• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First principles study of behavior of helium at Fe(110)–graphene interface?

    2021-05-06 08:56:26YanMeiJing荊艷梅andShaoSongHuang黃紹松
    Chinese Physics B 2021年4期

    Yan-Mei Jing(荊艷梅) and Shao-Song Huang(黃紹松)

    Key Laboratory of Material Modification by Laser,Ion and Electron Beams(Dalian University of Technology),Ministry of Education,Dalian 116024,China

    Keywords: Fe(110)–graphene,helium,interface,first principles calculations

    1. Introduction

    With the rapid development of advanced nuclear energy systems, the need for the development and application of structural materials with higher radiation tolerance has increased.[1]Point defects (vacancies and interstitials) generated by high-energy neutrons can evolve into extended defects such as voids and interstitial clusters within the structural materials at elevated temperatures. In addition,a certain number of helium (He) are produced by the (n, α) transmutation reaction.[2]Owing to the low solubility of He atoms,their diffusion and aggregation results in the precipitation and nucleation of He bubbles.[3]The synergistic interaction of these defects leads the mechanical properties of the structural material to degrade.[4–10]Increasing the fraction of interface/boundaries in materials is an important strategy to enhance the irradiation effect tolerance by providing more defect recommendation sites.[11–14]In particular,multilayer metallic systems such as W/Cu,[15]Cu/Nb,[16]and Cu/V[17]systems have been studied extensively as structural materials for mitigating radiation damage.

    Further, graphene has attracted much attention due to its highly dense interface,[18–20]with a two-dimensional structure packed by a single layer of C atoms. Several studies reported their results on the radiation damage resistance of copper–graphene, nickel–graphene, and vanadium–graphene nanocomposites through molecular dynamics and experiments,[21–23]it was found that the metal–graphene nanocomposite had less defects remaining in the bulk region after collision cascades, illustrating the self-healing performance. However, the atomic mechanism was still unknown,especially for the interaction between the graphene and metal substrates. Furthermore, as is well known, stainless steels, in which Fe is the basic element in the matrix (with more than 80 wt%),are the most commonly constructive and prospective materials in nuclear systems. As stated, He is an important product of neutron transmutation,affecting many of the properties of structural materials with point defects.[24–29]Thus,previous studies promoted us to figure out whether the Fe–graphene interface can affect the behaviors of intrinsic defects and act as a good He permeation barrier. In this study, we aim to investigate the potential usage of steel–graphene with multiply interface structures for tolerating the radiation damage. Therefore, using ab initio calculations, we investigate the energetical stability of the Fe–graphene system, the formation of the intrinsic defects, and the behaviors of an interstitial He atom. The rest of this paper is organized as follows.The method of first-principles calculations, and calculational equations are presented in Section 2. In Section 3,the results of the behaviors of the intrinsic defects, and He atoms in the Fe(110)–graphene system are discussed. The major findings are summarized in Section 4.

    2. Computational method

    where Etotal,Esub,and Egare the energy of the composite system, standalone substrate, and graphene, respectively, and Ncis the number of C atoms in the graphene sheet.

    The binding energy of two defects, A and B, in the Fe(110)–graphene system is given by[45]

    Here, E(A) or E(B) is the total energy of a single defect in the structure, E(AB) is the total energy of a supercell with two defects, and E(perfect) is the total energy of the prefect structure without any defects. Following this convention, the positive binding energy corresponds to exothermic defect formation reaction,implying an attractive interaction between A and B.

    The formation energy of a single vacancy or an interstitial atom(Ef)in the Fe(110)–graphene structure is defined as

    where E(defect) and E(perfect) are the total energy of the Fe(110)–graphene system with and without a point defect,respectively; E(Fe)represents the cohesive energy per Fe atom in bcc Fe, E(C) denotes the energy per C atom in graphene;E(He) is the energy of an isolated He atom; m=1, n=0 ,and p=0 for an Fe vacancy in the Fe layer;m=0,n=1,and p=0 for a C vacancy in the graphene layer;m=?1,n=0,and p=0 for an Fe interstitial atom;m=0,n=?1,and p=0 for a C interstitial atom;m=0,n=0,and p=?1 for an He interstitial atom.

    3. Results and discussion

    3.1. Structure and bonding properties

    Figure 1 shows the structure of the Fe(110)–graphene interface; a Moir′e pattern forms in the Fe(110)–graphene, with a large corrugation of the graphene layer. Owing to the lattice mismatch between the Fe substrate and graphene,C atoms occupy various adsorption sites on the Fe substrate.[46]The results indicate that the interaction between the Fe substrate and graphene is strong. In this case, it is vital to investigate the equilibrium binding distance and binding energy of the Fe(110)–graphene system.According to the equilibrium binding distance, the interaction between graphene and the substrate can be divided into two classes:[41]one is represented by an equilibrium binding distance,d of ≤2.3 ?A which indicates strong interaction or chemisorption, and the other belongs in weak interaction or physisorption. According to Eq. (1), the binding energy of the Fe(110)–graphene structure is 0.05 eV/C and the binding distance is ~2.13 ?A while the previously reported experimental and theoretical value are ~2.09 ?A and 2.10 ?A respectively.[39,47]From the energy and distance viewpoint, the binding between the Fe substrate and graphene is strong. The graphene layer on the Fe(110)substrate exhibits a similar binding behavior to that observed on other metal substrates such as Ni,Co,and Pd.[48–50]

    The total density of states (TDOS) of the Fe(110)–graphene system and local density of states(LDOS)between graphene and the topmost Fe layer are shown in Fig.2.The Fed orbital significantly affects the TDOS near the Fermi level.Thus, the metal substrate determines the Fermi level of the composite material. The strong hybridization of the Fe-d state and C-p state in the LDOS indicates that a strong covalent bond forms between the Fe atom and C atom, similar to the previously reported cases of graphene on Rh(111)[51]and Ni(111).[52]The small interfacial distance can result in the overlap of the wave functions of the d electrons of the metal and p electrons of graphene,leading to orbital hybridization.

    Fig.1. Structure of Fe(110)–graphene system,showing(a)top view and(b)side view of structure,with purple and gray balls representing Fe atom and C atom,respectively.

    Fig.2. (a)Total density of states(TDOS)of Fe(110)–graphene system and(b) local density of states (LDOS) between graphene and the topmost Fe layer,with colored solid lines showing projected DOS from s,p,d orbitals,respectively.

    Weser et al.[53]and Dedkov et al.[54]reported a magnetic moment of approximately 0.05μB–0.1μBper carbon atom for the C atoms of a graphene layer contacting a ferromagnetic Ni(111) substrate. In this work, the magnetic moment of C1was found to be ?0.036μB,which forms an antiferromagnetic couple with the nearest Fe atom. On the other hand,the magnetic moment of the C2atom was approximately+0.022 μB.This result is consistent with that reported by Liu et al.[47]The magnetic moments of C atoms in Fe(110)–graphene are attributed to the Fe3d–C2p orbital hybridization.

    Fig.3. Differential charge density of Fe(110)–graphene interface region(isovalue: 0.005 e/?A3),showing(a)side view and(b)top view of interface,where big and small balls represent Fe and C atoms,respectively,blue contour denotes electron depletion region,and yellow contour refers to electron accumulation region.

    Fig.4. Interlayer charge difference in Fe(110)–graphene interface region(?ρ = ρinterface ?ρFe ?ρC). Area between red line and 0 line displays the value of electron depletion or accumulation. Value at interface around 10.43 ?A

    3.2. Formation and stability of intrinsic defects

    The formation energy values of single vacancies of the C and Fe atoms in different layers in Fe(110)–graphene are calculated, and the results are listed in Table 1. The formation energy of the C vacancy in a single graphene layer is also calculated. The single graphene layer is obtained by removing all the Fe atoms in the Fe(110)–graphene system. That is,the single graphene layer is the same as the graphene layer in the Fe(110)–graphene in terms of the initial size and shape. The C vacancy formation energy in the single graphene layer is 8.09 eV,in agreement with previously calculated results.[55,56]However, it is slightly larger than the experiment value of 7.0±0.5 eV.[15]The C vacancy formation energy values of the two types of C atoms(i.e.,C1atom and C2atom)in Fe(110)–graphene are 1.94 eV and 1.97 eV, respectively, which are lower than those for the single graphene layer. This indicates that the C vacancy prefers to form in Fe(110)–graphene. The result is consistent with that reported for Cu/graphene/Cu.[56]The hybridization of C atoms in graphene changes from sp2to sp3due to its interaction with the metal. Consequently,the strength of the in-plane C–C bond is weakened.[57]The formation energy of the Fe vacancy increases with the number of Fe layers increasing. The formation energy of the Fe vacancy in the third layer is close to that in bulk Fe(~2.17 eV).Hence,it is reasonable for us to fix the three bottom Fe layers. The Fe vacancy formation energy for the topmost layer is lower than those for the other layers and bulk Fe, indicating that Fe vacancies prefer to form at the interface rather than stay in bulk Fe. This phenomenon can be attributed to the fact that the interaction between Fe and graphene is weaker than the binding of Fe–Fe in bulk Fe.

    Table 1. Formation energy values of C vacancies and Fe vacancies in Fe(110)–graphene system. The abbreviations: 1L,2L,and 3L express 1 layer,2 layers,and 3 layers,respectively.

    Apart from vacancies, interstitial atoms are also formed under the neutron irradiation condition. Figure 5 illustrates three different interstitial sites at the interface. The symbols,H,T,and B represent the hollow,top,and bridge position,respectively. The relative stabilities of the single interstitial C atom and Fe atom at the three sites are investigated. The interstitial Fe atom prefers to stay at the hollow site,and its formation energy is ~1.83 eV,which is lower than the formation energy for the tetrahedral site in bulk Fe.In addition,the interstitial atoms have a notable effect on the atomic configurations of the neighboring atoms. The interstitial Fe atom pushes the graphene layer up and affects the configuration of the Fe layers(see Fig.6(a)). The interstitial C atom prefers to stay in the Fe layer(Fig.6(b)),and its formation energy is 1.41 eV.These results suggest that the interstitial atoms can be easily trapped at the interface. Therefore, the interface is regarded as a sink that can trap intrinsic defects.

    Fig.5. Three candidate sites at Fe(110)–graphene interface (only part of atoms in an interface are displayed here for clarity), showing(a)side view and (b) top view of structure, where red, green, and blue balls represent hollow,bridge,and top sites,respectively.

    Fig.6. (a)Structure of interstitial Fe atom and(b)structure of the interstitial C atom at Fe(110)–graphene interface,with purple and gray balls representing Fe and C atoms,respectively.

    3.3. Stability and diffusion of He atoms at interface

    Under long-term neutron irradiation, a certain number of He atoms can be produced by the (n, α) transmutation reaction.[58–60]Then,He bubbles can form at the interface and grain boundaries,thereby resulting in the He embrittlement of the structural material.[56,61,62]Therefore,it is critical to investigate the effects of He atoms at the interface. After optimization, it is found that the interstitial He atoms at the T and B sites are unstable and spontaneously move to the H site. Thus,an interstitial He atom prefers to stay stably at the H site and the bottom of the C2site, the formation energy values for an interstitial He atom at these sites are 2.09 eV and 3.07 eV,respectively. Considering the energetics, the H site is the most stable, whereas the bottom of C2site is a metastable for He atoms. According to Fig.3, the H site and bottom of C2site have low electron density, and previous studies have shown that He atoms tend to be stable in areas with a low electron density.[62–64]

    Fig.7. Diffusion barrier profile of intersitital He atom at Fe(110)–graphene interface, indicating that He atom migrates from stable hollow site to the nearest neighboring hollow site, and diffusion path passes through another stable site of C2 bottom.

    Further, the diffusion of He atoms at the interface is vital for the formation of He bubbles. Therefore, He migration in Fe(110)–graphene is studied by the CI-NEB method. The energy for He migration between the two nearest neighbor H sites is calculated, and the result is presented in Fig.7. The value for this process is ~0.18 eV. In addition, the binding energy of two He atoms at the interface is ~1.36 eV.The interaction between He atoms is attractive,which is the driving force for its aggregation. As the migration barrier is small and the binding energy of He atoms is relatively large,the He atoms tend to aggregate at the interface.

    Graphene is impermeable to standard gases, including the He gas.[65]The He atom has a 1s closed shell electronic structure, and it does not interact chemically with graphene.Leenaerts et al.[66]preformed first principles calculations to investigate the penetration of He atoms through a graphene monolayer with a C vacancy.The diffusion barrier of graphene with a C vacancy is found to be ~18.8 eV with local density approximation (LDA) and 11.7 eV with GGA. Owing to the large migration energy, graphene can act as a barrier to impede the penetration of thermal equilibrium He at a temperature when the graphene layer remains stable. In this work,the penetration of He atoms is studied with a C vacancy in the Fe(110)–graphene system. First, a He atom is placed in vacuum far from the graphene surface to determine its stable site.After this optimization, the vertical distance between the He atom and interface is found to be ~2.896 ?A. Then, the migration of He atoms between the comfortable site and H site is investigated, and the result is presented in Fig.8. The migration energy is ~11.79 eV in this case. The high energy barrier restricts the diffusion of He across the graphene layer to reach the interface. The result illustrates that the impermeability of graphene is not reduced by the presence of Fe layers.Once some He atoms penetrate the graphene structure to reach the interface,they are trapped there and aggregated into larger species.

    Fig.8. Migration energy of He atom in Fe(110)–graphene system with a C vacancy: He atom migrates from vacuum to hollow site at interface though a C vacancy in graphene layer.

    At the same time,the He formation energy at the tetrahedral interstitial site in the Fe substrate is 5.00 eV, larger than that at the interface. This phenomenon strongly indicates that the Fe(110)–graphene interface acts as a sink that traps He atoms. In order to study the role of graphene, we calculate the diffusion barrier of a single He atom in a structure with seven Fe layers. The migration path is shown in Fig.9. The diffusion barrier is 7.24 eV,which is obviously lower than that for the Fe(110)–graphene system. Hence,it is concluded that the graphene acts as a buffer layer. Thus, the low formation energy and high diffusion barrier of He atoms at the interface delay the detrimental effects of He and allow the structural material to remain in service for longer.

    Fig.9. Diffusion barrier of a single He atom in structure with seven Fe layers,showing that barrier between vacuum and the first Fe layer is ~7.24 eV.

    4. Conclusions

    The behaviors of point defects and He atoms are investigated via ab initio calculations based on DFT, and the results are compared with those of bcc Fe (bulk) and a single graphene layer. The conclusions drawn from the present study are as follows.

    (i)A strong interaction and an intense Fe-3d–C-2p orbital hybridization are responsible for the stable graphene structure on the Fe(110)substrate.

    (ii) Vacancies and interstitial atoms are easily formed at the interface, and the interface can act as a sink for point defects.

    (iii)The He atoms require a large energy barrier to penetrate the graphene layer with a C vacancy and the binding energy of the He atoms is larger at the interface. This means that the interface impedes the diffusion of He atoms,and serves as a sink that traps the He atoms.

    Acknowledgement

    The authors are grateful to the Supercomputing Center of Dalian University of Technology and the Project of Nuclear Power Technology Innovation Center of Science Technology and Industry for National Defense for the computational support(Contract No.HDLCXZX-2019-ZH-28).

    欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 国产一区二区在线观看av| 免费播放大片免费观看视频在线观看| av一本久久久久| 午夜福利视频精品| 香蕉精品网在线| 日韩欧美一区视频在线观看| 中文天堂在线官网| 国国产精品蜜臀av免费| 一本大道久久a久久精品| 九九爱精品视频在线观看| 日韩在线高清观看一区二区三区| 免费高清在线观看视频在线观看| 欧美性感艳星| 999精品在线视频| 嫩草影院入口| 亚洲高清免费不卡视频| 香蕉精品网在线| 国产 精品1| 视频区图区小说| 色婷婷av一区二区三区视频| 色婷婷av一区二区三区视频| xxx大片免费视频| 日韩精品有码人妻一区| 久久精品久久久久久噜噜老黄| 日韩伦理黄色片| 国产国语露脸激情在线看| 少妇丰满av| 桃花免费在线播放| 成人国语在线视频| 久久久久视频综合| 亚洲怡红院男人天堂| 少妇丰满av| 亚洲精品乱久久久久久| 欧美另类一区| 美女xxoo啪啪120秒动态图| 午夜免费鲁丝| 性色av一级| 国产精品人妻久久久久久| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利影视在线免费观看| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 2021少妇久久久久久久久久久| 在线观看人妻少妇| 两个人的视频大全免费| 91久久精品国产一区二区三区| 熟女人妻精品中文字幕| 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 久久99热6这里只有精品| 国产不卡av网站在线观看| 久久热精品热| 一级毛片电影观看| 99热6这里只有精品| 在线播放无遮挡| 久久久午夜欧美精品| 伦理电影免费视频| 亚洲精品中文字幕在线视频| videosex国产| 黑人高潮一二区| 大香蕉97超碰在线| av视频免费观看在线观看| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 少妇熟女欧美另类| 久久av网站| 国产午夜精品久久久久久一区二区三区| 99九九线精品视频在线观看视频| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 国产极品粉嫩免费观看在线 | 精品亚洲成国产av| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 国产爽快片一区二区三区| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线 | 99re6热这里在线精品视频| 黄片无遮挡物在线观看| 嫩草影院入口| 久久婷婷青草| 观看av在线不卡| 少妇猛男粗大的猛烈进出视频| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 亚洲国产精品一区三区| 欧美成人午夜免费资源| 午夜福利在线观看免费完整高清在| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 欧美人与善性xxx| 日韩中字成人| 日韩免费高清中文字幕av| 亚洲欧美色中文字幕在线| 三级国产精品欧美在线观看| 欧美性感艳星| 亚洲国产精品国产精品| 成人毛片a级毛片在线播放| 黑人猛操日本美女一级片| 国产亚洲一区二区精品| 国产男女超爽视频在线观看| 国产精品三级大全| 久久久久久久大尺度免费视频| 免费高清在线观看日韩| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 国产一区二区三区综合在线观看 | 久久韩国三级中文字幕| 又黄又爽又刺激的免费视频.| 狠狠婷婷综合久久久久久88av| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 国产探花极品一区二区| 国产成人91sexporn| 黄色毛片三级朝国网站| 午夜影院在线不卡| av播播在线观看一区| 国产免费视频播放在线视频| 日韩电影二区| 国产极品粉嫩免费观看在线 | 色94色欧美一区二区| 亚洲av男天堂| 秋霞在线观看毛片| 看十八女毛片水多多多| 欧美另类一区| 伊人久久国产一区二区| 天天操日日干夜夜撸| 激情五月婷婷亚洲| 精品一区二区三区视频在线| 久久久精品免费免费高清| 国产成人精品久久久久久| 亚洲熟女精品中文字幕| 春色校园在线视频观看| av专区在线播放| 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 亚洲少妇的诱惑av| 国产极品天堂在线| 久久青草综合色| 国产深夜福利视频在线观看| 久久热精品热| 黄片无遮挡物在线观看| 色婷婷av一区二区三区视频| 一级二级三级毛片免费看| 一区二区三区乱码不卡18| 国产日韩欧美视频二区| 日本91视频免费播放| 女性生殖器流出的白浆| 亚洲一区二区三区欧美精品| 亚洲国产av影院在线观看| 国产视频首页在线观看| 国产在视频线精品| 国产精品蜜桃在线观看| 日韩电影二区| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 精品久久蜜臀av无| 丝袜美足系列| 亚洲国产精品999| 亚洲伊人久久精品综合| 少妇 在线观看| 国产一区二区三区综合在线观看 | av不卡在线播放| 熟女av电影| 日韩不卡一区二区三区视频在线| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 黑人猛操日本美女一级片| 中文字幕制服av| 免费观看在线日韩| 18禁在线播放成人免费| av在线老鸭窝| 久久久久精品久久久久真实原创| 51国产日韩欧美| 人人妻人人爽人人添夜夜欢视频| 99国产综合亚洲精品| 亚洲精品第二区| 亚洲成人一二三区av| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站| 日韩中文字幕视频在线看片| 插阴视频在线观看视频| 国产亚洲精品第一综合不卡 | 熟女av电影| av网站免费在线观看视频| 日韩制服骚丝袜av| 国产精品女同一区二区软件| 亚洲欧美中文字幕日韩二区| 日韩一区二区三区影片| 美女中出高潮动态图| 国产白丝娇喘喷水9色精品| 亚洲精品视频女| 一边亲一边摸免费视频| 国产亚洲精品久久久com| 亚洲图色成人| 尾随美女入室| 亚洲一区二区三区欧美精品| 国产精品免费大片| 亚洲综合精品二区| 如何舔出高潮| 尾随美女入室| 久久久午夜欧美精品| 免费久久久久久久精品成人欧美视频 | 日韩,欧美,国产一区二区三区| 亚洲天堂av无毛| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 成人国语在线视频| 国产精品蜜桃在线观看| 日韩人妻高清精品专区| 亚洲av免费高清在线观看| 亚洲国产精品999| 97超视频在线观看视频| 久久99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 久久97久久精品| 中文字幕久久专区| 亚洲国产精品专区欧美| 日本黄色片子视频| 亚洲一区二区三区欧美精品| 国产精品久久久久久av不卡| 免费看不卡的av| 国产成人91sexporn| 亚洲精品第二区| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| 久久久国产一区二区| 久久精品夜色国产| 欧美三级亚洲精品| 亚洲国产最新在线播放| 日韩在线高清观看一区二区三区| 久久久久视频综合| 精品人妻一区二区三区麻豆| 精品久久久久久久久亚洲| 亚洲国产精品成人久久小说| 夫妻性生交免费视频一级片| 中文字幕av电影在线播放| 午夜免费观看性视频| 搡女人真爽免费视频火全软件| av不卡在线播放| 国产成人精品福利久久| 9色porny在线观看| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 91成人精品电影| 哪个播放器可以免费观看大片| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 国产男女内射视频| 国产色爽女视频免费观看| 制服诱惑二区| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 丝袜美足系列| 看十八女毛片水多多多| 亚洲,一卡二卡三卡| 两个人免费观看高清视频| 日本vs欧美在线观看视频| 久久99热6这里只有精品| 永久免费av网站大全| 美女内射精品一级片tv| 人妻制服诱惑在线中文字幕| 亚洲国产精品一区三区| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 一级毛片aaaaaa免费看小| 国产伦精品一区二区三区视频9| 妹子高潮喷水视频| 日本与韩国留学比较| 老司机影院成人| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 欧美一级a爱片免费观看看| 亚洲伊人久久精品综合| 女的被弄到高潮叫床怎么办| 国产精品成人在线| 秋霞在线观看毛片| 久久久午夜欧美精品| 国产片特级美女逼逼视频| 亚洲av二区三区四区| 午夜免费鲁丝| 在线精品无人区一区二区三| 天堂8中文在线网| 一级毛片aaaaaa免费看小| 最近最新中文字幕免费大全7| 久热久热在线精品观看| 亚洲av不卡在线观看| 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜制服| 欧美日韩国产mv在线观看视频| 午夜福利,免费看| 2018国产大陆天天弄谢| 成人综合一区亚洲| 国产欧美另类精品又又久久亚洲欧美| 国产高清三级在线| 亚洲精品色激情综合| 丝瓜视频免费看黄片| 国产熟女午夜一区二区三区 | 成人国产麻豆网| 久久久精品区二区三区| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 国产男女超爽视频在线观看| 99九九在线精品视频| 国产在线视频一区二区| 国精品久久久久久国模美| 欧美+日韩+精品| 男女高潮啪啪啪动态图| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 亚洲第一av免费看| 久久人人爽人人爽人人片va| 一级毛片aaaaaa免费看小| 精品久久蜜臀av无| 精品一区二区三卡| 有码 亚洲区| 亚洲国产毛片av蜜桃av| 亚洲精品乱久久久久久| 日本欧美视频一区| 精品午夜福利在线看| av黄色大香蕉| 99热网站在线观看| 久久久国产欧美日韩av| 精品久久蜜臀av无| 日韩电影二区| 日韩av免费高清视频| 黄色欧美视频在线观看| 国产精品免费大片| 亚洲人成网站在线观看播放| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 成人影院久久| 少妇的逼水好多| 久久久国产一区二区| 精品久久久噜噜| 女人精品久久久久毛片| 一级爰片在线观看| 精品久久蜜臀av无| 在线观看免费视频网站a站| 久久人人爽人人爽人人片va| 人妻 亚洲 视频| 大片电影免费在线观看免费| 日韩电影二区| 男女国产视频网站| 国产毛片在线视频| 亚洲精品久久午夜乱码| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 天美传媒精品一区二区| 精品酒店卫生间| 久久 成人 亚洲| 国产一区二区三区综合在线观看 | 亚洲精品国产av蜜桃| 久久精品国产自在天天线| 丝袜在线中文字幕| 3wmmmm亚洲av在线观看| 99热这里只有精品一区| 日日撸夜夜添| 国产色婷婷99| 免费久久久久久久精品成人欧美视频 | 国产深夜福利视频在线观看| 我的女老师完整版在线观看| 国产免费又黄又爽又色| 久久久精品94久久精品| kizo精华| 久久人人爽av亚洲精品天堂| 欧美激情极品国产一区二区三区 | 高清毛片免费看| 少妇丰满av| 亚洲美女搞黄在线观看| 亚洲综合色惰| 又黄又爽又刺激的免费视频.| 日韩三级伦理在线观看| 99久久精品一区二区三区| 欧美国产精品一级二级三级| 18+在线观看网站| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 91精品三级在线观看| 午夜免费鲁丝| 国产精品一区二区在线观看99| 99久久综合免费| 国产熟女欧美一区二区| 国产精品熟女久久久久浪| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 欧美人与性动交α欧美精品济南到 | 中国三级夫妇交换| 美女中出高潮动态图| √禁漫天堂资源中文www| kizo精华| 日日爽夜夜爽网站| 国产男女超爽视频在线观看| 欧美 亚洲 国产 日韩一| 午夜福利网站1000一区二区三区| 99热全是精品| 最黄视频免费看| 99热这里只有精品一区| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 国产精品免费大片| 亚洲性久久影院| 亚洲色图综合在线观看| 亚洲人成77777在线视频| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| 亚洲欧美一区二区三区国产| 国产精品偷伦视频观看了| 超碰97精品在线观看| 观看av在线不卡| av线在线观看网站| 日日撸夜夜添| av专区在线播放| 青春草亚洲视频在线观看| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 我要看黄色一级片免费的| 成人毛片a级毛片在线播放| 99热全是精品| 国产极品粉嫩免费观看在线 | 又大又黄又爽视频免费| 一级爰片在线观看| 久久久久人妻精品一区果冻| 国产在线免费精品| 亚洲综合精品二区| 亚洲精品亚洲一区二区| 亚洲国产欧美日韩在线播放| 99久久中文字幕三级久久日本| 欧美精品高潮呻吟av久久| 97在线视频观看| 久久久久久久久久成人| 男男h啪啪无遮挡| 国产成人精品在线电影| 一本一本综合久久| 婷婷色麻豆天堂久久| 国产精品蜜桃在线观看| 各种免费的搞黄视频| 精品视频人人做人人爽| 亚洲国产精品一区三区| .国产精品久久| 五月天丁香电影| 汤姆久久久久久久影院中文字幕| 成年av动漫网址| 国产欧美另类精品又又久久亚洲欧美| 97超碰精品成人国产| 黄色怎么调成土黄色| 久久久久久久久久人人人人人人| 成年人午夜在线观看视频| 亚洲一区二区三区欧美精品| 国产爽快片一区二区三区| 亚洲精品色激情综合| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜爱| 免费观看在线日韩| 国产精品一二三区在线看| 精品久久久久久久久亚洲| 午夜福利视频在线观看免费| 国产男女内射视频| 日韩,欧美,国产一区二区三区| 亚洲精品日本国产第一区| 一级,二级,三级黄色视频| 亚洲av综合色区一区| 色婷婷av一区二区三区视频| 欧美变态另类bdsm刘玥| 国产成人免费无遮挡视频| 日本-黄色视频高清免费观看| 日韩 亚洲 欧美在线| 制服丝袜香蕉在线| 在线免费观看不下载黄p国产| 国产精品一国产av| av线在线观看网站| 亚洲内射少妇av| 不卡视频在线观看欧美| 一本久久精品| 亚洲精品视频女| 亚洲国产成人一精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 中国美白少妇内射xxxbb| 91精品国产国语对白视频| 精品国产一区二区三区久久久樱花| 午夜激情av网站| 欧美日韩精品成人综合77777| 中文字幕人妻熟人妻熟丝袜美| 欧美少妇被猛烈插入视频| 伊人久久精品亚洲午夜| 亚洲四区av| 中文欧美无线码| 丁香六月天网| 亚洲精品国产色婷婷电影| 久久久国产精品麻豆| 下体分泌物呈黄色| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| 欧美性感艳星| 日本免费在线观看一区| 人妻系列 视频| 亚洲国产精品专区欧美| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 人成视频在线观看免费观看| 国产一级毛片在线| 在线观看三级黄色| 亚洲精品美女久久av网站| 国产精品熟女久久久久浪| 国产一区二区三区av在线| 国产高清三级在线| 综合色丁香网| 久久99一区二区三区| 久热久热在线精品观看| 久久久国产一区二区| 久久鲁丝午夜福利片| 免费观看的影片在线观看| 国产精品国产三级专区第一集| 国产在线一区二区三区精| 伦理电影免费视频| 国产av精品麻豆| 国产精品国产三级国产专区5o| www.色视频.com| 97超碰精品成人国产| 日韩欧美精品免费久久| 2022亚洲国产成人精品| 国产亚洲av片在线观看秒播厂| 国产视频首页在线观看| 国产av码专区亚洲av| 日本黄色片子视频| 大码成人一级视频| 黄色配什么色好看| av女优亚洲男人天堂| 少妇丰满av| 成人午夜精彩视频在线观看| 少妇猛男粗大的猛烈进出视频| 久久久亚洲精品成人影院| 亚洲av在线观看美女高潮| 国产高清国产精品国产三级| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 国产成人freesex在线| 精品一区二区三区视频在线| 国产国语露脸激情在线看| av视频免费观看在线观看| av国产久精品久网站免费入址| 国产极品天堂在线| 国产高清三级在线| av在线播放精品| 两个人的视频大全免费| 自线自在国产av| 多毛熟女@视频| videosex国产| 青春草国产在线视频| 久久久久视频综合| 九草在线视频观看| 最近2019中文字幕mv第一页| 日日撸夜夜添| 精品人妻熟女毛片av久久网站| 亚洲国产精品成人久久小说| 九九久久精品国产亚洲av麻豆| 另类亚洲欧美激情| 一本大道久久a久久精品| 黄片无遮挡物在线观看| 美女中出高潮动态图| 国产精品久久久久久av不卡| av在线观看视频网站免费| 丁香六月天网| 国产高清有码在线观看视频| 天天操日日干夜夜撸| 久久精品国产a三级三级三级| 丰满迷人的少妇在线观看| 狠狠婷婷综合久久久久久88av| 飞空精品影院首页| 一级毛片电影观看| av.在线天堂| 在线亚洲精品国产二区图片欧美 | 日韩熟女老妇一区二区性免费视频| 久久人人爽人人片av| 国产欧美另类精品又又久久亚洲欧美| 黄色一级大片看看| 久久人人爽人人片av| xxx大片免费视频| 看十八女毛片水多多多| 天堂俺去俺来也www色官网| 黑人高潮一二区| 久久久久久久久久久免费av| 久久久精品区二区三区| 九色成人免费人妻av| 亚洲av二区三区四区| 妹子高潮喷水视频| 夫妻午夜视频| 一级毛片黄色毛片免费观看视频| 18禁动态无遮挡网站| 黑人猛操日本美女一级片| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 搡老乐熟女国产| 日本-黄色视频高清免费观看| 国产爽快片一区二区三区| 美女xxoo啪啪120秒动态图| 91久久精品电影网| 精品亚洲成国产av| 黄色毛片三级朝国网站| 国产黄频视频在线观看| 日韩一区二区视频免费看| 春色校园在线视频观看|