• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling of electronegative collisional warm plasma for plasma-surface interaction process

    2021-04-22 05:34:22
    Plasma Science and Technology 2021年4期

    Plasma Science and Technology Laboratory,Department of Physics,Indian Institute of Technology Delhi,New Delhi-110 016,India

    Abstract An electronegative collisional plasma having warm and massive positive ions,non-extensive distributed electrons and Boltzmann distributed negative ions is modelled for the plasma-surface interaction process that is used for the surface nitriding.Specifically the sheath formation is evaluated through the Bohm’s criterion,which is found to be modified,and the variation of the sheath thickness and profiles of the density of plasma species and the net space charge density in the sheath region in addition to the electric potential.The effect of ion temperature,nonextensivity and collisional parameter is examined in greater detail considering the collisional cross-section to obey power-law dependency on the positive ion velocity.The positive ions are found to enter in the sheath region at lower velocities in the collisional plasma compared to the case of collision-less plasma; this velocity sees minuscule reduction with increasing nonextensivity.The increasing ion temperature and collisional parameter lead to the formation of sheath with smaller thickness.

    Keywords:electronegative sheath,ion temperature,non-extensivity,sheath thickness,power-law dependency,collisions

    1.Introduction

    Nowadays,plasma-based surface treatments[1,2]are widely adopted to enhance the mechanical and tribological properties of the materials which are widely used in the automobiles,semiconductors and microelectronics industries[3-7].When a conducting material comes in the contact with plasma,then there is a formation of a thin layer of the charged species at the interface of the plasma and material’s surface.Such a thin layer is termed as sheath that plays a momentous role in analyzing the plasma-surface interactions[8].The investigation of sheath characteristics in different plasma systems has been carried out by several researchers[9-28].The sheath characteristics have been found to show a distinct nature,when negative ions are introduced in the system[23,29-32].Many researchers have observed noteworthy influence on the characteristics of the probe in the cases of low-frequency sheath processes[33-35].X-ray emission has also been observed,when the laser light is launched on tin slab forming a sheath of ions that radiate[36-38].Langmuir probe analysis permits to measure the behaviour of plasma parameters in distinctive plasma systems[39].

    The impact of ion temperature on the sheath characteristics in electropositive plasma has been studied by Crespo[16].The analysis of sheath formation in the presence of negative ions and warm positive ions has been carried out by Dhawan and Malik[9,29].Hatami[40]and Moulick et al[17]have investigated the presence of two varieties of positive ions in the electropositive and electronegative plasma,respectively,under the collisional environment.The impact of ionization rate on the sheath transition from electropositive to electronegative plasma has been examined by Crespo et al[18].Yasserian et al[26]have investigated the influence of the magnetic field in electronegative discharge.

    It has been validated both experimentally and theoretically that for the low-pressure electronegative plasmas,the behaviour of the negative ion density is appropriated to illustrate with the Boltzmann distribution[41,42].A lowpressure electronegative plasma(Ar-O2)has been experimentally investigated by Ghim and Hershkowitz[41]through Langmuir probe analysis.They observed that the distribution of the negative ions follows Boltzmann relation with a temperature of 0.06±0.02 eV,while the resulting parameters werene=3.8 ×109cm?3andTe=0.69 eV.Here,positive and negative ions ofAr+and O?were formed.Franklin and Snell[42]have also shown for low-pressure electronegative plasmas that the spatial distribution of the negative ions is in well agreement with the Boltzmann distribution.

    In space plasmas,the existence of high energy tail velocity distribution of the particles has been validated by distinct satellite measurements.Such particle distributions,which are deviated from the Boltzmann distribution,have also been implemented successfully on the stellar plasmas and solar winds[43,44].Moreover,the deviation in the distribution of the electrons from their well-known Boltzmann distribution has even been seen in the various laboratories measurements also.In 1994,Liu et al[45]have provided a strong confirmation of the presence of non-Maxwellian velocity distributions of electrons in a particular plasma experiment,where low-pressure argon gas(neutral densitynargon~1013cm?3and P~0.3 mTorr)was exposed to pulsed discharges.Langmuir probe data,i.e.probe currentIprobeas a function of probe voltageVprobeagreed with a non-Maxwellian distribution.Plasma density(electron density)ne=4 ×1010cm?3and electron temperatureTe=0.69 eV were the resulting parameters.Tsallis[46],therefore,has introduced new statistics which is labelled as non-extensive statistics or Tsallis statistics to investigate such systems where the distribution of the particles is far away from their Boltzmann distribution.Then in 1997,Tsallis and Souza[47]have demonstrated that the same experimental data can be well fitted with non-extensive thermo-statistical formalism.The impact of non-extensive distributed electrons and thermal positive ions has been investigated by Hatami[48]on electropositive sheath structure.Borgohain and Saharia[13]have introduced the q non-extensive electrons in electronegative plasma with cold positive ions.Safa et al[15]have studied the velocity distribution of non-extensive electrons in magnetised electropositive plasma sheath.The inspection of Debye length and floating potential in electropositive plasmas with non-extensive distributed electrons has been carried out by Sharifian et al[49].The examination of two non-Maxwellian electrons in unmagnetized electropositive plasma has been carried by Hatami and Tribeche[12].Basnet and Khanal[11]have analyzed the Maxwellian and non-Maxwellian electrons in magnetized electropositive plasma.The impact of ionization on sheath characteristics with two-temperature non-extensive distributed electrons has been investigated by Dhawan et al[21].

    Researchers,while examining the impact of non-extensive distributed electrons on the sheath structure,have either neglected the temperature of positive ions or collisions or both,though the plasmas used for processing or plasma-surface interaction carry finite temperature ions and the ions may also have collisions with the neutral particles in addition to the usual collisions of electrons with the neutrals.Moreover,negative ions are intensely introduced for achieving better processing.Therefore,in the present work,we have modelled a collisional plasma which has negative ions and positive ions along with the electrons.This is done for understanding the plasma-surface interaction process via the generation of sheath on a metallic probe.For developing this model,positive ions,negative ions and electrons are respectively described by fluid approach,Boltzmann distribution and nonextensive distribution.

    2.Basic equations for modelling

    The basic equations required to investigate the collisional electronegative plasma with warm positive ions as fluid,qnon-extensive distributed electrons and Boltzmann distributed negative ions are stated as follows

    whereΥ+,?+,m+andτ+are the density,velocity,mass and temperature of the positive ions,respectively.Υ?,ΥeandΥgare the densities of negative ions,electrons and neutrals,respectively.Υ+0,Υ?0andΥe0are the background densities of the positive ions,negative ions and electrons,respectively.τ?andτeare the temperatures of the negative ions and electrons,respectively.φis the electric potential andeis the electronic charge.qdefines the non-extensivity of the system andσ(?+)is a momentum-transfer collisional cross-section,which has power-law dependence on the velocity of the positive ions and is given by

    We have considered the case of the constant mean free path or constant collisional cross-section,i.e.p=0.Equations(1)-(7)are normalized with the help of the following dimensionless parameters

    where Ω+0is the electropositivity,i.e.background density ratio of the positive ions to electrons of the system.The prime(′)and double prime(″)depict the first and second-order derivates,respectively,with respect toξ.

    3.Boundary conditions and modified Bohm’s criterion

    Equations(10)and(13)are coupled differential equations which will be solved with the help of appropriate numerical methods.In this paper,we have adopted the Runge-Kutta(RK)method of fourth-order.We must enumerate the initial conditions to apply the RK method on the given problem.The starting point of the numerical integration is assumed at the sheath edge,i.e.ξ=ξ0=0 and the numerical integration would terminate at the point of zero electron density.The wall/probe position,i.e.ξ=ξPis located at the point of zero electron density.The distance between the sheath edge and the wall/probe position is designated as the sheath thickness,i.e.ξ0?ξP.The initial value of the normalized electric potential at the sheath edge is assumed approximately equal to zero,i.e.ψ0=0.0001.However,the initial value of the normalized electric field at the sheath edge is assumed to nonzero to avoid the divergence of the numerical solutions,i.e.=0.1 is chosen.The allowed values of the positive ion velocity at the sheath edge,i.e.χ+0for a given set of parameters is calculated using the Sagdeev potential approach.Using the Sagdeev potential approach,the expression for the allowed values ofχ+0is determined as

    Forτ+→ 0 ?β+→ ∞,equation(15)appears as

    This is agreeing with the results of Borgohain and Saharia[13].

    For Ω?0→0,equation(15)looks as

    This is agreeing with the results of Hatami[50].

    For Ω?0→0 andα→0,equation(15)appears as

    For Ω?0→0,α→0 andτ+→ 0 ?β+→ ∞,equation(15)appears as

    This is agreeing with the results of Tribeche et al[51]and Gougam and Tribeche[52].

    For Ω?0→0,α→0,τ+→ 0 ?β+→ ∞andq→ 1,equation(15)appears as

    This is agreeing with the results of Chen[53].

    4.Results and discussions

    The behaviour of the minimum allowed values of positive ion velocity at the sheath edge,i.e.χ+0 ,as a function of nonextensive parameter(q)for different collisional parameterα(figure 1(a)),electronegativity Ω?0(figure 1(b)),negative ion temperatureβ?(figure 1(c)),and positive ion temperatureβ+(figure 1(d)),is portrayed in figure 1.A significant reduction inχ+0with an increased Ω?0,β?andβ+is observed.Also,a minuscule reduction inχ+0is detected with the increasedαandq.From figure 1(a),we can conclude that in the collisional environment,positive ions can enter in the sheath regime even at lower velocities than the usual Bohm velocity.Figure 1(b)validates the fact that the negative ions help positive ions to get in the sheath regime.The temperature of electrons is appearing in the collisional parameter through the definition of the Debye length.In our study,the electron temperature is assumed to be constant and in order to see the effect of electron-to-positive(negative)ion temperature ratioβ+(β?),we have varied the corresponding ion temperature and kept the other parameters fixed.We have seen the effect of non-extensive and collisional parameters just by changing their values(one at a time)and keeping all the other parameters fixed.Therefore,in our study with constant electron temperature and varying ion temperature,qandαdo not change with the temperature of electrons,positive ions and negative ions.This also explains the almost linear behaviour of the minimum allowed value of the positive ion velocity(χ+0)at the sheath edge withqandαin figure 1(a).The value ofχ+0is reduced from 0.469 to 0.369 with an increased collisional parameter(α)from 0 to 0.5.With an increase in the collisional parameter,the percentage reduction inχ+0is observed to be reduced,i.e.,the effect of collision on the variation of Bohm velocity is more prominent for lower values ofα.The magnitude ofχ+0cannot continue to decrease because of the upper limit of the positive ion velocity at the sheath edge(please see equation(15)).This behaviour is in agreement with the results of other researchers also[13,54].

    Figure 1.Behaviour ofχ+0 as a function of the non-extensive parameter(q)for(a)different values of the collisional parameter(α)when and β?=10;(b)for different values of electronegativity(Ω?0)whenand β?=10;(c)for different values of negative ion temperature(β?)whenand Ω?0=5; and(d)for different values of positive ion temperature(β+)whenand Ω?0=5.

    The distribution of all the charged species densities,i.e.positive ions,negative ions and electrons,in the sheath regime is depicted in figures 2(a)and(b)for different positive ion temperature(β+).The densities of negative species are reduced with a considerable rate and approximately approach to zero near the probe/wall position.This is due to a negatively biased probe/wall.Moreover,because of the higher mass of the negative ions,their density is reduced approximately to zero even at a significant distance from the wall/probe position towards the sheath edge.Higher density of the positive ions is found near the probe for the increased value ofβ+.Also,the sheath of larger thickness is formed for higher value ofβ+.This is due to almost perfect shielding of the probe surface/voltage for lowerβ+values.

    Figure 2.Behaviour of charged species densities,i.e.Ω+,Ω?and Ωe as a function of distance from the sheath edge to probe/wall position for different values of(a) β+=5 and(b) β+=25 when=0.1,α=0.1, β?=10, q=0.5 and Ω?0=2.Behaviour of net space charge density,ΩNet(c)as a function of distance from the sheath edge to probe/wall position for different values of β+ with the similar aforesaid parameters.

    Figure 3.Behaviour of(a)electric potential(ψ)and(b)positive ion velocity(χ+)as a function of distance from the sheath edge to probe/wall position for different values of collisional parameter(α)when=0.1, β?=10, β+=15, q=0.5 and Ω?0=5.

    The profile of net space charge density(ΩNet=Ω+?Ω??Ωe)for different electron-to-positive ion temperature ratio(β+)is also seen in figure 2(c).The positive magnitude of ΩNetindicates that the sheath is composed of the majority of the positive ions.For both the values ofβ+=5 and 25,a steep rise and then the reduction in the space charge density are seen.This nature of the graph can be understood as follows.In the proximity of the sheath edge,a peak is appeared which is the main characteristic of the sheath regime;positive ions might accumulate here in a huge number.Then the net charge decreases due to the presence of some negative ions and electrons.Since the ions become more energetic for their higher temperature and can reach near the probe in higher number,the magnitude of the net space charge is expected to increase,which is the case in the figure(compare the cases withβ+=5 and 25).Since the positive ion flux is an invariant quantity(please see equation(9)),the number density of these ions,a little away from the peak region,decreases due to their acceleration(higher velocity)into the sheath regime.Hence,for the higher temperature of the ions,here the space charge decreases and also a dip in the net charge occurs as a result of imbalance of the pressure gradient,collisional and accelerating forces.

    The profiles of the electric potentialψ(figure 3(a))and the positive ion velocityχ+(figure 3(b))for different collisional parameterαare shown in figure 3.With an increase inα,the number of collisions between positive ions and neutrals is also increased and so the energy loss.Therefore,the energy gain by the positive ions as they move toward the probe/wall surface is relatively lesser for higherα.The magnitude ofψis increased with a slightly rapid rate for higherα.Also,a lower sheath thickness is recorded for higherα.

    Figure 4.Comparative study of charged species densities as a function of distance from the sheath edge to probe/wall position for electropositive(thin lines)and electronegative plasma(thick lines)when=0.1, β?=10, β+=5, q=0.5 and α=0.1.Here,Ω?0=0 corresponds to electropositive plasma.

    A comparative study of the charged species densities for electropositive and electronegative plasma is depicted in figure 4.Here,Ω?0=0 and Ω?0=2 correspond to the cases of electropositive and electronegative plasmas,respectively.The densities of the charged species are reduced with a considerable rate in the case of electronegative plasma,whereas for the case of electropositive plasma,sheath thickness of higher magnitude is resulted.

    We can discuss the validity of the range of electron-tonegative ion temperature ratio β?keeping in mind the experimental studies of Ghim and Hershkowitz[41]who investigated a low-pressure electronegative plasma(Ar-O2)through Langmuir probe.They observed the Boltzmann distribution of the negative ions for the temperature range of 0.06±0.02 eV with the resulting parameters ne=3.8×109cm?3and Te=0.69 eV.Corresponding to this experimental data,the temperature ratio β?in our calculations lies in the range of 8.625-17.25.In figures 2-4,the value of β?was chosen as 10,which lies in the desired range obtained experimentally.On the other hand,Borgohain and Saharia[13]have considered the range 0<β?<20 in electronegative plasma with q non-extensive electrons and cold positive ions.In order to further explore the process,we had chosen the range 1<β?<30 only in figure 1.This might be justified for the low-pressure plasmas,where the temperatures of ions and electrons less than 1 eV(with electron temperature even a little more than 1 eV)are generally attained for both the cases,i.e.when negative ions have similar and miniatured temperature in comparison to that of the electrons.Since we discussed all the results keeping β?=10,the conclusions drawn in the manuscript are well-meant.

    In the present theoretical model,the sheath thickness has been normalized with the Debye length(λde).In un-normalized form,for collisional electronegative plasma,the sheath thickness has been calculated and found to be of the order of 1.26 mm for the non-extensive distributed electrons and of the order of 0.217 mm for the Boltzmann distributed electrons.For collision-less electronegative plasma,the sheath thickness amounts to 1.3 mm and 0.222 mm for the non-extensive distributed electrons and the Boltzmann distributed electrons,respectively.The sheath of 0.5 mm thickness is found to be formed for the Boltzmann distributed electrons in collision-less plasma that does not have negative ions(electropositive plasma).Han et al[55]have experimentally determined the sheath thickness of the order of 0.36 mm for the electropositive plasma.Hence,the calculated values of the sheath thickness based on our modelling and the experimental value are close.

    The magnitude of the Debye length will reduce with an increment in the plasma density,this in turn results in the reduction of the magnitude of the sheath thickness.In our theoretical model,when the plasma density is increased from 2.5× 1010to 9.5× 1010cm?3,the value of the sheath thickness is found to be reduced from 1.26 to 0.64 mm for the non-extensive distributed electrons,whereas 0.217 to 0.11 mm for the Boltzmann distributed electrons.Consistent to our observation,Han et al[55]also have experimentally determined the reduction in the value of the sheath thickness from 0.36 to 0.28 mm when the plasma density was increased from2.5× 1010to9.5× 1010cm?3.

    We can discuss qualitatively the effect of temperature gradient(spatial variation of the temperature of charged species)on the sheath formation.The behaviour of the sheath is expected to be modified once we consider the temperature gradient.For example,we may observe more dips in the net space charge profile(figure 2(c))and also the sheath thickness may vary.However,the effect of temperature gradient on the sheath thickness may not be significant in view of the smaller temperature-gradient-driven drift(force)in comparison to the one driven by pressure-gradient/thermal pressure.

    Finally,this is worth mentioning that our results shall play an advantageous role in plasma systems where the temperature of the positive ions and the presence of collisions between the ions and neutrals have a significant effect on the sheath formed at material’s surface; hence,the plasma processing and plasma-surface interaction can be understood.These results will also be beneficial in the plasma systems like fusion[56]and astrophysical plasmas where the distribution of the particles is far away from their usual Boltzmann distribution.

    5.Conclusions

    The dependence of minimum allowed positive ion velocity at the sheath edge(for the formation of sheath)on the positive and negative ion temperatures,electronegativity,collisional parameter and non-extensivity was understood.When collisions between the positive ions and the neutrals are considered,then these ions are found to enter in the sheath regime even at lower velocities than the usual Bohm velocity,which means the Bohm’s criterion is modified.The sheath thickness is reduced with an increment in the temperature of the positive ions and the collisional parameter.The energy gain by the positive ions during their movement towards the probe/wall position is relatively lesser for the case of higher collisional parameter.The distribution of all the charged species densities for the cases of electropositive and electronegative plasma was also compared and noteworthy modifications were observed,proving the role of negative ions in plasmasurface interaction process.

    Acknowledgments

    Rajat Dhawan acknowledges the Council of Scientific and Industrial Research(CSIR),Government of India for providing financial support(Grant Reference Number:09/086(1289)/2017-EMR-1).

    午夜福利18| 亚洲男人天堂网一区| 操出白浆在线播放| 久久中文看片网| 神马国产精品三级电影在线观看 | 精品不卡国产一区二区三区| aaaaa片日本免费| 亚洲欧美一区二区三区黑人| 久久婷婷人人爽人人干人人爱 | 亚洲黑人精品在线| 99精品欧美一区二区三区四区| 国产高清视频在线播放一区| 午夜福利影视在线免费观看| 午夜久久久在线观看| 丝袜人妻中文字幕| 黄色视频不卡| 午夜福利18| 亚洲人成网站在线播放欧美日韩| 中文字幕av电影在线播放| 国产麻豆69| 亚洲色图 男人天堂 中文字幕| 亚洲av电影在线进入| 国产精品香港三级国产av潘金莲| 成人特级黄色片久久久久久久| 免费一级毛片在线播放高清视频 | 色哟哟哟哟哟哟| 色播在线永久视频| 岛国在线观看网站| 欧美日韩精品网址| 九色亚洲精品在线播放| 国产成+人综合+亚洲专区| √禁漫天堂资源中文www| 亚洲精品久久国产高清桃花| 一级片免费观看大全| 亚洲精品久久国产高清桃花| 欧美成人性av电影在线观看| 岛国视频午夜一区免费看| 国产精品影院久久| 国产99白浆流出| 99久久久亚洲精品蜜臀av| 老司机靠b影院| 男女午夜视频在线观看| 伊人久久大香线蕉亚洲五| 亚洲欧美精品综合一区二区三区| 亚洲国产日韩欧美精品在线观看 | 久久精品aⅴ一区二区三区四区| 国产男靠女视频免费网站| 最好的美女福利视频网| 涩涩av久久男人的天堂| 亚洲一区二区三区色噜噜| 老司机深夜福利视频在线观看| 中文字幕久久专区| 啦啦啦韩国在线观看视频| 多毛熟女@视频| 国产99久久九九免费精品| 亚洲 欧美一区二区三区| 色综合婷婷激情| 亚洲avbb在线观看| 国产精品av久久久久免费| 99国产精品免费福利视频| 久久精品国产清高在天天线| 久久天堂一区二区三区四区| 欧美日韩黄片免| 最新在线观看一区二区三区| 91国产中文字幕| 十八禁人妻一区二区| 国产成人影院久久av| 黄片大片在线免费观看| 欧美日韩乱码在线| 啦啦啦 在线观看视频| 亚洲视频免费观看视频| 丁香欧美五月| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费成人在线视频| 精品一品国产午夜福利视频| 国产黄a三级三级三级人| 两个人视频免费观看高清| 亚洲专区中文字幕在线| 韩国精品一区二区三区| 欧美在线黄色| 黄片小视频在线播放| 亚洲精品美女久久av网站| 老汉色av国产亚洲站长工具| 国产精品久久久久久精品电影 | 不卡一级毛片| 在线观看66精品国产| 精品不卡国产一区二区三区| 久久精品91蜜桃| 欧美一区二区精品小视频在线| 在线观看www视频免费| 午夜两性在线视频| 欧美精品亚洲一区二区| 亚洲欧美激情在线| 国产成人欧美| 欧美+亚洲+日韩+国产| 亚洲 国产 在线| 人人妻人人澡欧美一区二区 | 母亲3免费完整高清在线观看| 51午夜福利影视在线观看| 国产亚洲精品久久久久5区| 中国美女看黄片| 久久久精品国产亚洲av高清涩受| 无人区码免费观看不卡| 操美女的视频在线观看| 亚洲精品中文字幕一二三四区| 久久久国产精品麻豆| 亚洲九九香蕉| 一边摸一边抽搐一进一小说| 制服诱惑二区| 色尼玛亚洲综合影院| 中文字幕久久专区| 一本大道久久a久久精品| 老司机在亚洲福利影院| 嫩草影视91久久| 欧美黄色片欧美黄色片| 亚洲精品粉嫩美女一区| 亚洲人成77777在线视频| 国产欧美日韩一区二区三| 97人妻精品一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 国产高清videossex| 在线av久久热| 极品人妻少妇av视频| 热99re8久久精品国产| 欧美色视频一区免费| 两性夫妻黄色片| 大型av网站在线播放| av视频在线观看入口| 叶爱在线成人免费视频播放| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲在线自拍视频| 国产av一区在线观看免费| 国产精品久久电影中文字幕| 欧美成人免费av一区二区三区| 日韩高清综合在线| 丝袜美腿诱惑在线| 亚洲狠狠婷婷综合久久图片| 亚洲男人天堂网一区| 久久精品国产亚洲av香蕉五月| 99re在线观看精品视频| 亚洲av成人不卡在线观看播放网| 身体一侧抽搐| 亚洲电影在线观看av| 精品国产超薄肉色丝袜足j| 少妇熟女aⅴ在线视频| 精品高清国产在线一区| 欧美大码av| 国产人伦9x9x在线观看| 老司机福利观看| 亚洲avbb在线观看| e午夜精品久久久久久久| 别揉我奶头~嗯~啊~动态视频| 高清毛片免费观看视频网站| av超薄肉色丝袜交足视频| 天天添夜夜摸| 亚洲精品国产精品久久久不卡| 亚洲熟妇中文字幕五十中出| 免费在线观看完整版高清| 亚洲精品久久成人aⅴ小说| 97人妻精品一区二区三区麻豆 | 成人精品一区二区免费| 久久 成人 亚洲| 午夜日韩欧美国产| 国产成+人综合+亚洲专区| 看黄色毛片网站| 精品国产国语对白av| 久久精品国产综合久久久| www日本在线高清视频| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久人妻精品电影| 亚洲精品美女久久久久99蜜臀| 亚洲精品美女久久久久99蜜臀| 久久久久久久午夜电影| 久久精品人人爽人人爽视色| 亚洲av电影在线进入| 国产伦人伦偷精品视频| 一个人观看的视频www高清免费观看 | 亚洲 欧美一区二区三区| 欧美日本视频| 身体一侧抽搐| 久久精品国产清高在天天线| 99精品欧美一区二区三区四区| 国产精品二区激情视频| 美女高潮喷水抽搐中文字幕| 99精品欧美一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩无卡精品| 欧美在线黄色| 两个人免费观看高清视频| 婷婷六月久久综合丁香| 深夜精品福利| 啦啦啦 在线观看视频| 亚洲av电影在线进入| 18禁美女被吸乳视频| 1024视频免费在线观看| 日本一区二区免费在线视频| 一区在线观看完整版| 亚洲人成电影观看| 午夜精品久久久久久毛片777| 国产麻豆69| 精品日产1卡2卡| 亚洲第一电影网av| 中文字幕久久专区| 香蕉久久夜色| 久久久久国产精品人妻aⅴ院| 在线观看66精品国产| 久久久久久免费高清国产稀缺| 亚洲人成网站在线播放欧美日韩| 亚洲av五月六月丁香网| 国产一级毛片七仙女欲春2 | 国产精品亚洲一级av第二区| 亚洲一区二区三区色噜噜| 国产av在哪里看| 黄片小视频在线播放| 视频区欧美日本亚洲| 51午夜福利影视在线观看| 久久中文字幕一级| 色播亚洲综合网| 日本一区二区免费在线视频| 最新在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 日韩大尺度精品在线看网址 | 一二三四社区在线视频社区8| 一个人免费在线观看的高清视频| 一夜夜www| a在线观看视频网站| 黄色片一级片一级黄色片| 欧美另类亚洲清纯唯美| 久久久久久久久免费视频了| 咕卡用的链子| 侵犯人妻中文字幕一二三四区| 18禁观看日本| 亚洲精品久久成人aⅴ小说| 在线免费观看的www视频| 亚洲中文av在线| 高清黄色对白视频在线免费看| 久久性视频一级片| 一进一出抽搐动态| 国产激情久久老熟女| 看免费av毛片| 在线十欧美十亚洲十日本专区| 一级黄色大片毛片| 好男人电影高清在线观看| 一a级毛片在线观看| 黄色视频不卡| 亚洲国产精品成人综合色| 99在线视频只有这里精品首页| 夜夜夜夜夜久久久久| 欧美国产日韩亚洲一区| 久久青草综合色| 亚洲色图av天堂| 日本免费一区二区三区高清不卡 | 久久久久久亚洲精品国产蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 男男h啪啪无遮挡| 免费无遮挡裸体视频| 成人国产一区最新在线观看| 日本 av在线| av有码第一页| 亚洲国产欧美一区二区综合| 午夜老司机福利片| 久久久久精品国产欧美久久久| 国产成人精品久久二区二区免费| 成年版毛片免费区| 精品电影一区二区在线| 亚洲精品久久成人aⅴ小说| 亚洲av日韩精品久久久久久密| 69av精品久久久久久| 麻豆国产av国片精品| 十分钟在线观看高清视频www| 国产精品一区二区免费欧美| 久久精品亚洲精品国产色婷小说| 精品国产亚洲在线| 好看av亚洲va欧美ⅴa在| 成人特级黄色片久久久久久久| 亚洲伊人色综图| 亚洲男人天堂网一区| 日本a在线网址| 国产成人av教育| 午夜福利成人在线免费观看| 怎么达到女性高潮| 欧美不卡视频在线免费观看 | 美女 人体艺术 gogo| 国产亚洲欧美精品永久| 中文字幕av电影在线播放| 曰老女人黄片| 宅男免费午夜| 老鸭窝网址在线观看| 午夜老司机福利片| 啦啦啦观看免费观看视频高清 | 成人免费观看视频高清| a在线观看视频网站| 欧美一级毛片孕妇| 亚洲午夜理论影院| 纯流量卡能插随身wifi吗| 午夜福利欧美成人| 国产精品爽爽va在线观看网站 | 国产av一区二区精品久久| 亚洲精品国产精品久久久不卡| 中亚洲国语对白在线视频| 久久香蕉激情| 日韩欧美在线二视频| 韩国av一区二区三区四区| 老司机靠b影院| 日韩欧美一区二区三区在线观看| 免费看美女性在线毛片视频| 久9热在线精品视频| 久久久久精品国产欧美久久久| 无限看片的www在线观看| 亚洲 国产 在线| 国产精品一区二区三区四区久久 | 一级a爱片免费观看的视频| 黄色视频不卡| 黄片大片在线免费观看| 国产激情久久老熟女| 久久精品国产综合久久久| 91字幕亚洲| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美一区二区综合| 99久久精品国产亚洲精品| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 91成人精品电影| 久久精品人人爽人人爽视色| 久久九九热精品免费| 9色porny在线观看| 激情在线观看视频在线高清| 免费看a级黄色片| 国产三级黄色录像| 国产成人影院久久av| 校园春色视频在线观看| 欧美日韩瑟瑟在线播放| 村上凉子中文字幕在线| 国产成人精品在线电影| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 亚洲国产毛片av蜜桃av| 成在线人永久免费视频| 无人区码免费观看不卡| 一级毛片女人18水好多| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 夜夜爽天天搞| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产综合久久久| 男人舔女人的私密视频| www.999成人在线观看| 一区二区三区精品91| 国产精品久久电影中文字幕| 女性被躁到高潮视频| 亚洲国产精品sss在线观看| 国产av精品麻豆| 美女 人体艺术 gogo| 91精品国产国语对白视频| 悠悠久久av| 亚洲成av片中文字幕在线观看| 大香蕉久久成人网| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看 | 精品国产国语对白av| 午夜精品国产一区二区电影| 国产黄a三级三级三级人| 69精品国产乱码久久久| 丁香六月欧美| 嫩草影视91久久| 午夜福利免费观看在线| 18禁裸乳无遮挡免费网站照片 | 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 黄色毛片三级朝国网站| 免费在线观看影片大全网站| 亚洲,欧美精品.| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 黄色 视频免费看| 亚洲男人天堂网一区| 两性夫妻黄色片| 精品一区二区三区av网在线观看| 美女国产高潮福利片在线看| 国产高清激情床上av| 1024视频免费在线观看| 九色国产91popny在线| 妹子高潮喷水视频| 国产黄a三级三级三级人| 69精品国产乱码久久久| 亚洲av片天天在线观看| 精品人妻1区二区| 制服丝袜大香蕉在线| 免费久久久久久久精品成人欧美视频| 欧美乱色亚洲激情| 婷婷精品国产亚洲av在线| 亚洲九九香蕉| 亚洲av电影不卡..在线观看| 免费无遮挡裸体视频| 一区二区日韩欧美中文字幕| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 中文亚洲av片在线观看爽| 亚洲视频免费观看视频| 成人手机av| 国产精品野战在线观看| ponron亚洲| 丝袜美腿诱惑在线| 91麻豆av在线| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 在线播放国产精品三级| 亚洲成人久久性| 国产一区二区激情短视频| 日本vs欧美在线观看视频| 超碰成人久久| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 波多野结衣巨乳人妻| 99国产极品粉嫩在线观看| 欧美激情高清一区二区三区| 女人精品久久久久毛片| 岛国在线观看网站| 日韩欧美一区二区三区在线观看| bbb黄色大片| www日本在线高清视频| 亚洲自拍偷在线| 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 老司机靠b影院| 国产精品自产拍在线观看55亚洲| 亚洲成国产人片在线观看| 亚洲欧美日韩另类电影网站| 国产精品一区二区三区四区久久 | 一二三四社区在线视频社区8| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡免费网站照片 | 亚洲人成电影观看| 日日夜夜操网爽| 午夜福利18| 久久精品成人免费网站| 精品国内亚洲2022精品成人| 黑人巨大精品欧美一区二区蜜桃| 久久中文字幕一级| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 亚洲熟妇中文字幕五十中出| 精品一区二区三区四区五区乱码| 中文字幕精品免费在线观看视频| 久热这里只有精品99| 制服诱惑二区| 女人爽到高潮嗷嗷叫在线视频| 精品国产美女av久久久久小说| 国产av又大| 一本大道久久a久久精品| 国产精品久久久人人做人人爽| 欧美成狂野欧美在线观看| 久久精品亚洲精品国产色婷小说| 日韩 欧美 亚洲 中文字幕| 黄片大片在线免费观看| 国产精品野战在线观看| 91成人精品电影| 成人手机av| 黑人操中国人逼视频| 国产在线观看jvid| 如日韩欧美国产精品一区二区三区| netflix在线观看网站| 亚洲国产看品久久| 一级作爱视频免费观看| 老司机深夜福利视频在线观看| 国产精品,欧美在线| 国内精品久久久久久久电影| 日韩精品中文字幕看吧| 亚洲第一青青草原| 国内精品久久久久久久电影| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 午夜久久久在线观看| 久久婷婷成人综合色麻豆| 男女之事视频高清在线观看| 啦啦啦观看免费观看视频高清 | 69精品国产乱码久久久| 757午夜福利合集在线观看| 在线免费观看的www视频| 十分钟在线观看高清视频www| 精品不卡国产一区二区三区| 久久中文字幕一级| 九色国产91popny在线| 色在线成人网| 制服诱惑二区| 国产乱人伦免费视频| 亚洲av电影在线进入| 国产片内射在线| 亚洲美女黄片视频| 真人一进一出gif抽搐免费| 国产伦一二天堂av在线观看| 黄片小视频在线播放| 久久精品国产99精品国产亚洲性色 | 中文字幕av电影在线播放| 久久狼人影院| av片东京热男人的天堂| 国产成人欧美| 午夜福利在线观看吧| 一本大道久久a久久精品| 亚洲av成人av| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 久久久久久久午夜电影| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 黑人巨大精品欧美一区二区mp4| 51午夜福利影视在线观看| 丁香六月欧美| 99热只有精品国产| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 超碰成人久久| 亚洲av电影在线进入| 久久青草综合色| 丰满的人妻完整版| 色综合欧美亚洲国产小说| 精品国产一区二区三区四区第35| 国产麻豆69| 悠悠久久av| 一本久久中文字幕| 久久精品亚洲熟妇少妇任你| 国产精品爽爽va在线观看网站 | 又大又爽又粗| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女| xxx96com| 婷婷六月久久综合丁香| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 亚洲人成网站在线播放欧美日韩| 日韩av在线大香蕉| 欧美性长视频在线观看| or卡值多少钱| 黄色毛片三级朝国网站| 国产一区二区在线av高清观看| 中文字幕久久专区| 变态另类丝袜制服| 国产精品久久电影中文字幕| 精品久久久久久,| 欧美色欧美亚洲另类二区 | 这个男人来自地球电影免费观看| 黄色成人免费大全| www.www免费av| 日韩中文字幕欧美一区二区| 中国美女看黄片| 国产精品一区二区精品视频观看| 亚洲aⅴ乱码一区二区在线播放 | 麻豆av在线久日| 色老头精品视频在线观看| 高清黄色对白视频在线免费看| 久久精品亚洲熟妇少妇任你| 精品免费久久久久久久清纯| 久久精品亚洲熟妇少妇任你| 搡老妇女老女人老熟妇| 中文字幕最新亚洲高清| 国产av在哪里看| 女警被强在线播放| 亚洲国产精品合色在线| 亚洲成av片中文字幕在线观看| 欧美久久黑人一区二区| 1024香蕉在线观看| 久久影院123| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 在线永久观看黄色视频| 久久久久精品国产欧美久久久| 美女午夜性视频免费| 校园春色视频在线观看| avwww免费| 久久伊人香网站| 黄色女人牲交| 日韩欧美国产在线观看| 精品国产美女av久久久久小说| svipshipincom国产片| 国产av一区二区精品久久| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 精品久久蜜臀av无| 在线视频色国产色| 亚洲成国产人片在线观看| 人人妻人人澡欧美一区二区 | 在线观看www视频免费| 青草久久国产| 亚洲精品在线美女| 男人操女人黄网站| 99久久久亚洲精品蜜臀av| 国产av又大| 欧美一区二区精品小视频在线| 免费在线观看黄色视频的| 嫩草影视91久久| 99久久精品国产亚洲精品| 男女午夜视频在线观看| 狂野欧美激情性xxxx| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| 久热这里只有精品99| 亚洲天堂国产精品一区在线| 午夜福利,免费看| 脱女人内裤的视频| 成人亚洲精品一区在线观看| 黑人操中国人逼视频| 欧美激情高清一区二区三区| 不卡av一区二区三区| 欧美在线一区亚洲| 欧美成人午夜精品| 后天国语完整版免费观看| 午夜福利高清视频|