• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?

    2021-09-28 02:18:28XuChuanWu吳徐傳ShenXu徐升JianFengZhang張建豐HuanMa馬歡KaiLiu劉凱TianLongXia夏天龍andShanCaiWang王善才
    Chinese Physics B 2021年9期
    關(guān)鍵詞:劉凱

    Xu-Chuan Wu(吳徐傳),Shen Xu(徐升),Jian-Feng Zhang(張建豐),Huan Ma(馬歡),Kai Liu(劉凱),Tian-Long Xia(夏天龍),and Shan-Cai Wang(王善才)

    Department of Physics,Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices,Renmin University of China,Beijing 100872,China

    Keywords:magnetoresistance,angle-resolved photoemission spectroscopy(ARPES),topological semimetal

    1.Introduction

    The discovery of the extremely large magnetoresistance(XMR)in semimetal WTe2[1]has attracted much attention to explore the origin of XMR.Magnetoresistance(MR)is the tendency for a material to change its electrical resistance in an externally applied magnetic field,which is widely used in spin devices,magnetic memory,and magnetic sensors.A series of materials with XMR have been found to exhibit very large unsaturated MR,meanwhile several effective mechanisms have been proposed to explain its origin.In electron–hole compensation mechanism,[2–8]the MR behavior changes quadratically with the magnetic field,written as MR=μeμhB2,whereμeandμhare the mobilities of the electrons and holes,respectively.In semimetals with comparable carrier density,such as PtBi2,[8,9]TmPn(Tm=Ta or Nb;Pn=N,P,As,Sb,Bi)[10–15]and YSb,[3]it can be explained by the carrier compensation mechanism well.The topological protection mechanism[16,17]can suppress the backscattering without magnetic field.The topological symmetry breaking can cause the XMR,in which the mobility of carries is highly dependent,such as Cd3As2,[18]TaAs family,[19]and ZrSiS family.[20–22]While other exotic mechanisms were proposed,open Fermi surfaces(FSs)have been observed in many XMR materials such as MoAs2,[23]SiP2,[24]andα-WP2.[25]A field-induced change in the FSs was also reported to play a significant role in the origin of XMR.[26]XMR has been observed among a wide scope of materials,however,the underlying mechanism of XMR is not completely understood.The near-quadratic field dependence of MR and a field-induced up-turn followed by a resistivity plateau at low temperatures become their obvious fingerprints.

    Recently,CaAl4with large unsaturated MR up to 3000%at 2.5 K and 14 T accompanied with a plateau was reported,[27]and similar magnetotransport fingerprints characterized by a near-quadratic field dependence of MR and field-induced upturn in resistivity followed with a plateau at low temperature have also been observed.In this paper,by combining ARPES with the first-principles calculations and previous quantum oscillations,[27]we elaborate the topology of FSs and discuss the origin of the large MR in CaAl4.Although structural phase transition from I4/mmm to C2/m has been recognized,the subtle impact on electronic structure is observed by our ARPES measurements.The measured and calculated FSs show multiband characters and anisotropic carrier pockets.Electrons and holes cannot compensate well in the fitting of previous transport data based on isotropic two-band model,while the calculated carrier density still supports the compensation mechanism.Moreover,the Z2invariant of CaAl4equals 1 and the band yields nontrivial Berry phase.The contribution of the topological band structure to MR needs further experimental investigation.

    2.Experimental details

    High-quality single crystals of CaAl4were grown by the flux method.ARPES measurements were performed at the beam line 13U of the National Synchrotron Radiation Laboratory(NSRL)at Hefei with a Scienta D80 analyser and the Kr discharge lamp(hυ=10.05 eV)with a Scienta R4000 analyser at Renmin University of China.The energy and angular resolutions were set as 15 meV and 0.05°,respectively.The samples were cleaved in situ along the(001)plane and measured at T=25 K in a working vacuum better than 5×10?11Torr.The first-principles electronic structure calculations on CaAl4were carried out with the projector augmented wave(PAW)method.[28,29]The generalized gradient approximation(GGA)of the Perdew–Burke–Ernzerhof(PBE)formula[30]for the exchange–correlation function was adopted.The kinetic energy cutoff of the plane-wave basis was set to be 350 eV.A 20×20×20 k-point mesh was taken for the BZ sampling and the SOC effect was not considered.The lattice parameters and internal atomic positions were fully relaxed until the force on all atoms were smaller than 0.01 eV/?A.The FSs were calculated by performing the maximally localized Wannier functions(MLWF)method.[31,32]

    3.Results

    Figure 1(a)shows the schematic of CaAl4’s crystal structure determined by the single crystal x-ray diffraction(XRD)pattern.The single crystal and powder XRD patterns can be well refined with C2/m(No.12)space group.The refined patterns yield the lattice parameters:a=6.1695?A,b=6.1842?A,c=6.3451?A,andβ=118.05°,which was reported in our previous results.[27]Another study suggests a transition at 443 K from I4/mmm to C2/m is a continuous process.[33]In addition,a second transformation might occur at T≈243 K,which is revealed by the specific heat and the elastic modulus.[34]Our temperature-dependent XRD measurement from 5 K to 300 K has been performed to rule out the possible phase transition.[27]Tetragonal I4/mmm and monoclinic C2/m own a fourfold rotation axis C4and a twofold rotation axis C2,respectively.The electronic structures will be affected by the breaking of lattice symmetry,which will be further discussed in the ARPES measurement in detail.The cleavage plane oriented along the(001)direction is shown in Fig.1(b).The 3D Brillouin zone(BZ)with high symmetry points and the top view of BZ are illustrated in Figs.1(c)and 1(d),respectively.

    Figure 2 demonstrates the high-resolution experimental contour intensity at T=25 K and the corresponding Fermi surface from first-principles calculations.As shown in Figs.2(a)and 2(b),the FS contour consists of a circular(α),four triangular(β)and a shuriken-like(γ)electron pockets centered at the Z points.Figure 2(b)plots the intensity maps at selected energies from EFto?1.0 eV,and there are more bands at high binding energies.The top of the hole-like band is located at?0.75 eV.Below?0.5 eV,βpockets disappear and there is a square pocket which connects interior of the pocketγ.To display the distribution of FSs in reciprocal space intuitively,two clusters of FSs are shown in Figs.2(c)and 2(d),respectively.The profile of the calculated FSs in Zplane is almost identical to the measured FSs through ARPES measurements.

    Fig.1.Single crystal and Brillouin zone.(a)Crystal structure of CaAl4 with space group C2/m(No.12).(b)The cleavage plane(001)of the crystal.(c)Schematic of the 3D first BZ and the(001)-projected surface BZ.(d)Top view of the 3D BZ.

    Fig.2.ARPES band mapping and calculated FSs in CaAl4.(a)Photoemission intensity map at the EF in kx–ky plane at T=25 K with hυ=21 eV,and the orange and red dashed lines indicate the 2D BZ boundary and the high-symmetry directions,respectively.(b)Photoemission intensity maps measured at energies from EF to?1.0 eV.(c),(d)The calculated hole-like and electron-like 3D FSs of CaAl4,respectively.

    We have further verified the consistency between the experimental ARPES results(Figs.3(a)and 3(b))and the calculated band structures(Figs.3(c)and 3(d))along the high symmetry lines Z–N and Z–Y.The bandsα,β,γaround Z can be clearly identified.A careful comparison between the DFT calculations and the ARPES intensity plots along high symmetry directions also reveals the high reliability of the calculations.Therefore it is reasonable to predict electronic transport properties by fitting the effective mass of the bands and calculating the volume of the FSs based on the first-principles calculations.It is noteworthy that a mini-band structure indicated by the red arrow(Fig.4(f))near the EFcannot match any band in the bulk band calculations,and it can be also distinguished around Z in Fig.4(e),which is possibly attributed to the contribution from the surface states.

    Figure 4(a)illustrates the results of the FS mapping in the k‖–kzplane along theΓ–M(Z–N)direction.The intensity modulation of the band structures along kzcan be clearly observed.The angle-dependent SdH oscillation measurement indicates an ellipsoidal FS and a quasi-2D FS.[27]Bandαis a circular pocket from the perspective of kx–kyplane.It is a narrow ellipse in k‖–kzplane and confirms that the FS of band αis an ellipsoid.The white dashed lines shown in Fig.4(a)indicate the independent characteristic of kz,which can also be verified in the calculated FS in Fig.2(d).The spectral intensity of crossing band happens to exchange with the increase of photon energy as shown in Figs.4(b)–4(d).It is consistent with the positions of two clusters of FSs(Figs.2(c)and 2(d))along the kzdirection.

    Fig.3.(a),(b)The photoemission intensity plots along the high symmetry lines N–Z–N and F–Z–F,respectively.The red overlaid dashed lines in ARPES data indicate the DFT calculations.(c),(d)The calculated orbital-projected bulk band structures along the high symmetry lines without SOC.

    4.Discussion

    Fig.4.(a)Photon energy dependent experimental FS mapping of CaAl4.(b)–(d)The photoemission intensity plots along M(N)–Z(Γ)–M(N)with photon energy hυ=16 eV,27 eV,33 eV,respectively.(e)Photoemission intensity map at the EF in kx–ky plane at T=25 K with hυ=21 eV.(f),(g)The photoemission intensity plots along two groups of high symmetry lines withπ/2 angle,and corresponding directions are indicated by the orange and green dashed lines in(e).

    It has been reported that CaAl4exhibited large unsaturated magnetoresistance~3000% at 2.5 K and 14 T.[27]The observation of XMR in semimetals has triggered intensive research on the origin of XMR.An isotropic two-band model with perfect electron–hole compensation can lead to a quadratic dependence of magnetoresistance on magnetic field.To identify the specific values of the carriers in CaAl4,a simplified two-band model has been developed to describe the Hall effectρyx(B)for the full temperature range

    where ne,handμe,hare the concentration and mobility of electrons and holes,respectively.[27]Fitting of the transport data at T=2.5 K based on an over-simplified model yields that ne=3.5×1021cm?3,nh=4.5×1020cm?3,the mobilityμe=0.12 m2/V·s,andμh=0.2 m2/V·s.The ratio of ne/nhat T=2.5 K is approximately 7.8.which can explain the deviation B1.6field dependence.Luttinger’s theorem states that the volume enclosed by the FSs is directly proportional to the particle density.[35,36]Due to the high consistency between the first-principles calculation and ARPES measurements,we can integrate the volume of the electron and hole pockets in reciprocal space,0.1349?A?3and 0.1278?A?3for electron and hole pockets,respectively.The ratio of ne/nhfrom the calculation is approximately compensated.Therefore,we need to discuss whether the carrier concentration obtained by the MR fitting based on two-band model is reasonable.Such an imbalanced charge carrier densities fitting from the isotropic two-band model results in a saturating MR curve at intermediate magnetic field,unless a large distinction between the electron and hole mobility is considered for the fitting process.[3]However,it is contradictory that unsaturated MR up to 3000%at 2.5 K was observed in CaAl4.[27]The nonlinear Hall resistivity,angle-dependent SdH quantum oscillation experiments,and the DFT calculations indicate multiband feature and strong anisotropy of FSs.[27]Different orbitals from Ca and Al atoms go through the EFto form the complex FSs,shown in Figs.3(c)–3(d).As discussed before,an isotropic two-band model typically assumes uniform mobility in all directions for each type of carriers.Apparently,this assumption on the mobility is not rational,where the anisotropic FS has been shown in ARPES measurements and calculated FSs.It is necessary to consider the anisotropic multiband nature of CaAl4in a quantitative MR analysis.

    To further explore the origin of large MR,possible topological protection in CaAl4is discussed by combing the ARPES with Z2invariant and Landau fan diagram of Landau level(LL)index yielding Berry phase(φB)in our previous work.[27]The extreme cross section of FS,angular dependence of the SdH peak,[27]and the calculated 3D FS in Fig.2(c)jointly confirm the existence of bandαshown in Fig.2(a).The LL index of bandαis approaching to a nontrivial Berry phase of 0.93π.[27]Moreover,there are both time-reversal and space-inversion symmetries in CaAl4with C2/m.The topological invariant Z2of CaAl4equals 1,which is calculated from the product of the parities of all the occupied bands at the eight time-reversal invariant momentum(TRIM)points.[27]We have not found the expected topologically nontrivial surface state and band crossing.Thus it is worth studying further to learn more about the topological protection mechanism.

    5.Conclusion

    In summary,we perform APRES measurements and carry out first-principles calculations to comprehensively describe the electronic structure of CaAl4.A subtle impact from the structural phase transition from I4/mmm to C2/m is observed.A quasi-2D FS can be confirmed by the kz-dependent ARPES and the calculated FSs.The origin of large MR in CaAl4is mostly attributed to the electron–hole compensation mechanism and topologically nontrivial electronic structures.Multiband features and the anisotropic FSs revealed by the ARPES measurements,the first-principles calculations and magnetotransport properties reveal the discrepancy of the carrier density ratio ne/nhbetween the isotropic two-band model and Luttinger’s theorem.Thus,a general multiple-band model and further ARPES measurements should be considered to explore the perfect compensation and electronic band topology.

    Acknowledgment

    The authors thank the technical assistance from the BL13U beamline in National Synchrotron Radiation Laboratory(NSRL).

    猜你喜歡
    劉凱
    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*
    航空航天模型實踐活動手冊
    多入路內(nèi)固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    婚姻失控,市場真有情感『挽回藥』?
    中外文摘(2019年24期)2019-12-26 16:53:16
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(fēng)(2017年11期)2017-11-24 08:03:21
    紀(jì)委書記的斂財經(jīng)
    被你愛的感覺真好
    分憂(2017年9期)2017-09-07 06:21:48
    999久久久精品免费观看国产| 搡老岳熟女国产| 搞女人的毛片| 观看免费一级毛片| bbb黄色大片| 性插视频无遮挡在线免费观看| 国产精品免费一区二区三区在线| 国产一区二区三区av在线 | 国产精品av视频在线免费观看| 永久网站在线| 白带黄色成豆腐渣| 亚洲av二区三区四区| 国产又黄又爽又无遮挡在线| 色视频www国产| 最后的刺客免费高清国语| 国产伦人伦偷精品视频| 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看| 国产高清激情床上av| 国产乱人视频| 看免费成人av毛片| 天堂av国产一区二区熟女人妻| 乱码一卡2卡4卡精品| 极品教师在线视频| 国产欧美日韩一区二区精品| 久久久久国内视频| 中文字幕熟女人妻在线| 免费电影在线观看免费观看| 日韩欧美精品v在线| 国产精品亚洲一级av第二区| 伊人久久精品亚洲午夜| 国产精品野战在线观看| 国产色爽女视频免费观看| 亚洲成a人片在线一区二区| 最后的刺客免费高清国语| 99九九线精品视频在线观看视频| 国产亚洲91精品色在线| 五月伊人婷婷丁香| 国产免费一级a男人的天堂| 婷婷亚洲欧美| 国产av麻豆久久久久久久| 亚洲在线自拍视频| 免费黄网站久久成人精品| 99热这里只有是精品在线观看| 男女视频在线观看网站免费| 亚洲国产精品sss在线观看| 黄色欧美视频在线观看| aaaaa片日本免费| 99国产精品一区二区蜜桃av| 男女做爰动态图高潮gif福利片| 国产乱人视频| 国产亚洲精品久久久久久毛片| 亚洲三级黄色毛片| 蜜桃亚洲精品一区二区三区| 精品99又大又爽又粗少妇毛片 | 日韩中文字幕欧美一区二区| av在线蜜桃| ponron亚洲| 成人综合一区亚洲| av专区在线播放| 伦精品一区二区三区| 九九在线视频观看精品| 12—13女人毛片做爰片一| 人人妻人人澡欧美一区二区| 国产伦精品一区二区三区视频9| 久久人人爽人人爽人人片va| 超碰av人人做人人爽久久| 男插女下体视频免费在线播放| 午夜精品久久久久久毛片777| 国产69精品久久久久777片| 亚洲不卡免费看| 人人妻人人看人人澡| 日韩中文字幕欧美一区二区| 18禁黄网站禁片免费观看直播| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 九九爱精品视频在线观看| 又黄又爽又免费观看的视频| 久久久久久伊人网av| 国产成人影院久久av| 国产在视频线在精品| .国产精品久久| 亚洲美女视频黄频| 午夜老司机福利剧场| 十八禁国产超污无遮挡网站| 亚洲成人久久性| 亚洲av成人av| bbb黄色大片| 欧美高清成人免费视频www| 91久久精品电影网| 极品教师在线免费播放| 91麻豆av在线| 日本成人三级电影网站| 国产黄a三级三级三级人| 国产精品一区www在线观看 | а√天堂www在线а√下载| 91精品国产九色| 欧美不卡视频在线免费观看| 97热精品久久久久久| 国产视频内射| 久久精品国产亚洲av涩爱 | 免费看光身美女| 一a级毛片在线观看| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 日本黄色视频三级网站网址| 亚洲熟妇熟女久久| 91精品国产九色| 色综合色国产| 五月玫瑰六月丁香| 成年免费大片在线观看| 亚洲经典国产精华液单| 天堂√8在线中文| 无人区码免费观看不卡| 亚洲欧美日韩东京热| 色噜噜av男人的天堂激情| 精品久久久久久久末码| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站| 色综合站精品国产| 精品日产1卡2卡| 又紧又爽又黄一区二区| 国产一区二区亚洲精品在线观看| 成人二区视频| 亚洲电影在线观看av| 变态另类丝袜制服| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 日本熟妇午夜| 高清日韩中文字幕在线| 非洲黑人性xxxx精品又粗又长| 熟妇人妻久久中文字幕3abv| 最新中文字幕久久久久| 国产淫片久久久久久久久| 成人精品一区二区免费| 国产精品av视频在线免费观看| 成年人黄色毛片网站| 亚洲av中文字字幕乱码综合| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看 | 久久精品国产清高在天天线| 午夜激情欧美在线| 亚洲经典国产精华液单| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 国国产精品蜜臀av免费| 蜜桃久久精品国产亚洲av| 国产视频一区二区在线看| 国产国拍精品亚洲av在线观看| 亚洲欧美激情综合另类| 在线观看免费视频日本深夜| 18禁在线播放成人免费| 亚洲天堂国产精品一区在线| 午夜影院日韩av| 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 人人妻人人看人人澡| 国产不卡一卡二| 久久久久九九精品影院| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 1024手机看黄色片| 看十八女毛片水多多多| 欧美日韩精品成人综合77777| 日本黄大片高清| 国产老妇女一区| 男女做爰动态图高潮gif福利片| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 国产高潮美女av| 人妻丰满熟妇av一区二区三区| 亚洲成人免费电影在线观看| 丰满的人妻完整版| 亚洲黑人精品在线| 精品99又大又爽又粗少妇毛片 | 免费不卡的大黄色大毛片视频在线观看 | 午夜久久久久精精品| 一区二区三区激情视频| 亚洲国产欧洲综合997久久,| 最近在线观看免费完整版| 18+在线观看网站| 22中文网久久字幕| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 亚洲第一区二区三区不卡| 天堂动漫精品| 给我免费播放毛片高清在线观看| 乱码一卡2卡4卡精品| 最近最新中文字幕大全电影3| 成年版毛片免费区| avwww免费| av在线天堂中文字幕| 午夜福利成人在线免费观看| 欧美不卡视频在线免费观看| 午夜a级毛片| 亚洲av熟女| 欧美国产日韩亚洲一区| 国产午夜福利久久久久久| 国产男人的电影天堂91| 一个人观看的视频www高清免费观看| 欧美极品一区二区三区四区| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 精品久久久久久久末码| 成年女人毛片免费观看观看9| 一个人看视频在线观看www免费| 人人妻,人人澡人人爽秒播| 九九热线精品视视频播放| 99riav亚洲国产免费| 精品99又大又爽又粗少妇毛片 | 一区二区三区四区激情视频 | 男女边吃奶边做爰视频| 午夜爱爱视频在线播放| 久久久精品大字幕| 三级国产精品欧美在线观看| 天堂√8在线中文| 国产真实乱freesex| 天堂网av新在线| 永久网站在线| 床上黄色一级片| 精品人妻熟女av久视频| 午夜免费男女啪啪视频观看 | 久久亚洲精品不卡| 中国美女看黄片| 99热这里只有是精品50| 悠悠久久av| 一区二区三区四区激情视频 | 国产在线精品亚洲第一网站| 一a级毛片在线观看| 国产麻豆成人av免费视频| 亚洲专区国产一区二区| 岛国在线免费视频观看| 国产亚洲精品av在线| 丰满人妻一区二区三区视频av| 99热这里只有是精品在线观看| 亚洲国产高清在线一区二区三| 一夜夜www| 国内精品久久久久精免费| 日韩中字成人| 麻豆精品久久久久久蜜桃| 久久精品91蜜桃| av视频在线观看入口| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 国产黄片美女视频| 在线观看美女被高潮喷水网站| 日韩大尺度精品在线看网址| avwww免费| 韩国av在线不卡| 999久久久精品免费观看国产| 欧美zozozo另类| 中文字幕av在线有码专区| 国产精品免费一区二区三区在线| 久久精品国产亚洲av天美| 自拍偷自拍亚洲精品老妇| 国产精华一区二区三区| 日韩精品中文字幕看吧| 免费大片18禁| 国产亚洲精品av在线| 国产欧美日韩精品亚洲av| 亚洲不卡免费看| 久久人人精品亚洲av| 国产精品嫩草影院av在线观看 | 听说在线观看完整版免费高清| 欧美一级a爱片免费观看看| 午夜a级毛片| 两人在一起打扑克的视频| 国产午夜福利久久久久久| 免费搜索国产男女视频| 欧美精品啪啪一区二区三区| 国产伦人伦偷精品视频| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 人妻丰满熟妇av一区二区三区| 国产伦精品一区二区三区视频9| 麻豆av噜噜一区二区三区| 成人毛片a级毛片在线播放| 久久天躁狠狠躁夜夜2o2o| 国产成人一区二区在线| or卡值多少钱| 免费人成在线观看视频色| 99久久精品热视频| 久久精品国产99精品国产亚洲性色| 12—13女人毛片做爰片一| 最后的刺客免费高清国语| 欧美日韩瑟瑟在线播放| 日本爱情动作片www.在线观看 | 日韩欧美国产一区二区入口| 久久午夜亚洲精品久久| 午夜福利在线观看免费完整高清在 | 一区二区三区高清视频在线| 1024手机看黄色片| 色哟哟哟哟哟哟| 久久天躁狠狠躁夜夜2o2o| 日本熟妇午夜| 狠狠狠狠99中文字幕| 看黄色毛片网站| 五月玫瑰六月丁香| 国产成人a区在线观看| 日韩欧美一区二区三区在线观看| 九九爱精品视频在线观看| 美女大奶头视频| 99热6这里只有精品| 永久网站在线| 国内揄拍国产精品人妻在线| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 国产人妻一区二区三区在| 全区人妻精品视频| 俺也久久电影网| 亚洲色图av天堂| 欧美成人性av电影在线观看| 熟妇人妻久久中文字幕3abv| 国产黄色小视频在线观看| 中文字幕高清在线视频| 露出奶头的视频| 黄色欧美视频在线观看| 国产av不卡久久| 亚洲在线自拍视频| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 精品乱码久久久久久99久播| 真实男女啪啪啪动态图| 国产精品人妻久久久影院| 国产av一区在线观看免费| 午夜a级毛片| 成熟少妇高潮喷水视频| 久久精品国产自在天天线| 亚洲精品456在线播放app | 亚洲不卡免费看| 午夜福利欧美成人| 中文字幕免费在线视频6| 精品人妻视频免费看| 两人在一起打扑克的视频| 波多野结衣高清无吗| 给我免费播放毛片高清在线观看| 身体一侧抽搐| 久9热在线精品视频| 亚洲成人免费电影在线观看| 亚洲va在线va天堂va国产| 国产黄片美女视频| 国模一区二区三区四区视频| 亚洲中文字幕日韩| 真人一进一出gif抽搐免费| 国产极品精品免费视频能看的| 日韩欧美精品免费久久| 国产视频一区二区在线看| 中国美女看黄片| 一级黄色大片毛片| 久久午夜福利片| 波野结衣二区三区在线| 中国美女看黄片| 在线观看66精品国产| 色播亚洲综合网| 伦理电影大哥的女人| 色播亚洲综合网| 亚洲av五月六月丁香网| 久久亚洲真实| 国产精品亚洲一级av第二区| 日本欧美国产在线视频| 午夜福利高清视频| aaaaa片日本免费| 99国产极品粉嫩在线观看| 国产中年淑女户外野战色| 男人舔奶头视频| x7x7x7水蜜桃| 精品人妻视频免费看| 国产精品伦人一区二区| 午夜福利欧美成人| 亚洲第一电影网av| 国产精品国产三级国产av玫瑰| 久久国产精品人妻蜜桃| 国产国拍精品亚洲av在线观看| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 亚洲无线观看免费| 久久6这里有精品| 国产精品乱码一区二三区的特点| 天天躁日日操中文字幕| 久久精品91蜜桃| 久久午夜亚洲精品久久| 久久精品人妻少妇| 欧美3d第一页| 成人国产麻豆网| 亚洲第一电影网av| 天堂动漫精品| 中文字幕高清在线视频| 日韩欧美免费精品| 婷婷亚洲欧美| 嫁个100分男人电影在线观看| 在线天堂最新版资源| 亚洲最大成人手机在线| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 一级av片app| 美女大奶头视频| 亚洲avbb在线观看| 美女黄网站色视频| 日日摸夜夜添夜夜添小说| 精品久久国产蜜桃| 免费一级毛片在线播放高清视频| 日韩强制内射视频| 熟妇人妻久久中文字幕3abv| 亚洲精品影视一区二区三区av| 九九在线视频观看精品| 国产真实乱freesex| 日韩欧美国产一区二区入口| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件 | 免费一级毛片在线播放高清视频| 18禁在线播放成人免费| 亚洲色图av天堂| www.www免费av| 午夜福利在线观看免费完整高清在 | 国产高清视频在线观看网站| 看黄色毛片网站| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 久久久久九九精品影院| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 欧美bdsm另类| 国产又黄又爽又无遮挡在线| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 偷拍熟女少妇极品色| 国产精品国产高清国产av| 国产黄色小视频在线观看| 亚洲色图av天堂| 桃红色精品国产亚洲av| 男女啪啪激烈高潮av片| 91麻豆av在线| 精品乱码久久久久久99久播| 少妇的逼水好多| 美女xxoo啪啪120秒动态图| 日韩,欧美,国产一区二区三区 | 亚洲人成伊人成综合网2020| 亚洲精品日韩av片在线观看| 级片在线观看| 久久久久久国产a免费观看| 国产成人一区二区在线| 国产精品久久视频播放| 色哟哟哟哟哟哟| 精品无人区乱码1区二区| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆 | 国内毛片毛片毛片毛片毛片| 国产精品98久久久久久宅男小说| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片 | 在线观看66精品国产| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区免费观看 | 亚洲精品影视一区二区三区av| 日本-黄色视频高清免费观看| 无人区码免费观看不卡| 久久精品久久久久久噜噜老黄 | 国国产精品蜜臀av免费| 少妇熟女aⅴ在线视频| 性色avwww在线观看| 午夜福利高清视频| 91麻豆av在线| 亚洲精品色激情综合| 联通29元200g的流量卡| 国产精品女同一区二区软件 | 麻豆成人午夜福利视频| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 亚洲熟妇中文字幕五十中出| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 午夜视频国产福利| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| 99热6这里只有精品| 色噜噜av男人的天堂激情| 国产在线精品亚洲第一网站| 深爱激情五月婷婷| av天堂中文字幕网| 午夜精品久久久久久毛片777| 无遮挡黄片免费观看| 又爽又黄a免费视频| 日本五十路高清| 如何舔出高潮| 十八禁网站免费在线| 亚洲性久久影院| 日本 欧美在线| 国产高清视频在线播放一区| 精品日产1卡2卡| 国产高清视频在线观看网站| 熟妇人妻久久中文字幕3abv| 禁无遮挡网站| 99国产极品粉嫩在线观看| 亚洲不卡免费看| 国产一区二区在线av高清观看| 少妇熟女aⅴ在线视频| 国内精品宾馆在线| 国产真实伦视频高清在线观看 | 国产一区二区三区在线臀色熟女| 亚洲精品一卡2卡三卡4卡5卡| 久99久视频精品免费| 少妇被粗大猛烈的视频| 啦啦啦韩国在线观看视频| 超碰av人人做人人爽久久| 女同久久另类99精品国产91| 免费在线观看成人毛片| 日日撸夜夜添| 搡老熟女国产l中国老女人| 成人无遮挡网站| 日韩人妻高清精品专区| 国产精品久久电影中文字幕| 亚洲精品粉嫩美女一区| 免费无遮挡裸体视频| 午夜爱爱视频在线播放| 久久精品久久久久久噜噜老黄 | 日日干狠狠操夜夜爽| 身体一侧抽搐| 亚洲av不卡在线观看| 天堂√8在线中文| 人妻制服诱惑在线中文字幕| 久久午夜亚洲精品久久| 婷婷色综合大香蕉| 黄色欧美视频在线观看| 亚洲av熟女| 一区二区三区高清视频在线| 精品久久久久久成人av| 久久久久久久午夜电影| 欧美最新免费一区二区三区| 免费在线观看成人毛片| 我的女老师完整版在线观看| 欧美+日韩+精品| 男插女下体视频免费在线播放| 亚洲美女黄片视频| 久久国产精品人妻蜜桃| 一个人免费在线观看电影| 一区二区三区激情视频| 国产精品伦人一区二区| АⅤ资源中文在线天堂| 日韩,欧美,国产一区二区三区 | 日本色播在线视频| 免费观看精品视频网站| 亚洲国产精品成人综合色| 亚洲专区中文字幕在线| 久久精品国产鲁丝片午夜精品 | 变态另类成人亚洲欧美熟女| 在线看三级毛片| 美女黄网站色视频| 老司机深夜福利视频在线观看| 真人一进一出gif抽搐免费| 国产一区二区在线观看日韩| 国产伦精品一区二区三区四那| 亚洲精品影视一区二区三区av| 国产精品久久久久久亚洲av鲁大| 日本三级黄在线观看| 国产一区二区在线av高清观看| 一个人看的www免费观看视频| 一级黄片播放器| 久久精品国产清高在天天线| 欧美人与善性xxx| 国内精品宾馆在线| 精品人妻1区二区| 亚洲人成网站在线播| 99久久中文字幕三级久久日本| 日韩亚洲欧美综合| 桃色一区二区三区在线观看| 欧美最新免费一区二区三区| 久久精品综合一区二区三区| 中文字幕久久专区| 久久中文看片网| 国产成人a区在线观看| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 亚洲av不卡在线观看| 亚洲自拍偷在线| 很黄的视频免费| 精华霜和精华液先用哪个| 级片在线观看| 有码 亚洲区| 国产成人一区二区在线| 少妇猛男粗大的猛烈进出视频 | 久久精品国产清高在天天线| 99热精品在线国产| 最近视频中文字幕2019在线8| 欧美激情国产日韩精品一区| 亚洲精华国产精华精| 三级国产精品欧美在线观看| 国产日本99.免费观看| 欧美日韩精品成人综合77777| 中文字幕人妻熟人妻熟丝袜美| 国产男人的电影天堂91| 亚洲国产日韩欧美精品在线观看| 91久久精品国产一区二区成人| 国产视频一区二区在线看| 免费看日本二区| 色综合站精品国产| 欧美三级亚洲精品| 成熟少妇高潮喷水视频| 亚洲狠狠婷婷综合久久图片| 三级国产精品欧美在线观看| 国产精品永久免费网站|