layer and breakdown voltage.

    Figure 5 shows the relationship between the thickness of buried layer (Tox) and breakdown voltage of three different devices. As seen from the figure, with the increase in the thickness of the buried layer, the breakdown voltage shows approximately linear growth. The breakdown voltage of the proposed structure is higher than that of conventional PSOI LIGBT and traditional SOI LIGBT, because of the introduction of P-type buried layer to modulate the surface electric field. Among the structural parameters with LD= 15 μm,Ts=1.5μm,NP=2×1016cm?3.

    Fig.6.Simulated forward characteristics of the proposed and traditional SOI LIGBT.

    Figure 6 shows the simulated forward characteristics of the proposed structure (LD= 5.8 μm, Tox= 1 μm, NP=2×1016cm?3, BV = 104 V) and traditional SOI LIGBT(LD=15μm,Tox=1μm,BV =104 V).The proposed device has a shorter LD, and the electrically neutral effect of the Ptype buried layer in the structure increases the optimized concentration of the drift region,so the proposed device has better current capability. The BPSOI LIGBT gains the lower VFof 1.31 V at ICE=1.0 kA/cm2as shown in Fig.6,the curve representing BPSOI LIGBT in the figure is above the traditional SOI LIGBT, and the analysis and simulation results are consistent. The BPSOI LIGBT has good forward characteristics.

    Figure 7 shows the simulated resistive load turn-off characteristics of the proposed structure(LD=5.8μm)and traditional SOI LIGBT (LD=15 μm). The BPSOI LIGBT gains the lower VFof 1.31 V at ICE=1.0 kA/cm2,when T =300 K and VG=10 V,the turn-off BPSOI LIGBT is 15.8 ns and that of SOI LIGBT is 37.5 ns. It can be clearly seen that the turnoff time of BPSOI LIGBT is less than the turn-off time of traditional SOI LIGBT. Due to the electric field modulation effect,the proposed structure has a smaller LD,so that the drift region obtains less storage carriers, and at the same time, the small LDdepletes the drift region quickly and obtains a shorter depletion region length.The shorter length of the depletion region and the smaller number of storage carriers are more conducive to device turn-off. Therefore, the proposed structure has a smaller Toffthan the traditional SOI LIGBT.

    Fig.7. Simulated resistive load turn-off characteristics of the proposed BPSOI LIGBT and traditional SOI LIGBT.T =300 K,VG=10 V.

    Figure 8 compares the tradeoff curves between forward voltage drop and turn off time for the BPSOI LIGBT and the conventional SOI LIGBT. The Toff~VFcurve is obtained by changing the anode P-type doping concentration at T =300 K and current density of 1 kA/cm2. The BPSOI LIGBT curve is below the traditional SOI LIGBT curve,indicating that the proposed structure has a better compromise between Toffand VF. When VF=2.05 V, the Toffof the proposed structure is 71% lower than that of the traditional SOI LIGBT. The proposed structure has low power consumption.

    Fig.8. Tradeoff curves between forward voltage drop(VF)and turn off time(Toff)for the BPSOI LIGBT and the conventional SOI LIGBT.

    The influence of the self-heating effect of the traditional SOI LIGBT is obvious. The self-heating effect seriously affects the reliability of the device, adversely affects the normal operation of the device,and degrades the performance of the device. However, the proposed device has a silicon window and retains the characteristics of the general PSOI LIGBT,the proposed device structure has better heat dissipation performance and alleviates the self-heating effect brought by the SOI structure. Figure 9(a)shows the temperature distribution inside BPSOI LIGBT and SOI LIGBT,and figure 9(b)shows the surface temperature of the two structures. The gate voltage VG=5 V,drain voltage VD=10 V.It can be clearly seen that the working temperature of the proposed BPSOI LIGBT is much lower than that of the SOI LIGBT.The BPSOI LIGBT reduces the heating of the device caused by the self-heating effect.

    Fig.9. (a)Temperature distribution inside BPSOI LIGBT and SOI LIGBT.(b)Surface temperature of the two structures.

    Fig.10. Key process flow of the proposed BPSOI LIGBT.

    In engineering, the BPSOI structure can be realized by silicon wafer direct bonding(SDB),as shown in Fig.10. The difference from the general PSOI structure in the SDB process is that it adds a P-type ion implantation step. First, a part of the buried oxide layer is formed,and at the same time a part of the silicon window of the device is formed, and then etching and chemical polishing techniques are used to etch and polish the oxide layer on the silicon surface. In the third step,ion implantation is performed,and the implanted ions form a part of the p-type buried layer.Finally,it is directly bonded to another silicon wafer without an oxide layer.

    4. Conclusion

    A novel SOI LIGBT with BPSOI structure has been proposed in this paper. Simulation and analysis verified that the proposed BPSOI LIGBT has the advantages of optimizing the surface electric field and alleviating the self-heating effect.The electric field modulation of the P-type buried layer and a partial-SOI layer charge results in tow peaks in the surface electric field, the electric field is more uniformly distributed than the traditional SOI LIGBT,so that the device has a larger BV.Thus,shorter drift region and lower storage carrier are obtained. Compared with traditional SOI LIGBT, the proposed structure has better tradeoff between Toffand VF.

    猜你喜歡
    寶興
    基于改進(jìn)YOLOv3的果樹樹干識(shí)別和定位
    風(fēng)電場(chǎng)集電線路單相接地故障特性分析與保護(hù)
    西藏鳥類分布新紀(jì)錄
    ——寶興鹛雀
    Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
    Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit?
    中國(guó)寶興漢白玉綠色礦山建設(shè)經(jīng)驗(yàn)——四川雅安正興大理石礦調(diào)研報(bào)告
    石材(2020年11期)2021-01-08 09:21:34
    天降白玉 寶藏興業(yè)——四川寶興漢白玉掠影
    石材(2020年10期)2021-01-08 09:20:02
    杭州(2020年18期)2020-11-09 03:32:10
    四川寶興網(wǎng)絡(luò)招商推出漢白玉產(chǎn)業(yè)
    石材(2020年4期)2020-05-25 07:08:48
    被他人傷害致死,敬老院有否連帶責(zé)任
    長(zhǎng)壽(2019年8期)2019-07-13 03:41:18
    av.在线天堂| 亚洲情色 制服丝袜| 黄色毛片三级朝国网站| 在线观看www视频免费| 美女中出高潮动态图| videosex国产| 一区二区av电影网| 国产成人a∨麻豆精品| 久久99热6这里只有精品| h视频一区二区三区| 国产有黄有色有爽视频| 亚洲欧美成人综合另类久久久| 日韩成人av中文字幕在线观看| 99热6这里只有精品| 精品一区二区三卡| 久久女婷五月综合色啪小说| 七月丁香在线播放| 午夜91福利影院| 成年人午夜在线观看视频| 成人黄色视频免费在线看| 99视频精品全部免费 在线| 寂寞人妻少妇视频99o| 欧美人与性动交α欧美精品济南到 | 高清欧美精品videossex| 国产 精品1| videos熟女内射| 亚洲在久久综合| 久久精品人人爽人人爽视色| 亚洲精品自拍成人| 我的女老师完整版在线观看| 久久人人爽av亚洲精品天堂| 亚洲av免费高清在线观看| 久久久久国产精品人妻一区二区| 美女视频免费永久观看网站| 国产日韩欧美亚洲二区| 午夜福利乱码中文字幕| 国产精品人妻久久久久久| 欧美变态另类bdsm刘玥| 亚洲,欧美精品.| 九草在线视频观看| 女性生殖器流出的白浆| 在线天堂最新版资源| 一级,二级,三级黄色视频| 69精品国产乱码久久久| 我的女老师完整版在线观看| 国产亚洲最大av| 日本av手机在线免费观看| 亚洲高清免费不卡视频| 在线 av 中文字幕| 999精品在线视频| 男女午夜视频在线观看 | 午夜久久久在线观看| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 极品人妻少妇av视频| 久久韩国三级中文字幕| 亚洲国产毛片av蜜桃av| 午夜日本视频在线| 免费观看性生交大片5| 美女视频免费永久观看网站| 99精国产麻豆久久婷婷| 七月丁香在线播放| 国产精品99久久99久久久不卡 | 一个人免费看片子| 全区人妻精品视频| av一本久久久久| 少妇 在线观看| 精品人妻在线不人妻| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 欧美日韩av久久| 免费人成在线观看视频色| 国产永久视频网站| 综合色丁香网| 亚洲图色成人| 国产成人精品久久久久久| 777米奇影视久久| 女性被躁到高潮视频| 精品国产一区二区三区四区第35| 伊人亚洲综合成人网| 免费av中文字幕在线| 国产黄色视频一区二区在线观看| 高清视频免费观看一区二区| 极品人妻少妇av视频| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 日日撸夜夜添| a 毛片基地| 亚洲精华国产精华液的使用体验| 久久精品国产自在天天线| 午夜福利视频精品| 日韩电影二区| 日本与韩国留学比较| 日本av手机在线免费观看| 国产爽快片一区二区三区| 色94色欧美一区二区| 日本vs欧美在线观看视频| 一区二区三区乱码不卡18| 久久久国产欧美日韩av| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 香蕉丝袜av| 亚洲av福利一区| 国产成人aa在线观看| 蜜桃在线观看..| 街头女战士在线观看网站| 久久99热这里只频精品6学生| 晚上一个人看的免费电影| 亚洲经典国产精华液单| 国产亚洲欧美精品永久| 97精品久久久久久久久久精品| 亚洲性久久影院| 五月伊人婷婷丁香| 我要看黄色一级片免费的| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 在线观看免费高清a一片| videos熟女内射| 国产免费一级a男人的天堂| 欧美少妇被猛烈插入视频| 国产无遮挡羞羞视频在线观看| 欧美日本中文国产一区发布| 各种免费的搞黄视频| 亚洲国产色片| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 国产精品国产av在线观看| 国产精品一国产av| 一本大道久久a久久精品| 亚洲丝袜综合中文字幕| 看非洲黑人一级黄片| videossex国产| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 黑人欧美特级aaaaaa片| 国产亚洲av片在线观看秒播厂| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 欧美亚洲日本最大视频资源| av.在线天堂| 国产片内射在线| 蜜桃国产av成人99| 亚洲成色77777| 黑人高潮一二区| 一二三四在线观看免费中文在 | 欧美国产精品一级二级三级| 国产一级毛片在线| 最近中文字幕2019免费版| 国产男女内射视频| 黑人巨大精品欧美一区二区蜜桃 | 秋霞在线观看毛片| 九九在线视频观看精品| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 亚洲精品日韩在线中文字幕| 亚洲婷婷狠狠爱综合网| 国产精品不卡视频一区二区| 少妇人妻久久综合中文| 亚洲精品成人av观看孕妇| 黄色配什么色好看| 国产亚洲午夜精品一区二区久久| 国产精品蜜桃在线观看| 永久免费av网站大全| 久久人人爽av亚洲精品天堂| 精品一区二区三卡| 两性夫妻黄色片 | 不卡视频在线观看欧美| 亚洲精品色激情综合| 亚洲精品第二区| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 欧美亚洲日本最大视频资源| 中文天堂在线官网| 亚洲成人手机| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 亚洲五月色婷婷综合| 岛国毛片在线播放| 日韩中字成人| 欧美日韩国产mv在线观看视频| 国产色婷婷99| 99热国产这里只有精品6| 99久久精品国产国产毛片| 日韩成人伦理影院| 精品一区二区免费观看| 黄网站色视频无遮挡免费观看| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩一区二区三区在线| 亚洲av中文av极速乱| 国产免费视频播放在线视频| 午夜免费男女啪啪视频观看| 最近最新中文字幕免费大全7| 久久精品夜色国产| 日韩免费高清中文字幕av| 国产xxxxx性猛交| 亚洲精品,欧美精品| 一区二区三区乱码不卡18| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 成人国语在线视频| 久久久精品94久久精品| 午夜福利影视在线免费观看| 国产无遮挡羞羞视频在线观看| 熟女av电影| 久久久亚洲精品成人影院| av又黄又爽大尺度在线免费看| 欧美人与性动交α欧美软件 | 国产精品久久久久久久电影| 日本wwww免费看| 一区二区三区四区激情视频| 欧美日韩av久久| 有码 亚洲区| 9色porny在线观看| a级毛色黄片| 18+在线观看网站| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 99久久人妻综合| 99国产综合亚洲精品| 日本午夜av视频| 看免费av毛片| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 国产精品欧美亚洲77777| 欧美xxxx性猛交bbbb| 亚洲精品美女久久久久99蜜臀 | 久久这里只有精品19| 久久 成人 亚洲| 女人被躁到高潮嗷嗷叫费观| 国产淫语在线视频| 亚洲国产日韩一区二区| 亚洲av国产av综合av卡| 一级毛片电影观看| 大香蕉97超碰在线| 高清毛片免费看| 黄色一级大片看看| 最新中文字幕久久久久| 在线观看免费高清a一片| 高清毛片免费看| 色94色欧美一区二区| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 国产高清三级在线| 国产一区二区三区综合在线观看 | 人妻系列 视频| 91精品三级在线观看| 日韩伦理黄色片| 美女内射精品一级片tv| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| 少妇的逼好多水| 伊人久久国产一区二区| av福利片在线| 成人二区视频| 丝袜人妻中文字幕| 九色亚洲精品在线播放| 国产成人精品无人区| 国产精品久久久久久av不卡| 国产免费又黄又爽又色| 亚洲精华国产精华液的使用体验| 2021少妇久久久久久久久久久| 97人妻天天添夜夜摸| 久久久久久人人人人人| 国产在线视频一区二区| 国产麻豆69| 国产精品久久久久久av不卡| 久久狼人影院| 欧美bdsm另类| 国产精品久久久久成人av| 日韩视频在线欧美| 男女下面插进去视频免费观看 | 国产精品久久久久久久久免| 亚洲成色77777| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡 | 精品国产国语对白av| 久久久欧美国产精品| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲精品第一综合不卡 | 国产免费又黄又爽又色| 久久久久视频综合| 新久久久久国产一级毛片| 亚洲天堂av无毛| 国产黄色视频一区二区在线观看| 男的添女的下面高潮视频| 婷婷色综合www| 性高湖久久久久久久久免费观看| 久久青草综合色| 蜜桃在线观看..| 高清av免费在线| 久久久a久久爽久久v久久| 视频区图区小说| 成人二区视频| 日本色播在线视频| 另类精品久久| 2022亚洲国产成人精品| 韩国av在线不卡| 精品福利永久在线观看| 欧美日韩av久久| 天堂中文最新版在线下载| 国产精品久久久久久av不卡| 色94色欧美一区二区| 最近中文字幕高清免费大全6| 在线观看免费视频网站a站| 国产精品一国产av| 最后的刺客免费高清国语| 99久国产av精品国产电影| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 少妇的逼水好多| 夜夜爽夜夜爽视频| 国产永久视频网站| 久久韩国三级中文字幕| 人妻 亚洲 视频| 波多野结衣一区麻豆| 春色校园在线视频观看| kizo精华| 草草在线视频免费看| 97人妻天天添夜夜摸| 免费大片黄手机在线观看| 少妇的丰满在线观看| 妹子高潮喷水视频| 免费av不卡在线播放| 国产欧美亚洲国产| 极品人妻少妇av视频| 97人妻天天添夜夜摸| 国产在线视频一区二区| av又黄又爽大尺度在线免费看| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费| 欧美精品av麻豆av| 久久人人97超碰香蕉20202| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 久久久久久久国产电影| 欧美人与善性xxx| 亚洲精品,欧美精品| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 男人添女人高潮全过程视频| 中文字幕人妻丝袜制服| 免费观看在线日韩| 九色成人免费人妻av| 免费看av在线观看网站| 亚洲成色77777| 国产亚洲午夜精品一区二区久久| 欧美亚洲日本最大视频资源| 成人免费观看视频高清| 欧美精品国产亚洲| 另类精品久久| 高清黄色对白视频在线免费看| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 久久久久久久久久人人人人人人| www.熟女人妻精品国产 | 99视频精品全部免费 在线| 国产男人的电影天堂91| 妹子高潮喷水视频| 午夜福利在线观看免费完整高清在| 搡老乐熟女国产| 亚洲精品一区蜜桃| 汤姆久久久久久久影院中文字幕| 久久韩国三级中文字幕| 成年动漫av网址| 少妇被粗大猛烈的视频| 久久久久网色| 精品酒店卫生间| 国产精品免费大片| 男人舔女人的私密视频| 如何舔出高潮| 亚洲综合色惰| 日本wwww免费看| 春色校园在线视频观看| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 曰老女人黄片| 久久亚洲国产成人精品v| 亚洲美女视频黄频| 亚洲五月色婷婷综合| 国产高清不卡午夜福利| 国产视频首页在线观看| 国产精品蜜桃在线观看| 一级片免费观看大全| 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 日韩精品有码人妻一区| 韩国av在线不卡| 亚洲第一区二区三区不卡| 观看美女的网站| 人妻 亚洲 视频| av免费在线看不卡| 免费看av在线观看网站| 亚洲国产精品一区二区三区在线| 国产精品欧美亚洲77777| 国产欧美日韩综合在线一区二区| 精品国产国语对白av| 日韩视频在线欧美| 制服诱惑二区| 国产精品久久久久久精品电影小说| 蜜桃在线观看..| 极品人妻少妇av视频| 欧美丝袜亚洲另类| 国产免费福利视频在线观看| 嫩草影院入口| av有码第一页| 久久久精品94久久精品| 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| 大片免费播放器 马上看| 内地一区二区视频在线| 侵犯人妻中文字幕一二三四区| 精品人妻熟女毛片av久久网站| 桃花免费在线播放| 亚洲精品第二区| 免费女性裸体啪啪无遮挡网站| 色视频在线一区二区三区| 亚洲欧美色中文字幕在线| av福利片在线| 久久精品夜色国产| 日本黄大片高清| 日本av手机在线免费观看| 久热这里只有精品99| 日日撸夜夜添| 久久久久久人人人人人| 亚洲精品视频女| 欧美人与性动交α欧美软件 | 国产一区亚洲一区在线观看| 在线亚洲精品国产二区图片欧美| 天天躁夜夜躁狠狠久久av| 亚洲欧美清纯卡通| 亚洲中文av在线| 丰满迷人的少妇在线观看| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 老熟女久久久| 男的添女的下面高潮视频| 免费观看a级毛片全部| 欧美国产精品va在线观看不卡| 美女脱内裤让男人舔精品视频| 美女福利国产在线| 久久久精品区二区三区| 边亲边吃奶的免费视频| 久久久久精品久久久久真实原创| 侵犯人妻中文字幕一二三四区| 免费观看在线日韩| 美女内射精品一级片tv| 免费看不卡的av| 一级毛片电影观看| 亚洲三级黄色毛片| 一级a做视频免费观看| 乱人伦中国视频| 精品一区二区三区四区五区乱码 | 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| 国产精品三级大全| 欧美精品高潮呻吟av久久| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 你懂的网址亚洲精品在线观看| 国精品久久久久久国模美| 国产av国产精品国产| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 久久精品国产亚洲av天美| 成人手机av| 日韩一区二区三区影片| 国产亚洲最大av| 亚洲国产日韩一区二区| 久久影院123| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 天天躁夜夜躁狠狠躁躁| av在线观看视频网站免费| 亚洲精品成人av观看孕妇| 91午夜精品亚洲一区二区三区| 9热在线视频观看99| 高清黄色对白视频在线免费看| 日本欧美国产在线视频| 香蕉丝袜av| 国产免费一区二区三区四区乱码| 午夜福利网站1000一区二区三区| 国产成人欧美| 国产一区亚洲一区在线观看| 国产成人一区二区在线| 王馨瑶露胸无遮挡在线观看| 男女边摸边吃奶| 欧美日韩亚洲高清精品| 各种免费的搞黄视频| 午夜免费男女啪啪视频观看| 99久久综合免费| av网站免费在线观看视频| 欧美亚洲日本最大视频资源| 久久久久视频综合| 伦精品一区二区三区| 精品久久久精品久久久| 国产精品国产三级专区第一集| 韩国精品一区二区三区 | videos熟女内射| 男女国产视频网站| 日韩熟女老妇一区二区性免费视频| 老司机影院成人| 欧美日韩视频精品一区| 老女人水多毛片| 青春草亚洲视频在线观看| 老司机影院毛片| 亚洲人与动物交配视频| 久久这里只有精品19| 两个人免费观看高清视频| 国产免费视频播放在线视频| 国产女主播在线喷水免费视频网站| 国产成人欧美| 久久人人爽人人爽人人片va| 亚洲国产日韩一区二区| 热99国产精品久久久久久7| 制服丝袜香蕉在线| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 午夜福利网站1000一区二区三区| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 精品国产国语对白av| 欧美最新免费一区二区三区| 美女内射精品一级片tv| 色网站视频免费| 日韩免费高清中文字幕av| 男女免费视频国产| 久久久久网色| 母亲3免费完整高清在线观看 | 精品久久国产蜜桃| 久久毛片免费看一区二区三区| 美女xxoo啪啪120秒动态图| 国产一区二区三区综合在线观看 | 精品酒店卫生间| 国产免费一区二区三区四区乱码| 精品国产露脸久久av麻豆| 亚洲四区av| 人成视频在线观看免费观看| 国产黄色视频一区二区在线观看| 国产极品天堂在线| 国产69精品久久久久777片| 99香蕉大伊视频| 国产深夜福利视频在线观看| av免费在线看不卡| 久久狼人影院| 精品第一国产精品| 欧美激情极品国产一区二区三区 | 母亲3免费完整高清在线观看 | 国产成人aa在线观看| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 国产精品人妻久久久影院| 极品少妇高潮喷水抽搐| 看免费成人av毛片| 一二三四中文在线观看免费高清| 欧美激情国产日韩精品一区| 国产av国产精品国产| 国产成人精品福利久久| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 日本欧美国产在线视频| 亚洲精品自拍成人| 国产一级毛片在线| 精品久久久久久电影网| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 亚洲久久久国产精品| 久久 成人 亚洲| 一级毛片黄色毛片免费观看视频| a 毛片基地| 久久99蜜桃精品久久| 免费黄网站久久成人精品| 成人国语在线视频| av视频免费观看在线观看| 在线观看美女被高潮喷水网站| 精品人妻熟女毛片av久久网站| 久久午夜福利片| 午夜福利网站1000一区二区三区| 久久久精品区二区三区| 一区二区av电影网| 国产色婷婷99| 成人18禁高潮啪啪吃奶动态图| 精品酒店卫生间| av电影中文网址| 2022亚洲国产成人精品| 亚洲第一av免费看| 日日摸夜夜添夜夜爱| 午夜日本视频在线| 国产精品麻豆人妻色哟哟久久| 高清不卡的av网站| 婷婷色麻豆天堂久久| 一个人免费看片子| 亚洲,一卡二卡三卡| 18在线观看网站| 国产又爽黄色视频| 亚洲高清免费不卡视频| 国产一区二区三区av在线| 一区二区日韩欧美中文字幕 | 亚洲三级黄色毛片| 9191精品国产免费久久| 国产精品成人在线| 日韩一区二区视频免费看| av电影中文网址| 看非洲黑人一级黄片|