• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantization of the band at the surface of charge density wave material 2H-TaSe2?

    2021-05-06 08:56:04ManLi李滿NanXu徐楠JianfengZhang張建豐RuiLou婁睿MingShi史明LijunLi黎麗君HechangLei雷和暢CedomirPetrovicZhonghaoLiu劉中灝KaiLiu劉凱YaoboHuang黃耀波andShancaiWang王善才
    Chinese Physics B 2021年4期
    關鍵詞:劉凱

    Man Li(李滿), Nan Xu(徐楠), Jianfeng Zhang(張建豐), Rui Lou(婁睿),Ming Shi(史明), Lijun Li(黎麗君), Hechang Lei(雷和暢), Cedomir Petrovic,Zhonghao Liu(劉中灝), Kai Liu(劉凱), Yaobo Huang(黃耀波), and Shancai Wang(王善才),§

    1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    2Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201204,China

    3Institute of Advanced Studies,Wuhan University,Wuhan 430072,China

    4Swiss Light Source,Paul Scherrer Institute,CH-5232 Villigen,Switzerland

    5Chongqing Technology and Busineee University,Chongqing 400067,China

    6Condensed Matter Physics and Materials Science Department,Brookhaven National Laboratory,Upton,NY 11973,USA

    7State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics,SIMIT,Chinese Academy of Sciences,Shanghai 200050,China

    Keywords: angle-resolved photoemission spectroscopy,transition metal dichalcogenide,TaSe2

    1. Introduction

    Manipulation of two-dimensional electron gas (2DEGS)has recently drawn considerable interest.[1–4]As a mechanism for tailoring the many-body interactions, 2DEGS is embodied in the interface of semiconductors[5–7]and metalfilms.[8–10]This has attracted a lot of interests due to observation of high electron mobility,[11,12]quantum Hall effect,[13,14]superconductivity,[15]large magnetoresistance,[16]etc. The 2DEGS is generally caused by the confinement of electrons along one dimension,for example,by the depletion of charge carriers close to the surface and then inducing a band-bending to confine the electrons into 2DEGS.[17]Due to the shielding effect of good conductors, it is difficult to achieve 2DEG in metals. Monolayer transition metal dichalcogenides (TMDs)MX2(M = Mo, W; X = S, Se) represent a natural host for 2DEGS.[18]

    The mechanism of CDW in quasi-two-dimensional TMDs is a controversial topic for a few decades. Both weak-coupling approaches and strong coupling mean-field models have been proposed, e.g., the Fermi surface (FS)nesting,[19–21]saddle point,[22–24]local chemical bonds,[25,26]excitonic insulator,[27–29]and lattice-driven models,[30–32]however, no consensus has been reached in the driving mechanism of the CDW in TMDs. On the other hand,there is coexistence/competition between the CDW and superconductivity[33,34]in many TMDs. Thus the understanding of the CDW mechanism remains a challenge.

    The 2H-TaSe2consists of three-atom-thick chalcogentransition metal-chalcogen sandwiches and its unit cell can be considered as two layers of Ta-Se with a 60?rotation with van der Waals’force in adjoining layers.[33]2H-TaSe2undergoes a second-order transition from normal phase to an incommensurate ordered phase at T=122 K,followed by a first-order lockin transition to a 3×3 commensurate CDW (CCDW) phase at TCDW= 90 K.[33,35]The CDW mechanism in 2H-TaSe2has been investigated experimentally by ARPES,STM,transport measurement, neutron scattering,[20,21,35–44]and band structure calculations.[45–47]Recently, the k-dependence of susceptibility and k-integrated function calculations disagree with the CDW wave vectors in 2H-TaSe2and the FS nesting scenario is excluded as a driven force.[32,45,48]The strong electron–phonon coupling with wave-vector-dependent electron–phonon matrix elements[30,32]and a new type of collective excitation[37]as the condensation of preformed excitons[49]are proposed,but further evidence is needed.

    In this paper, we report an ARPES study of the electronic structure of 2H-TaSe2with various photon energies in the compensate CDW state and normal state. In addition to the 2D-like band structure reported before, we report a quantized state induced by the intrinsic band structure at Brillouin zone center (Γ) below EFin 2H-TaSe2single crystal for the first time. It is formed by a band with strong kzdispersion and approaches EFnear 3D BZ center predicted in the bulk band calculation, but not reported in the ARPES measurement before. The combination of near-surface band-bending potential created by the rearrangement of surface electrons and the light effective mass along kzdirection causes the quantization along c-axis and the formation of the manifold sub-bands at the surface, similar to that in semiconductors.[17]With the decrease of temperature below TCDW,the sub-bands shift upward while most of the bulk bands show no noticeable change. This abnormal band shift may be related to the CDW but could not be explained yet. When neither the model of Fermi surface nesting nor the electron–phonon coupling could successfully explain the origin of CDW in 2H-TaSe2,our discovery and extensive analysis of those results may unlock new perspectives and avenues for understanding the CDW mechanism.

    2. Materials and methods

    Single crystals of 2H-TaSe2were grown by the iodine vapor transport method. The element analysis and transport measurement of the samples indicate the high quality of crystals in this paper.[33]ARPES measurement was performed at the Dreamline beamline of the Shanghai Synchrotron Radiation Facility with a Scienta D80 analyzer and at the SISHRPES beamline of the Swiss Light Source with a Scienta R4000 analyzer. The energy and angular resolutions were better than 15 meV and 0.2?, respectively. The sample for the ARPES measurements was cleaved in situ along (001)direction in a vacuum better than 5×10?11Torr. Normal and CDW phases measurements were taken at T = 150 K and T =20 K, respectively. The electronic structure of 2HTaSe2was studied by using first-principles calculations with the projector augmented wave (PAW) method[50,51]as implemented in the VASP package.[52–54]For the exchange–correlation functional,the generalized gradient approximation(GGA) of the Perdew–Burke–Ernzerhof (PBE) formula[55]was adopted.The kinetic energy cutoff of the plane-wave basis was set to be 300 eV.A 16×16×4 k-point mesh was utilized for the Brillouin zone (BZ) sampling and the Fermi surface was broadened by the Gaussian smearing method with a width of 0.05 eV. The vdW interactions between the TaSe2layers were considered by adopting the optB86b-vdW functional.[56]The lattice parameters and internal atomic positions were fully relaxed until the forces on all atoms were smaller than 0.01 V/?A.After the equilibrium structures were obtained,the electronic structures were calculated by including the spin–orbit-coupling (SOC) effect. In the slab calculation, a twodimensional supercell with a 21-layer TaSe2slab and a 20-?A vacuum was employed.

    3. Results and discussion

    Fig.1. Brillouin zone and Fermi surface of 2H-TaSe2. (a)3D bulk BZ with marked high-symmetry points and a colored high symmetry plane.(b)Calculated bulk band structure along high-symmetry lines including SOC.Three near-EF bands are denoted as α, β, and γ, respectively.(c),(d)Integrated intensity plots within EF±10 meV at T =20 K and 150 K to show the FS topology,obtained with hν =50 eV showing the colored plane indicated in(a),corresponding to CDW and normal phase,respectively. (e)The extracted ARPES mapping in the normal state.Marked cuts#1 and#2 indicate the momentum locations of the measured bands in Fig.3.

    Fig.2. Temperature dependence of band gap. (a) The band dispersion along the direction of at T =10 K, ?is the CDW gap. (b)Same as(a),but displayed at T =160 K.(c),(d)The temperature dependence of symmetrized EDCs along the momentum marked by#a and#b,respectively. (e)The extracted band gap(?)as a function of temperature. (f)The gap varies with momentum position(θ)atpocket.

    In order to study the band structure under the influence of surface band bending,we performed the band structure calculations with a 21-layer slab,and plot the results along with high symmetry lines in Figs.3(c)and 3(h). The slab calculation reproduces the sub-bands qualitatively in agreement with our experimental results. The separations of γ subbands are more pronounced than the other bands,in agreement with the observations. This larger separation is due to the lower effective mass along the quantization dimension(c-axis),which can be seen from the dispersion along Γ–A in the bulk band calculation.

    To quantitatively study the relationship between the band structure close to the Fermi level and the CDW transition,we have traced the three bands,α,β,and γ as noted in bulk band calculation in Fig.(b),to view their changes with temperature.The measured CDW/normal state band dispersions are illustrated in Figs. 3(a)/3(d) and 3(f)/3(i), along ˉΓ– ˉM and ˉΓ–ˉK,respectively. At the low temperature, in spite of the shadow bands caused by the 3×3 reconstruction and the opening of CDW gaps close to EF, the bands show no noticeable energy shift compared with the normal state. In contrast, the quantized γ sub-bands shift upward while the bulk band of Γ-certer shifts downward with the temperature decrease. The binding energy of the topmost sub-band shifts upward by about 30 meV,from EB~485 meV at T=150 K to EB~455 meV at T =20 K which is beyond the experimental resolution,and so are the following sub-bands. The bulk band of Γ-center shifts downward by about 20 meV,from EB~0.92 eV at T =150 K to EB~0.94 eV at T =20 K. In order to compare the energy shift of the bands, we overlay the EDCs at below and above TCDWat points marked as‘1’and‘2’in Figs.3(a)and 3(d),and show them in Figs.3(k)and 3(l),respectively. From Fig.3(k),no band shift is observed across the TCDWfor α and β bands within the energy resolution,while the quantized subbands of γ and bulk band at Γ-center show a clear shift with temperature changes.

    We further perform the kz-dependent measurements in Γ M–AL plane by varying the photon energy, covering more than one BZ along kz. Figure 4(a)shows the integrated spectra intensity plot around EFas a function of kxand kz,defined as cut#1 in Fig.1(e). The α,β bands are nearly degenerate and show little dispersion along kz, confirming the 2D like characters of the bands. We also show the band dispersion along M–L and Γ–A,labeled as cut#3 and cut#4,in Figs.4(b)and 4(c),respectively. The kzvalue is converted with the inner potential V0=17 eV empirically to best fit the dispersion. Figure 4(b)shows the ARPES intensity plot along the M–L line,a clear dispersion along kzat BZ boundary confirms the periodic variation of electronic states. The insets show EDCs at high symmetry points (i.e., M and L), where α and β bands split at M and nearly degenerate at L, in agreement with the bulk band calculation shown in Fig.1(b).

    Fig.4. Photon-energy-dependent band dispersion of 2H-TaSe2. (a)Integrated ARPES intensity map within EF±10 meV in the hν–khplane,where khis oriented along the Γ–M(A–L)direction,recorded with various photon energies. (b)ARPES intensity plot along the M–L direction,from cut#3 in Fig.4(a),the markers are guided to the eyes. Insets show multiple Gaussian peaks fit the EDCs at high symmetry points M and L, respectively. (c)ARPES intensity plot along the Γ–A direction, cut #4, taken with photon energies covering a kz range over 2 BZs. Inset shows a zoom-in second derivative plot at Γ point.

    It has been a long-standing puzzle that the γ band is absent and only two hole-like bands in the BZ center are observed.For a band with fast dispersion and light effective mass along the c-axis, the band bending effect, which is caused by the breaking of translation symmetry at the surface,will make the quantization more observable and hinder the observation of the bulk band.From the bulk band calculation(Fig.1(b)),the γ band disperses rapidly along Γ–A,with relatively flat in-plane dispersion. As aforementioned slab calculation,the quantized states are located at higher binding energies than the bulk band calculation. In contrast,the quantization of α,β bands is not as clear as that of γ band due to slower dispersion and higher effective mass along the c-axis. This can be seen from the less separation of the states in the slab calculations. From the comparison between the bulk band and the slab calculations,in addition to the consistency between ARPES measurement and slab calculation,we safely“recover”a missing bulk band in 2H-TaSe2in the vicinity of EFcentered at 3D BZ center,with fast dispersion along kz.

    Based on the observation of the quantized states, and the DFT and slab calculations, we “recover” the bulk γ band with band top near EFand a relatively flat in-plane dispersion around the 3D BZ center. Since the quantized states respond with the CDW transition,they could participate in or influence by the formation of CDW. As a surface-sensitive measurement, ARPES observation of the bulk Γ band is hindered by the quantization,and we can only observe the quantized states at the top few layers. In order to confirm if the shift is a CDW related bulk band character or a chemical-shift of the quantized surface state, bulk sensitive measurement such as x-ray ARPES is needed. The band shift of γ band with temperature is inconsistent with the FS nesting,electron–phonon coupling,or preformed exciton liquid scenario.[29,57,59]The understanding of the shift with temperature remains a challenge at the moment, it may cast new perspectives in understanding the CDW mechanism. We expect further bulk sensitive measurement and a better theoretical explanation for this phenomenon in the future.

    4. Summary

    In conclusion, we measured the band structure of 2HTaSe2and measured the temperature and angular dependence of the CDW gap variation. We have observed quantized states in single crystal 2H-TaSe2for the first time. We studied the in-plane and kzdependence of the band dispersion and found out the quantization from a previous “missing” band, which is close to Fermi energy in Γ–M–K plane and highly dispersive along kz. That quantization at the surface results from the band bending due to the surface electron rearrangement and the light carriers’effective mass of the band along Γ–A direction. The band shifts upward with the decrease of temperature into the CCDW state, and the unusual shift is mostly related to the CDW transition. Further bulk sensitive measurement of γ band is needed and it may pave an avenue to understand the CDW in 2H-TMD materials.

    Acknowledgements

    The authors thank Qiang Han for valuable discussions.Y. H. was supported by the CAS Pioneer Hundred Talents Program (type C). Work at Brookhaven National Laboratory was supported by US DOE, Office of Science, Office of Basic Energy Sciences (DOEBES), under Contract No. DESC0012704(materials synthesis).

    猜你喜歡
    劉凱
    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*
    航空航天模型實踐活動手冊
    多入路內固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(2017年11期)2017-11-24 08:03:21
    紀委書記的斂財經
    檢察風云(2017年16期)2017-09-07 06:32:29
    被你愛的感覺真好
    分憂(2017年9期)2017-09-07 06:21:48
    成年动漫av网址| 日韩大码丰满熟妇| 欧美一级毛片孕妇| 免费在线观看日本一区| 老司机在亚洲福利影院| 国产一区有黄有色的免费视频| 久久中文看片网| 狠狠婷婷综合久久久久久88av| 久久性视频一级片| 久久影院123| 热99国产精品久久久久久7| 久久久久久免费高清国产稀缺| 美女午夜性视频免费| 色94色欧美一区二区| 久久精品91无色码中文字幕| 亚洲精品国产色婷婷电影| 欧美乱色亚洲激情| 91成人精品电影| 男女床上黄色一级片免费看| 午夜福利在线观看吧| 成年女人毛片免费观看观看9 | 久久久久久免费高清国产稀缺| 美女午夜性视频免费| 亚洲人成77777在线视频| 国产色视频综合| 一级片'在线观看视频| 国产精品一区二区免费欧美| 成人特级黄色片久久久久久久| 欧美精品高潮呻吟av久久| 91麻豆精品激情在线观看国产 | 久久这里只有精品19| 国产aⅴ精品一区二区三区波| 成年人午夜在线观看视频| 国产亚洲精品第一综合不卡| 国产精品一区二区在线观看99| 黄片大片在线免费观看| 两个人看的免费小视频| 不卡一级毛片| 日韩三级视频一区二区三区| 制服诱惑二区| 国产精品一区二区免费欧美| 妹子高潮喷水视频| 99精品欧美一区二区三区四区| 人成视频在线观看免费观看| 色综合欧美亚洲国产小说| 一级毛片高清免费大全| www.自偷自拍.com| 亚洲成av片中文字幕在线观看| 久久久久久久久久久久大奶| 久久久久精品国产欧美久久久| 一本综合久久免费| 欧美av亚洲av综合av国产av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 亚洲 欧美一区二区三区| 亚洲精品成人av观看孕妇| 国产真人三级小视频在线观看| 精品国产一区二区三区久久久樱花| 日韩有码中文字幕| 久久 成人 亚洲| 成人特级黄色片久久久久久久| 日韩欧美一区视频在线观看| 亚洲国产欧美一区二区综合| www.精华液| 中文字幕精品免费在线观看视频| 十八禁高潮呻吟视频| 亚洲精品国产精品久久久不卡| 桃红色精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图| 欧美日韩av久久| 国产在线观看jvid| 露出奶头的视频| 久久精品亚洲av国产电影网| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲午夜理论影院| 91成人精品电影| 99精国产麻豆久久婷婷| 777米奇影视久久| 国产成+人综合+亚洲专区| 好男人电影高清在线观看| 99在线人妻在线中文字幕 | 韩国精品一区二区三区| 国产又色又爽无遮挡免费看| 香蕉丝袜av| 夜夜爽天天搞| 性少妇av在线| 高清欧美精品videossex| 伊人久久大香线蕉亚洲五| 在线免费观看的www视频| 一级,二级,三级黄色视频| 亚洲成a人片在线一区二区| av国产精品久久久久影院| 日本黄色视频三级网站网址 | 丁香六月欧美| 新久久久久国产一级毛片| 国产午夜精品久久久久久| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 国产xxxxx性猛交| 久久99一区二区三区| 国产亚洲欧美精品永久| 九色亚洲精品在线播放| 国产精品二区激情视频| 国产精品秋霞免费鲁丝片| 精品高清国产在线一区| 国产成人系列免费观看| 1024视频免费在线观看| 国产精品久久电影中文字幕 | 极品教师在线免费播放| 最新在线观看一区二区三区| 9热在线视频观看99| 欧美黑人精品巨大| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| 男女午夜视频在线观看| 一级片免费观看大全| 国内久久婷婷六月综合欲色啪| 国产精品1区2区在线观看. | 久久国产精品人妻蜜桃| www.自偷自拍.com| 亚洲av第一区精品v没综合| 久久久国产一区二区| 一边摸一边抽搐一进一出视频| 欧美在线黄色| 国产成人精品无人区| 美女午夜性视频免费| 欧美精品人与动牲交sv欧美| 91老司机精品| 乱人伦中国视频| 精品久久久久久久毛片微露脸| x7x7x7水蜜桃| 国产精品1区2区在线观看. | 免费av中文字幕在线| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 一级作爱视频免费观看| 国产精品久久久久成人av| 国产xxxxx性猛交| av网站免费在线观看视频| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| 18禁国产床啪视频网站| 99riav亚洲国产免费| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| 天堂动漫精品| 国产色视频综合| 窝窝影院91人妻| 国产精品影院久久| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 一级黄色大片毛片| 国产一区二区三区综合在线观看| 女人精品久久久久毛片| av免费在线观看网站| 人妻 亚洲 视频| 国产黄色免费在线视频| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 在线看a的网站| 国产男女内射视频| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 国产男女内射视频| 久久婷婷成人综合色麻豆| 成人免费观看视频高清| 亚洲一区高清亚洲精品| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 一区二区三区国产精品乱码| 成年动漫av网址| 欧美亚洲 丝袜 人妻 在线| 国产成人av激情在线播放| 国产精品综合久久久久久久免费 | 亚洲少妇的诱惑av| 国产精品久久视频播放| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面| 国产亚洲av高清不卡| 午夜福利,免费看| 欧美日韩一级在线毛片| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区三| 日韩大码丰满熟妇| 国产精品永久免费网站| 亚洲专区中文字幕在线| 男女免费视频国产| 丰满迷人的少妇在线观看| 18禁观看日本| 亚洲精品美女久久av网站| 国产精品成人在线| 无限看片的www在线观看| 天天影视国产精品| 丝袜人妻中文字幕| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| tube8黄色片| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| 国产精品免费视频内射| 19禁男女啪啪无遮挡网站| 亚洲成国产人片在线观看| 丰满饥渴人妻一区二区三| 日韩欧美免费精品| 日日夜夜操网爽| 国产又爽黄色视频| aaaaa片日本免费| 岛国在线观看网站| 一个人免费在线观看的高清视频| 国产片内射在线| 久久久久久久国产电影| a在线观看视频网站| 色播在线永久视频| 99国产精品免费福利视频| 国产成人一区二区三区免费视频网站| 国产精品99久久99久久久不卡| 一本一本久久a久久精品综合妖精| 国产成人一区二区三区免费视频网站| 在线观看66精品国产| 成人亚洲精品一区在线观看| 正在播放国产对白刺激| 无遮挡黄片免费观看| 超色免费av| 9191精品国产免费久久| 宅男免费午夜| 久久久国产成人精品二区 | 他把我摸到了高潮在线观看| 两人在一起打扑克的视频| 麻豆成人av在线观看| 亚洲人成77777在线视频| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 69精品国产乱码久久久| 麻豆乱淫一区二区| 久久99一区二区三区| 亚洲色图综合在线观看| 国产91精品成人一区二区三区| 色婷婷av一区二区三区视频| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 高清欧美精品videossex| 亚洲久久久国产精品| 777米奇影视久久| 久久久久久人人人人人| 1024视频免费在线观看| 在线十欧美十亚洲十日本专区| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 在线观看www视频免费| 国产亚洲欧美在线一区二区| av网站在线播放免费| 91大片在线观看| 无限看片的www在线观看| 在线观看免费视频网站a站| 90打野战视频偷拍视频| 后天国语完整版免费观看| a在线观看视频网站| 国产激情久久老熟女| 香蕉久久夜色| 一区二区日韩欧美中文字幕| 大型av网站在线播放| cao死你这个sao货| 久久影院123| 亚洲成人手机| 国产高清激情床上av| 久久香蕉激情| 成年版毛片免费区| 成年人免费黄色播放视频| 国产97色在线日韩免费| 999精品在线视频| 51午夜福利影视在线观看| 精品第一国产精品| 波多野结衣av一区二区av| 嫁个100分男人电影在线观看| 久久青草综合色| 国产又爽黄色视频| av片东京热男人的天堂| 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 咕卡用的链子| 午夜福利,免费看| 日韩一卡2卡3卡4卡2021年| 国产精品亚洲一级av第二区| 男女免费视频国产| 国精品久久久久久国模美| av欧美777| 久99久视频精品免费| 美女国产高潮福利片在线看| 人人妻人人澡人人爽人人夜夜| 黑人猛操日本美女一级片| www.自偷自拍.com| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 捣出白浆h1v1| 久久人人爽av亚洲精品天堂| 国产精品香港三级国产av潘金莲| x7x7x7水蜜桃| 日韩免费av在线播放| 午夜亚洲福利在线播放| 黄色怎么调成土黄色| 搡老岳熟女国产| 欧美日韩视频精品一区| 久久国产精品影院| 一夜夜www| 在线观看免费高清a一片| 一进一出好大好爽视频| 国产精品免费大片| 国产野战对白在线观看| 视频在线观看一区二区三区| 高清欧美精品videossex| 亚洲精品美女久久av网站| 亚洲五月天丁香| 国产1区2区3区精品| 国产高清激情床上av| 国产成人欧美在线观看 | 91字幕亚洲| 超色免费av| 怎么达到女性高潮| 99热只有精品国产| 国产高清国产精品国产三级| 国产高清激情床上av| 在线观看日韩欧美| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 色尼玛亚洲综合影院| 老熟妇仑乱视频hdxx| 久久精品亚洲av国产电影网| 人人妻人人澡人人看| 一级毛片精品| 国产又色又爽无遮挡免费看| 免费人成视频x8x8入口观看| 极品人妻少妇av视频| 欧美激情久久久久久爽电影 | 国产高清videossex| 天堂俺去俺来也www色官网| 欧美日韩亚洲综合一区二区三区_| 国产激情久久老熟女| 国产精品影院久久| 一级,二级,三级黄色视频| 国产精品乱码一区二三区的特点 | 真人做人爱边吃奶动态| 午夜免费观看网址| 国产亚洲欧美98| 久久人人97超碰香蕉20202| 国内毛片毛片毛片毛片毛片| 美国免费a级毛片| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 两个人免费观看高清视频| 久久久国产成人免费| 女人爽到高潮嗷嗷叫在线视频| 老汉色av国产亚洲站长工具| 黑人猛操日本美女一级片| 一级a爱片免费观看的视频| 国产精华一区二区三区| 国产视频一区二区在线看| 亚洲精品中文字幕一二三四区| 久久影院123| 热re99久久精品国产66热6| 大型av网站在线播放| 中文字幕av电影在线播放| 另类亚洲欧美激情| av片东京热男人的天堂| 日本五十路高清| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点 | 日本黄色视频三级网站网址 | 亚洲午夜精品一区,二区,三区| 宅男免费午夜| 久久草成人影院| 亚洲欧美激情在线| 久久精品91无色码中文字幕| 一本大道久久a久久精品| 99在线人妻在线中文字幕 | 国产一区在线观看成人免费| 久久精品亚洲熟妇少妇任你| 最近最新中文字幕大全免费视频| 一边摸一边抽搐一进一出视频| 精品免费久久久久久久清纯 | a级片在线免费高清观看视频| 国产成人啪精品午夜网站| 色老头精品视频在线观看| 亚洲精品中文字幕一二三四区| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 国产精品免费大片| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 搡老岳熟女国产| 久久草成人影院| 嫩草影视91久久| 免费在线观看黄色视频的| 少妇 在线观看| 99国产综合亚洲精品| xxx96com| 国产欧美亚洲国产| 成人18禁在线播放| 免费少妇av软件| 国产av又大| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 美国免费a级毛片| 黄色视频,在线免费观看| 免费在线观看日本一区| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| 99re在线观看精品视频| 亚洲成国产人片在线观看| 精品久久久久久,| 99久久综合精品五月天人人| av天堂在线播放| 视频区图区小说| 日本黄色视频三级网站网址 | av不卡在线播放| 男女之事视频高清在线观看| 国产99久久九九免费精品| 欧美黑人欧美精品刺激| 精品少妇久久久久久888优播| 日韩欧美一区二区三区在线观看 | 久久精品亚洲精品国产色婷小说| 捣出白浆h1v1| 精品国产国语对白av| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 宅男免费午夜| 久久ye,这里只有精品| 国产一卡二卡三卡精品| 中文字幕色久视频| avwww免费| 法律面前人人平等表现在哪些方面| 乱人伦中国视频| 精品无人区乱码1区二区| 欧美成人午夜精品| 嫁个100分男人电影在线观看| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 国产视频一区二区在线看| 久久中文看片网| 777米奇影视久久| 亚洲国产看品久久| 国产区一区二久久| 国产精品久久久av美女十八| 国产精品亚洲av一区麻豆| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 亚洲少妇的诱惑av| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| 亚洲avbb在线观看| tube8黄色片| 国产激情久久老熟女| 欧美午夜高清在线| svipshipincom国产片| 国产欧美日韩一区二区三| 夫妻午夜视频| www.999成人在线观看| 国产成人啪精品午夜网站| 亚洲第一青青草原| 久久久久国产一级毛片高清牌| 精品一区二区三卡| 国产精品一区二区在线不卡| 国产高清激情床上av| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区| 夜夜躁狠狠躁天天躁| 五月开心婷婷网| 免费观看精品视频网站| 黄色视频,在线免费观看| 9191精品国产免费久久| 亚洲五月天丁香| 一边摸一边抽搐一进一出视频| 久久精品91无色码中文字幕| 国产欧美日韩一区二区三区在线| 欧美日韩一级在线毛片| 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 乱人伦中国视频| 精品无人区乱码1区二区| 午夜福利欧美成人| 久久热在线av| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 夜夜爽天天搞| 国产无遮挡羞羞视频在线观看| 制服诱惑二区| 男女午夜视频在线观看| 99热网站在线观看| 亚洲视频免费观看视频| 91大片在线观看| 大香蕉久久网| 亚洲在线自拍视频| 午夜福利在线免费观看网站| 一边摸一边抽搐一进一出视频| 啪啪无遮挡十八禁网站| 欧美日韩黄片免| 欧美精品一区二区免费开放| 涩涩av久久男人的天堂| 精品久久久久久电影网| 国产蜜桃级精品一区二区三区 | 宅男免费午夜| 色综合婷婷激情| 捣出白浆h1v1| 久久影院123| 99re6热这里在线精品视频| 在线观看免费高清a一片| 亚洲人成77777在线视频| 国产精品国产高清国产av | 亚洲精品成人av观看孕妇| 亚洲黑人精品在线| 悠悠久久av| 麻豆国产av国片精品| 飞空精品影院首页| 亚洲av日韩在线播放| 免费在线观看视频国产中文字幕亚洲| 一a级毛片在线观看| 视频区欧美日本亚洲| 亚洲精品久久午夜乱码| 精品视频人人做人人爽| 国产成人啪精品午夜网站| 久久国产乱子伦精品免费另类| 91麻豆av在线| 色在线成人网| 欧美另类亚洲清纯唯美| 亚洲av成人不卡在线观看播放网| 亚洲av日韩精品久久久久久密| 精品少妇久久久久久888优播| 亚洲av美国av| 国产在线精品亚洲第一网站| 国产精品香港三级国产av潘金莲| 正在播放国产对白刺激| 一a级毛片在线观看| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 国产男靠女视频免费网站| 极品人妻少妇av视频| 一进一出抽搐gif免费好疼 | av中文乱码字幕在线| 首页视频小说图片口味搜索| 国产精品98久久久久久宅男小说| 国产一区二区三区在线臀色熟女 | 久久这里只有精品19| 精品亚洲成国产av| 香蕉国产在线看| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区 | 久久午夜亚洲精品久久| 啦啦啦视频在线资源免费观看| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美软件| 天天操日日干夜夜撸| 真人做人爱边吃奶动态| 老司机影院毛片| 欧美性长视频在线观看| 久久九九热精品免费| 亚洲成人免费av在线播放| 最新美女视频免费是黄的| 一边摸一边抽搐一进一出视频| 成人手机av| 美女视频免费永久观看网站| 久久久久国产一级毛片高清牌| 天天躁夜夜躁狠狠躁躁| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| 夫妻午夜视频| 麻豆成人av在线观看| 久久这里只有精品19| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 亚洲欧美激情综合另类| 色在线成人网| 脱女人内裤的视频| 一进一出抽搐gif免费好疼 | 亚洲熟妇熟女久久| 久久久久国产精品人妻aⅴ院 | 午夜久久久在线观看| 免费在线观看视频国产中文字幕亚洲| 久久久久久免费高清国产稀缺| 日本一区二区免费在线视频| 国产精品久久久人人做人人爽| av天堂久久9| 少妇裸体淫交视频免费看高清 | 久久天堂一区二区三区四区| 国产人伦9x9x在线观看| 中文字幕人妻丝袜一区二区| 日日爽夜夜爽网站| 国产精品自产拍在线观看55亚洲 | 国产免费现黄频在线看| 欧美最黄视频在线播放免费 | 久久久国产成人精品二区 | 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 精品少妇久久久久久888优播| 欧美在线一区亚洲| 国产精品免费视频内射| av视频免费观看在线观看| 亚洲情色 制服丝袜| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 精品电影一区二区在线| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| 午夜精品在线福利| av在线播放免费不卡|