• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical evolution of cross phase of edge fluctuations and transport bifurcation

    2021-04-22 05:34:12XueyunWANG王雪韻ZhenyuZHOU周振宇ZhuoyiLI李卓懿andBoLI李博
    Plasma Science and Technology 2021年4期
    關鍵詞:李博

    Xueyun WANG(王雪韻),Zhenyu ZHOU(周振宇),Zhuoyi LI(李卓懿) and Bo LI(李博)

    1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,People’s Republic of China

    2 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract The dynamical evolution of edge turbulence during a transport bifurcation is explored using a flux-driven nonlinear fluid model with a geometry relevant to the plasma edge region.The simulations show that the self-generated mean shear flows can dramatically modify the phase angle between turbulent fluctuations.The changes in phase differences and amplitudes of edge fluctuations give rise to the modifications of turbulent edge transport.The statistical properties of flux and fluctuations are also investigated before and after edge shear flow generation.

    Keywords:plasma turbulence,plasma edge transport,plasma simulation

    1.Introduction

    The study of turbulence and transport due to the curvaturedriven modes is of high interest because they are believed to play a central role in the edge region of magnetic confinement devices[1-4].The topic is of great importance to the fusion community because edge turbulence largely governs the overall confinement performance of tokamaks and similar machines.The edge region,comprising the transition zone from the inner,hot core plasma to the outer,cold scrape-off layer(SOL),exerts vital control over the plasma discharge through its role in the L-H(low-high confinement)transition[5],and the formation of the edge pedestal.Considerable efforts in experiments[6-12],theoretical modeling[13-16],and nonlinear simulations[17-25]have been devoted to the understanding of transport-reduction mechanism in L-H transitions.In particular,the nonlinear energy transfer during the transition process has been experimentally studied[6-9],and the limit cycle oscillations before a transition have been observed in the edge region of tokamak experiments[10-12].Radial profiles of fluctuations and velocities have also been measured in the edge transition region where the plasma is crossing the last closed flux surface(LCFS)[26-28].

    The generation of mean E×B shear flow in the edge region is believed to be responsible for quenching turbulent transport and further triggering the formation of plasma edge transport barriers[29].On one hand,the fluctuation levels can be suppressed by strong mean shear flows,which directly limit the amplitudes of turbulent fluxes.On the other hand,mean shear flow may modify the phase angle between the fluctuations,whose correlation drives a turbulent flux and determines the direction of radial flux.These effects of E×B shear flows on turbulence and its transport play an important role in turbulence suppression.The changes in turbulent transport through the modificaton of cross phase of fluctuations in frequency domain have been investigated in the experiments where the plasma flows are self-generated through the interaction with turbulence[30],and in the experiments where the shear flows are controlled externally by biasing voltage[31].The effects of strongly sheared flows on the cross phase between turbulent fluctuations in wavenumber space have been studied theoretically[32-34].The impact of phase dynamics on transport has also been explored in numerical simulations of the edge localized modes[35]and the biasing-induced transport reduction[36].However,the nonlinear simulation of phase dynamics during the transitions between low and high confinement modes has not been reported.The interaction between fluctuation phases and mean shear flow still requires more detailed investigation.

    In this work,we present self-consistent nonlinear simulations of fluctuation-induced transport bifurcation in plasma interchange turbulence.The simulations are carried out in a poloidally and radially localized domain at the outboard midplane of toroidal plasma devices.In particular,radial computational domain is across the LCFS to explore the interaction between the plasma edge and SOL.We consider the edge region of a plasma column full of bad curvature of magnetic field line,which is relevant to the edge bad-curvature region of toroidally confined plasmas.Parallel losses are introduced through sheath boundary conditions in the SOL region.This produces plasma pressure gradients at the LCFS that drive the pressure-driven interchange instability.The simulations evolve full profiles of the various quantities without separation of equilibrium and fluctuations.In the simulations,the mean E×B shear flows are self-generated just inside the LCFS through the fluctuation-induced nonlinear energy transfer[22].Previously,we have shown the existence of two transport regimes(L and H regimes)for plasma interchange turbulence[22,37,38].The L and H regimes refer to the state with weak and strong mean flows,respectively.Steeper gradients are formed at the plasma edge in the pressure and density profiles in H-regime[22].Here,we examine the role of the phase angles between fluctuations in the fluctuation-induced nonlinear transport bifurcation.We focus on the time evolution of the transport cross phase and self-generated shear flows,as well as their interaction on the turbulence suppression.The dynamics of cross phase and fluctuation levels are explored throughout the forward and back transitions.The statistical properties of turbulent flux and fluctuations in the two transport regimes are also compared to further explore the impact of mean shear flow generation.

    2.Model equations

    The simulation model is based on the drift-reduced Braginskii equations with ion pressure dynamics[39].For simplicity,we consider the pressure-driven electrostatic instability with parallel wavenumbers k‖?0.The geometry used in the simulations is a two-dimensional(2D)plane perpendicular to the equilibrium magnetic field.The 2D computational domain is radially localized at the plasma outer boundary on the low field side and poloidally localized at the midplane of a toroidally confined plasma.Since the variation of magnetic field is much slower,the changes in plasma profiles,the curvature and strength of the equilibrium magnetic fields are assumed to be constant across the computational domain.The equilibrium field is assumed to be dominated by the toroidal component,and the curvature radius of magnetic filed lines is given by the major radius from the torus axis.The simulated geometry does not describe the full equilibrium magnetic configuration such as the shape of cross sections.The fieldaligned coordinates are used in the simulations.The parallel coordinate z is in the direction of the equilibrium magnetic field.The transverse coordinates x,y correspond to local radial and poloidal variables.The time(t),perpendicular(x,y),and parallel(z)normalization scales are t0=a/cs,ρs=cs/Ωi,and Lcthe connection length of field lines,whereis the sound speed and Ωiis the ion gyrofrequency.The normalized nonlinear equations for the perpendicular dynamics of the total plasma density,pressure,and vorticity are[22]

    where the Laplacian has the formwhen applied at the outer midplane in field-aligned coordinates[17].The effects due to the curvature of magnetic field lines are included in the curvature terms of the model equations:where R is the curvature radius of field lines.The convective derivatives are written in the conservative form

    where vx=??φ/?y and vy=?φ/?x are the radial and poloidal components of normalized E×B velocityin units of cs.Equation(2)in our 2D model assumes the adiabatic closure,d(p/nγ)/dt=0 for the plasma pressure,where γ=5/3.We note that this adiabatic approximation and the assumption of electrostatic flute-like mode may not be valid for comparison with the L-H transition experimentally observed in tokamak plasmas.The ion pressure term in the generalized vorticity results from the diamagnetic velocity part in the ion polarization current[40,41].Thus,the gradients of plasma potential and pressure are coupled through equation(4).This coupling is vital to realize transport bifurcation in our nonlinear simulations.The input flux is introduced from source terms SE,Snthat are localized near the inner boundary.In the SOL region,sheath boundary conditions are applied in the parallel direction:parallel flowsand parallel currentswith[42,43].Thus,the sheath terms are added into model equations for the SOL region with σ=a/Lcthe normalized loss rate due to the sound-speed parallel flows to the ends of open field lines.Dirichlet boundary conditions are imposed at the inner and outer boundaries.Periodic boundary conditions are assumed in the poloidal y direction.The nonlinear fluid equations are solved by a finite-difference turbulence code.The numerical algorithm used in our code is described in section 3.The simulation parameters are a/ρs=100,a/R=0.3,σ=0.015,and Λ=3.Note that the perpendicular diffusion coefficients are taken to be the same for three field variables n,p and w,and specifically the values of the coefficients used in the nonlinear simulations μ=1 in units ofare small compared to Bohm diffusion ρscsby a factor of ρs/a ?1.

    3.Numerical algorithm

    We have developed an explicit time-dependent code for the solution of coupled,nonlinear equations(1)-(3)on uniform,rectangular grids in the(x,y)plane.All of our equations are of the form

    where F=vψ is the flux and v is the velocity.The dominant nonlinearities in the equations arise from the convective terms,which are written in the conservative form.The second-order,centered-difference expression is used for the divergence of flux.The diffusive terms are centrally different to second-order accuracy.The explicit time stepping scheme is a second-order trapezoidal leapfrog algorithm[44]

    where i labels the discrete time.Since the vorticity is evolved in equation(3),we obtain the potential at each time step by the matrix inversion of the Poisson equationwhere Φ=φ+p.Fourier transforming this equation in y gives

    This equation in the finite-difference form can be inverted using a standard tridiagonal solver.Then inverse Fourier transform in y gives Φ(x,y)and the potential is given by φ=Φ?p.

    4.Simulation results

    The curvature-driven interchange instability is triggered by sufficient pressure gradients at the LCFS.As the system evolves,interchange modes saturate in the nonlinear phase and the L-regime turbulent state is reached with quasi-stationary plasma profiles.Figure 1 shows the poloidal-averaged potential signals at two different radial locations just inside the LCFS.In the quasi-stationary nonlinear L-regime(t=70?110),the two signals oscillate in phase and only have slight difference in amplitude.This implies weak radial gradients of plasma potential and strong radial correlations of potential fluctuations at the plasma edge.

    Figure 1.Time evolution of poloidal-averaged potential at x=?15ρs(blue),and x=?5ρs(red).The LCFS is located at x=0.The vertical lines indicate the moments of increasing and decreasing heating power,respectively.

    From the L-regime nonlinear state,we increase input power above a certain threshold at t=110.As seen in figure 1,the two potential signals begin to separate and oscillate with higher frequencies,known as the limit cycle oscillation(t=110?140).The strong oscillations of the potential induce the radial electric fields and the associated poloidal flows localized just inside the LCFS.This reveals that the limit cycle oscillation,as a process of relaxation of heating,is strongly correlated to the generation of mean flow shear.After the mean shear flow is fully generated in the H-regime,the differences between the two potential signals approach maximum and the limit cycle oscillation ends.The significant gap between the two potential signals indicates a large radial potential well in the edge region.The simulations show that the radial gradients of electric potential and the resulting radial electric field strongly depend on the magnitude of local heating power,hence on the plasma local temperature.The temperature dependence for generation of edge inward electric field due to ion orbit losses has been studied in[45].

    During the state of H-regime,we decrease the input heating power below a certain threshold at t=170.In response to the change of the driven flux from the plasma core,a back transition is eventually triggered at t=180.The two potential signals at plasma edge oscillate faster again and the amplitudes get closer to each other as the mean shear flow gradually disappears in the edge region.After the system returns to L-regime(t?210),the large-scale fluctuations with strong radial correlations are developed again in the edge region.Comparing the fluctuation level of potential signals before and after the transition,it is obvious that the amplitude of fluctuations in H-regime is much smaller than that in the L-regime,which shows the turbulence suppression in H-regime.

    To explore the amplitude and phase evolution of fluctuations during a transition,we write the perturbations in terms of Fourier series,

    Figure 2.Time evolution of(a)phase angle θk,(b)sin θk,(c)|δpk|,(d)|δφk|,(e)radial flux 〈δ pδ vx 〉and(f)mean poloidal E×B flow vy in the edge region.The vertical lines indicate the moments of increasing and decreasing heating power.

    Figure 3.Probability density function(PDF)of radial flux in the edge region in(a)L-regime and(b)H-regime.Here σ is the standard deviation.

    where k ≡kyis the poloidal wavenumber.Then the Fourier components of the average radial flux can be written as

    is a combination of the amplitudes of potential and pressure fluctuations and the phase differences between them.The wavenumber we choose for Γkis the dominant poloidal wavenumber of fluctuations in the nonlinear turbulent state.

    As seen in figure 2(a),the relative phase angle is mainly oscillating between π/2 and π in the nonlinear L-regime(t=70?110).Correspondingly,sinθ kin figure 2(b)oscillates near the value of one,producing the maximum amount of flux in the outward radial direction.As shown in figures 2(c)and(d),the amplitudes of potential perturbations are large compared to pressure perturbations.The resulting outward turbulent flux in figure 2(e),which consists of all Fourier components of perturbations,fluctuates around a stationary and relatively high level while the mean shear flow vyin figure 2(f)remains small at the plasma edge.

    When the limit cycle oscillation(t?110?140)is triggered by the increase of input power,the phase angles as well as the amplitudes of pressure and potential perturbations exhibit stronger oscillations in response to the increased heating.This induces large-amplitude fluctuations in radially outward energy flux as the edge mean flows begin to grow during the limit cycle oscillation period.The transition occurs at t?140 when the radial flux gets decreased to a low level.As shown in figure 2,the amplitudes of pressure and potential fluctuations suddenly drop to a low level compared to those just before the transition.Meanwhile,the relative phase angle oscillates dramatically.As the growth of mean shear flow saturates in H-regime,the phase differences between potential and pressure fluctuations eventually change to π so thatsinθ koscillates near zero.As a result,the radial fluxes remain at a low level even though the fluctuation amplitudes start to increase again after the transition.

    The back transition(t?180?210)is characterized by the increase of fluctuation amplitudes and reduction of mean flows in response to a sudden decrease of input power.The final transition to the turbulent state of L-regime occurs when the edge mean flows completely collapse at t?210.Meanwhile,the phase angle between potential and pressure fluctuations reduces to a value near π/2 that is favorable for outward transport.After the back transition,the amplitude of pressure fluctuations drops because of the decreased heating.In contrast,the potential fluctuations maintain at the high level throughout the back transition.The turbulence phase and mean flow dynamics during the forward and back transitions in figure 2 reveal that the mean E×B flow has a direct impact on the phase angles of fluctuations which determine the direction as well as amplitude of turbulent transport.

    We further study statistical properties of average radial flux in the two transport regimes.The probability distribution of flux is calculated from the time series of Γkand the flux is normalized by the standard deviation of the time series.As shown in figure 3(a),the dominant k components of turbulent radial flux in L-regime has a non-Gaussian distribution with a long tail at the positive flux and has a large positive mean value,indicating intermittent,outward transport events.The strong radial flux is related to large-scale convective turbulent eddies in the edge region.In contrast,the distribution of radial flux is changed dramatically in H-regime.As seen in figure 3(b),the probability density function becomes approximately symmetric about the zero value.Thus,the inward and outward fluxes have a nearly equal probability.The deviation of the flux amplitude from the mean is significantly reduced,implying the turbulence suppression.

    Figure 4.Maximum value of cross-correlation function as a function of separation distances in(a)radial and(b)poloidal directions.

    Finally,we examine the correlations of spatial structures.The cross-correlation functions are calculated from the time series of density fluctuations at two different locations just inside the LCFS.The correlation lengths are obtained by measuring the decay of the peak correlation amplitude as a function of separation distance[42].The cross-correlation functions in the radial and poloidal directions are defined as

    Here,〈… 〉denotes an average over time.In L-regime,as seen in figures 4(a)and(b),the correlation lengths of fluctuations in the radial and poloidal directions have similar decay lengths λc?10ρs,which are approximately the size of the large,round eddies in the potential structures.In H-regime,radial correlation lengths of density fluctuations are significantly reduced,indicating the decorrelation of structures in the radial direction.The potential differences in the radial direction induce radial electric fields,which result in the generation of mean E×B flows at the location about 10ρsinside the LCFS,as shown in figure 1.When calculating the poloidal cross-correlation function,we choose the radial location where the flows exist.As shown in figure 4(b),the poloidal correlation length is significantly enhanced at the plasma edge.The enhancement of correlation in the poloidal direction implies the flow generation at the position.Note that the simulations are not compared with experiments due to the limitation of the model discussed earlier.

    5.Conclusion

    In summary,the dynamical evolution of cross phase and amplitudes of fluctuations during an edge transport bifurcation has been explored from self-consistent nonlinear fluxdriven simulations,focusing on the curvature-driven instability.We find that the generation of mean edge shear flow is strongly correlated with the modification of amplitudes and phase angles of edge turbulent fluctuations.During the transition to a suppressed transport regime,the changes of phase angles become significant as the fluctuation-induced mean shear flows grow at the plasma edge.The mean shear flows act on the amplitudes and phase angles of turbulence through the modification of coherent structures of fluctuations as demonstrated by the changes in the spatial correlations.Our 2D simplified model only describes the electrostatic interchange modes in a toroidal magnetic field with bad curvature.For comparison with the L-H transitions in tokamak plasmas,however,the ballooning modes should be considered for tokamak plasmas with magnetic shear[46,47].We also note that the particle source is fixed in the simulations.However,the change of particle sources would possibly affect the dynamical evolution of the relative phase angle and the mean flow shear,which is for future investigation.

    Acknowledgments

    We thank Chuankui Sun,Cong Meng,Pengfei Li,Zhijian Xie,Dianjing Liu,and Ao Zhou for help with simulations.We acknowledge extensive discussions with Tianchun Zhou,Guosheng Xu,Jiaqi Dong,and P.H.Diamond.This work was supported by the National Magnetic Confinement Fusion Energy Program of China(No.2018YFE0311300).

    猜你喜歡
    李博
    Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    LabVIEW下的模擬電路實驗教學創(chuàng)新對策
    Evolution of optical properties and molecular structure of PCBM films under proton irradiation
    LabVIEW下通信原理實驗教改探討
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser?
    Fully integrated modeling of surface water and groundwater in coastal areas *
    空間相機次鏡在軌校正仿真分析
    哪里可以看免费的av片| 人妻夜夜爽99麻豆av| 欧美精品亚洲一区二区| 麻豆成人av在线观看| 叶爱在线成人免费视频播放| 亚洲男人天堂网一区| 人人妻人人看人人澡| 在线国产一区二区在线| 午夜精品一区二区三区免费看| 中文字幕最新亚洲高清| 国产片内射在线| 精品国内亚洲2022精品成人| 免费观看精品视频网站| 中文字幕av在线有码专区| 亚洲一区二区三区不卡视频| 久久久久国产精品人妻aⅴ院| 国产乱人伦免费视频| 欧美成人午夜精品| 亚洲国产高清在线一区二区三| 国产99白浆流出| 国产成人系列免费观看| 亚洲av熟女| 狂野欧美激情性xxxx| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 午夜福利免费观看在线| 免费在线观看成人毛片| 一本综合久久免费| 99re在线观看精品视频| 狠狠狠狠99中文字幕| 国产成人欧美在线观看| 亚洲欧美日韩东京热| 欧美日本亚洲视频在线播放| 狠狠狠狠99中文字幕| 少妇的丰满在线观看| 好看av亚洲va欧美ⅴa在| 日本五十路高清| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 国产1区2区3区精品| 悠悠久久av| 免费高清视频大片| 18禁黄网站禁片午夜丰满| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜| 亚洲av美国av| 日本一区二区免费在线视频| 波多野结衣巨乳人妻| 国产高清视频在线播放一区| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 搞女人的毛片| 国产男靠女视频免费网站| 国产精品精品国产色婷婷| 很黄的视频免费| 人人妻人人看人人澡| 午夜福利在线在线| 欧美成人性av电影在线观看| 国产片内射在线| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 亚洲av电影不卡..在线观看| 熟女电影av网| 18禁国产床啪视频网站| 欧美人与性动交α欧美精品济南到| 夜夜躁狠狠躁天天躁| 妹子高潮喷水视频| 琪琪午夜伦伦电影理论片6080| 欧美日韩一级在线毛片| 一本精品99久久精品77| 精品久久久久久久久久免费视频| 国产91精品成人一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费视频内射| 久久婷婷成人综合色麻豆| 天天躁夜夜躁狠狠躁躁| 91字幕亚洲| 国产一区二区在线观看日韩 | 亚洲激情在线av| 99re在线观看精品视频| 十八禁网站免费在线| 51午夜福利影视在线观看| 给我免费播放毛片高清在线观看| xxxwww97欧美| 精品久久久久久成人av| 亚洲国产欧美网| 国产精品1区2区在线观看.| 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 日韩欧美三级三区| 一个人免费在线观看的高清视频| 精品熟女少妇八av免费久了| 91老司机精品| 国内精品一区二区在线观看| 亚洲乱码一区二区免费版| 午夜a级毛片| 精品乱码久久久久久99久播| 最近视频中文字幕2019在线8| 亚洲国产欧美一区二区综合| 久99久视频精品免费| 日韩有码中文字幕| 国产精品永久免费网站| 91在线观看av| 欧美绝顶高潮抽搐喷水| 日本黄大片高清| 亚洲全国av大片| 男女做爰动态图高潮gif福利片| 久久久久久国产a免费观看| 国产成人精品久久二区二区91| 非洲黑人性xxxx精品又粗又长| 伦理电影免费视频| 国内精品一区二区在线观看| 悠悠久久av| 国产爱豆传媒在线观看 | 老鸭窝网址在线观看| 精品国产乱码久久久久久男人| a级毛片在线看网站| 一本久久中文字幕| 欧美中文日本在线观看视频| 两人在一起打扑克的视频| 国产视频内射| 亚洲九九香蕉| 黄片大片在线免费观看| 麻豆国产av国片精品| 久久久精品国产亚洲av高清涩受| 亚洲人成伊人成综合网2020| 欧美一级毛片孕妇| 观看免费一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 50天的宝宝边吃奶边哭怎么回事| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机深夜福利视频在线观看| 我的老师免费观看完整版| 一区福利在线观看| 国产一区二区激情短视频| 国产精品 国内视频| 老司机午夜十八禁免费视频| 黄色a级毛片大全视频| 不卡av一区二区三区| 国产精品综合久久久久久久免费| av欧美777| 51午夜福利影视在线观看| 在线播放国产精品三级| 日韩精品青青久久久久久| 91av网站免费观看| 国产激情久久老熟女| 熟女电影av网| 国产精品爽爽va在线观看网站| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 99在线人妻在线中文字幕| 亚洲欧美激情综合另类| 亚洲国产高清在线一区二区三| 久久久久久国产a免费观看| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 香蕉丝袜av| www.精华液| 精品国产亚洲在线| 51午夜福利影视在线观看| 91大片在线观看| 男人舔奶头视频| 日日干狠狠操夜夜爽| 成人18禁高潮啪啪吃奶动态图| 久久精品人妻少妇| 亚洲av第一区精品v没综合| 久久午夜综合久久蜜桃| 男人舔女人的私密视频| 丝袜人妻中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产清高在天天线| 国产成人一区二区三区免费视频网站| 小说图片视频综合网站| 制服丝袜大香蕉在线| 国产人伦9x9x在线观看| 亚洲国产精品999在线| 免费看十八禁软件| 99久久99久久久精品蜜桃| 男人舔女人下体高潮全视频| 中文字幕精品亚洲无线码一区| 手机成人av网站| 国产高清视频在线观看网站| 熟女少妇亚洲综合色aaa.| 两个人的视频大全免费| 欧美成人性av电影在线观看| 精品高清国产在线一区| 国产av一区二区精品久久| 欧美日韩福利视频一区二区| 小说图片视频综合网站| 亚洲精品中文字幕一二三四区| xxx96com| av欧美777| 亚洲人成电影免费在线| 又紧又爽又黄一区二区| 日本a在线网址| 男女那种视频在线观看| 啦啦啦免费观看视频1| 91国产中文字幕| 好看av亚洲va欧美ⅴa在| 久久精品国产清高在天天线| 欧美成人免费av一区二区三区| 身体一侧抽搐| 久久精品91无色码中文字幕| 波多野结衣巨乳人妻| 欧美黑人精品巨大| 国产成人欧美在线观看| 国产三级中文精品| 禁无遮挡网站| 亚洲色图av天堂| 国产午夜精品久久久久久| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 少妇被粗大的猛进出69影院| 中文字幕人妻丝袜一区二区| videosex国产| 成人午夜高清在线视频| 99久久精品国产亚洲精品| 日韩 欧美 亚洲 中文字幕| 免费看美女性在线毛片视频| 久久久久性生活片| 国产激情欧美一区二区| 一区二区三区高清视频在线| 一进一出好大好爽视频| 午夜福利在线观看吧| 日韩欧美在线二视频| 亚洲av五月六月丁香网| 国产三级在线视频| 色综合站精品国产| 久9热在线精品视频| 中文字幕最新亚洲高清| 婷婷亚洲欧美| avwww免费| 麻豆国产av国片精品| 激情在线观看视频在线高清| 欧美性猛交╳xxx乱大交人| 观看免费一级毛片| 99久久精品热视频| 亚洲欧美精品综合久久99| 欧美一区二区精品小视频在线| 色播亚洲综合网| 麻豆一二三区av精品| 国产av一区二区精品久久| 老司机午夜十八禁免费视频| 国产爱豆传媒在线观看 | 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 亚洲av中文字字幕乱码综合| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 成人av一区二区三区在线看| 亚洲五月婷婷丁香| 亚洲专区国产一区二区| 一二三四社区在线视频社区8| 国产成人精品无人区| 手机成人av网站| 男人舔奶头视频| 亚洲av成人av| 18禁裸乳无遮挡免费网站照片| 91大片在线观看| 亚洲 欧美 日韩 在线 免费| 午夜免费观看网址| 桃红色精品国产亚洲av| 国产精品一区二区免费欧美| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产综合久久久| 精品人妻1区二区| 久久中文字幕一级| 很黄的视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | cao死你这个sao货| 国产精品一区二区免费欧美| 久久精品人妻少妇| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 国产精品久久久久久人妻精品电影| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 亚洲精品在线美女| 91成年电影在线观看| 99热这里只有精品一区 | 国产在线精品亚洲第一网站| 嫩草影视91久久| 亚洲黑人精品在线| 最新美女视频免费是黄的| 老汉色∧v一级毛片| 99国产综合亚洲精品| 观看免费一级毛片| av中文乱码字幕在线| 中国美女看黄片| netflix在线观看网站| 国产精品久久久久久精品电影| 一本一本综合久久| 在线国产一区二区在线| 18禁国产床啪视频网站| 欧美色欧美亚洲另类二区| 国产亚洲av高清不卡| 极品教师在线免费播放| 中文字幕最新亚洲高清| 婷婷精品国产亚洲av在线| 亚洲av熟女| 看免费av毛片| av欧美777| 亚洲欧美激情综合另类| 亚洲人成网站在线播放欧美日韩| 听说在线观看完整版免费高清| 色av中文字幕| 国产99白浆流出| 一进一出好大好爽视频| 国产成人av教育| 99国产精品一区二区三区| 黄色女人牲交| 可以在线观看的亚洲视频| 国产精品乱码一区二三区的特点| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| 免费看a级黄色片| 欧美乱妇无乱码| 成人高潮视频无遮挡免费网站| 香蕉av资源在线| aaaaa片日本免费| 亚洲精品在线美女| 成在线人永久免费视频| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 嫁个100分男人电影在线观看| 黑人操中国人逼视频| 亚洲片人在线观看| 1024手机看黄色片| 欧美乱色亚洲激情| 国产av不卡久久| 成人亚洲精品av一区二区| 身体一侧抽搐| 国产成人精品无人区| 真人做人爱边吃奶动态| 国产主播在线观看一区二区| 18美女黄网站色大片免费观看| 天堂av国产一区二区熟女人妻 | 亚洲av电影在线进入| 成人18禁在线播放| 嫩草影视91久久| 日韩av在线大香蕉| 久久热在线av| 此物有八面人人有两片| 欧美成人性av电影在线观看| 色尼玛亚洲综合影院| 悠悠久久av| 琪琪午夜伦伦电影理论片6080| 校园春色视频在线观看| 国产亚洲av高清不卡| 少妇人妻一区二区三区视频| 国产精品av久久久久免费| e午夜精品久久久久久久| 国产99久久九九免费精品| 精品一区二区三区视频在线观看免费| 久久久国产欧美日韩av| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 国产在线观看jvid| 精品一区二区三区四区五区乱码| 神马国产精品三级电影在线观看 | 伊人久久大香线蕉亚洲五| 国产麻豆成人av免费视频| 亚洲 国产 在线| 欧美色视频一区免费| 色哟哟哟哟哟哟| 麻豆国产av国片精品| 少妇粗大呻吟视频| 亚洲欧美激情综合另类| 国产在线观看jvid| 午夜福利成人在线免费观看| 在线永久观看黄色视频| 淫妇啪啪啪对白视频| 亚洲精品色激情综合| 亚洲在线自拍视频| 一二三四社区在线视频社区8| 看免费av毛片| 亚洲av电影在线进入| 韩国av一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人性av电影在线观看| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 亚洲 欧美 日韩 在线 免费| 在线观看免费午夜福利视频| 午夜免费成人在线视频| 精品日产1卡2卡| 国产主播在线观看一区二区| 久久热在线av| 久久精品综合一区二区三区| 久久久久久久久中文| 俄罗斯特黄特色一大片| 曰老女人黄片| 这个男人来自地球电影免费观看| 亚洲精品中文字幕在线视频| 亚洲成人久久爱视频| 久久久久亚洲av毛片大全| 国产97色在线日韩免费| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 成人亚洲精品av一区二区| 小说图片视频综合网站| 变态另类丝袜制服| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 免费高清视频大片| 校园春色视频在线观看| 国产精品亚洲一级av第二区| 欧美成人性av电影在线观看| 人妻丰满熟妇av一区二区三区| 日韩欧美精品v在线| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 舔av片在线| 中文字幕久久专区| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 亚洲 欧美 日韩 在线 免费| 国产成人精品久久二区二区91| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 免费看a级黄色片| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 成人一区二区视频在线观看| 亚洲性夜色夜夜综合| 无限看片的www在线观看| 亚洲国产精品成人综合色| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 午夜影院日韩av| 国产激情久久老熟女| 免费在线观看完整版高清| 成人一区二区视频在线观看| 我要搜黄色片| 小说图片视频综合网站| 国产成人aa在线观看| 午夜福利18| 成熟少妇高潮喷水视频| 国产成年人精品一区二区| 免费在线观看亚洲国产| 精品电影一区二区在线| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| 成人18禁高潮啪啪吃奶动态图| 国产黄a三级三级三级人| 国产午夜精品论理片| 久久亚洲真实| 悠悠久久av| 国产亚洲欧美98| 久久精品aⅴ一区二区三区四区| 国产精品一区二区免费欧美| 成在线人永久免费视频| av免费在线观看网站| 后天国语完整版免费观看| 日本五十路高清| 亚洲精品国产一区二区精华液| 午夜免费观看网址| 久久久久久久久中文| 狠狠狠狠99中文字幕| 全区人妻精品视频| 久久久久性生活片| 黄色女人牲交| 99国产精品99久久久久| 日韩av在线大香蕉| 99久久久亚洲精品蜜臀av| 性欧美人与动物交配| 他把我摸到了高潮在线观看| 可以在线观看毛片的网站| 免费观看人在逋| 精品少妇一区二区三区视频日本电影| 狂野欧美白嫩少妇大欣赏| 国产一区在线观看成人免费| 淫妇啪啪啪对白视频| 亚洲性夜色夜夜综合| 亚洲欧美精品综合一区二区三区| av福利片在线| 国产又色又爽无遮挡免费看| 午夜精品一区二区三区免费看| 99国产综合亚洲精品| 变态另类成人亚洲欧美熟女| 无人区码免费观看不卡| 久久精品夜夜夜夜夜久久蜜豆 | 18禁观看日本| 亚洲avbb在线观看| 国产黄a三级三级三级人| 日韩国内少妇激情av| 黄片大片在线免费观看| 国产av在哪里看| svipshipincom国产片| 老汉色av国产亚洲站长工具| 亚洲自偷自拍图片 自拍| 俺也久久电影网| 欧美又色又爽又黄视频| 午夜成年电影在线免费观看| 久久久久久国产a免费观看| 岛国在线观看网站| 午夜精品久久久久久毛片777| 国产成人系列免费观看| 50天的宝宝边吃奶边哭怎么回事| 午夜亚洲福利在线播放| 国产精品久久久久久久电影 | 久久午夜亚洲精品久久| 精品久久久久久,| 国产aⅴ精品一区二区三区波| 嫩草影院精品99| 亚洲专区国产一区二区| 久久久精品国产亚洲av高清涩受| 久久婷婷人人爽人人干人人爱| 窝窝影院91人妻| 69av精品久久久久久| 老司机靠b影院| 精品欧美一区二区三区在线| 免费高清视频大片| 色老头精品视频在线观看| 久9热在线精品视频| 啦啦啦免费观看视频1| 国内精品久久久久精免费| 香蕉丝袜av| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 黄片小视频在线播放| 9191精品国产免费久久| 18美女黄网站色大片免费观看| 此物有八面人人有两片| 中文字幕最新亚洲高清| 免费看美女性在线毛片视频| 妹子高潮喷水视频| 91麻豆av在线| 老汉色av国产亚洲站长工具| 国产精品一区二区三区四区免费观看 | 国产精品一及| 9191精品国产免费久久| 嫁个100分男人电影在线观看| 午夜影院日韩av| 亚洲在线自拍视频| 成人午夜高清在线视频| 大型黄色视频在线免费观看| 高清在线国产一区| 舔av片在线| 亚洲国产高清在线一区二区三| 欧美中文日本在线观看视频| 一二三四社区在线视频社区8| 又黄又爽又免费观看的视频| 日本一区二区免费在线视频| 黄色女人牲交| 国产亚洲精品一区二区www| 久久国产精品影院| 国产97色在线日韩免费| 亚洲国产欧洲综合997久久,| 国产精品一区二区三区四区免费观看 | 哪里可以看免费的av片| 老熟妇乱子伦视频在线观看| 非洲黑人性xxxx精品又粗又长| 久久精品国产清高在天天线| 无限看片的www在线观看| tocl精华| 日韩 欧美 亚洲 中文字幕| 丁香六月欧美| 这个男人来自地球电影免费观看| 亚洲自拍偷在线| 国内精品久久久久精免费| 免费人成视频x8x8入口观看| 人人妻,人人澡人人爽秒播| 欧美久久黑人一区二区| 日本a在线网址| 999久久久国产精品视频| 久久久久精品国产欧美久久久| 欧美日韩亚洲综合一区二区三区_| 不卡一级毛片| 欧美另类亚洲清纯唯美| 精品久久久久久久毛片微露脸| 国产精品久久久久久久电影 | 99热6这里只有精品| 黄片小视频在线播放| 欧美日韩瑟瑟在线播放| 午夜老司机福利片| 日韩欧美三级三区| 色老头精品视频在线观看| 精品无人区乱码1区二区| 亚洲男人天堂网一区| 亚洲午夜精品一区,二区,三区| 在线观看日韩欧美| 国产一区在线观看成人免费| 看黄色毛片网站| 久久九九热精品免费| 亚洲片人在线观看| 国产亚洲精品一区二区www| 一级作爱视频免费观看| 精品国产美女av久久久久小说| 老司机深夜福利视频在线观看| 在线观看免费午夜福利视频| 91麻豆精品激情在线观看国产| 天天一区二区日本电影三级| 99久久国产精品久久久| 丰满人妻一区二区三区视频av | 欧美中文综合在线视频| av在线天堂中文字幕| 黄色 视频免费看| 伦理电影免费视频| 亚洲精品中文字幕一二三四区| 97碰自拍视频| 国产激情久久老熟女|