張 敏,吳崇友,陳 旭,朱道靜,金 梅,王 剛
近紅外光譜式聯(lián)合收割機(jī)谷物蛋白質(zhì)含量檢測系統(tǒng)設(shè)計(jì)
張 敏,吳崇友※,陳 旭,朱道靜,金 梅,王 剛
(農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
為了實(shí)現(xiàn)谷物聯(lián)合收割機(jī)收獲時(shí)實(shí)時(shí)在線檢測谷物的蛋白質(zhì)含量并記錄采樣地理位置信息,研發(fā)了一種基于近紅外光譜原理的谷物蛋白質(zhì)含量在線檢測系統(tǒng),系統(tǒng)主要由近紅外光譜傳感器模塊、螺旋采樣輸送機(jī)構(gòu)、控制模塊、GPS/北斗定位模塊、工控顯現(xiàn)一體機(jī)等組成。谷物聯(lián)合收割機(jī)近紅外光譜式蛋白質(zhì)含量在線檢測系統(tǒng)工作時(shí),當(dāng)聯(lián)合收割機(jī)出糧攪籠排出的谷物經(jīng)過螺旋采樣輸送機(jī)構(gòu),采樣機(jī)構(gòu)的步進(jìn)電機(jī)根據(jù)檢測速率要求由控制器控制并間斷進(jìn)行谷物輸送,控制器同時(shí)控制近紅外光譜傳感器在步進(jìn)電機(jī)停止轉(zhuǎn)動(dòng)時(shí)進(jìn)行光譜采樣,谷物的近紅外光譜和GPS/北斗定位模塊位置信號(hào)等數(shù)據(jù)由RS485總線傳輸至上位機(jī)。編制了近紅外傳感器和采樣機(jī)構(gòu)等的控制與數(shù)據(jù)處理分析軟件,經(jīng)谷物蛋白質(zhì)含量預(yù)測模型處理后,將谷物蛋白質(zhì)、采樣位置信息等實(shí)時(shí)顯示在終端上并保存。為了驗(yàn)證谷物蛋白質(zhì)含量預(yù)測模型及在線檢測系統(tǒng)的性能,開展了室內(nèi)標(biāo)定和田間系統(tǒng)動(dòng)態(tài)測試試驗(yàn),小麥蛋白質(zhì)含量預(yù)測模型的決定系數(shù)2為0.865,絕對(duì)誤差范圍為-0.96%~1.22%,相對(duì)誤差范圍在-7.30%~9.53%,預(yù)測標(biāo)準(zhǔn)差值為0.638%;水稻蛋白質(zhì)含量預(yù)測模型的決定系數(shù)2為0.853,絕對(duì)誤差范圍為-0.60%~1.00%,相對(duì)誤差范圍為-8.47%~9.71%,預(yù)測標(biāo)準(zhǔn)差值為0.516%。系統(tǒng)田間測試試驗(yàn)表明,小麥蛋白質(zhì)含量的最大相對(duì)誤差為-6.69%,水稻蛋白質(zhì)含量的最大相對(duì)誤差為-8.02%,采樣分析時(shí)間間隔對(duì)系統(tǒng)測試精度的影響不顯著,系統(tǒng)穩(wěn)定性和檢測精度達(dá)到田間谷物蛋白質(zhì)在線檢測需要,為精準(zhǔn)農(nóng)業(yè)作業(yè)提供了科學(xué)依據(jù)。
谷物;近紅外光譜;蛋白質(zhì);聯(lián)合收割機(jī);無損在線檢測
水稻、小麥?zhǔn)鞘澜缟蠌V泛種植的農(nóng)作物,是人類的主要口糧,也是人們獲取蛋白質(zhì)的主要來源[1-2]。谷物中蛋白質(zhì)含量也是反映谷物品質(zhì)的一項(xiàng)重要指標(biāo)[3-4],通過測試田間谷物蛋白質(zhì)含量,獲取谷物蛋白質(zhì)在田間的空間分布差異性,建立谷物蛋白質(zhì)田間分布圖譜,也是精確農(nóng)業(yè)中田間氮管理決策的依據(jù)[5-8]。
基于聯(lián)合收割機(jī)的谷物蛋白質(zhì)含量在線快速檢測系統(tǒng)是獲取田間谷物蛋白質(zhì)含量差異空間分布信息的必要條件,美國、澳大利亞、日本等發(fā)達(dá)國家已開始開展基于近紅外光譜法小麥蛋白質(zhì)含量的聯(lián)合收割機(jī)實(shí)時(shí)采集系統(tǒng)研究,現(xiàn)已開發(fā)了多種型號(hào)的谷物近紅外光譜采集傳感器[9-13],如Zeltex Accu Harves傳感器等,日本久保田KSAS ER6120收割機(jī)已可在收割過程或收割后測量作物的蛋白質(zhì)含量[14]。劉玲玲等[15-20]基于近紅外光譜技術(shù)進(jìn)行了谷物蛋白質(zhì)測試儀器的研發(fā)并開展了室內(nèi)測試。但目前谷物蛋白質(zhì)含量測試技術(shù)研究主要以單一檢測功能為主,還未開展聯(lián)合收割機(jī)作業(yè)條件下的多系統(tǒng)技術(shù)集成研究,尤其對(duì)收獲時(shí)物料流動(dòng)狀態(tài)下采樣要求及采樣頻率等與檢測精度與系統(tǒng)穩(wěn)定性之間的關(guān)系未開展相應(yīng)研究。
本研究的目的是基于近紅外光譜原理,設(shè)計(jì)間歇螺旋輸送采樣機(jī)構(gòu),集成采樣控制技術(shù)與定位技術(shù),研發(fā)一種可用于谷物聯(lián)合收割機(jī)的谷物蛋白質(zhì)含量無損在線檢測與采樣定位系統(tǒng),構(gòu)建水稻、小麥的蛋白質(zhì)含量近紅外光譜預(yù)測模型,分別開展采樣機(jī)構(gòu)與分析系統(tǒng)集成、軟件編制和系統(tǒng)動(dòng)態(tài)測試,對(duì)系統(tǒng)的穩(wěn)定性和準(zhǔn)確性進(jìn)行測試,實(shí)現(xiàn)谷物聯(lián)合收獲時(shí)谷物蛋白質(zhì)含量信息的無損快速檢測和采樣地理位置信息的實(shí)時(shí)記錄與保存,為后續(xù)田間谷物蛋白質(zhì)含量分布圖譜建立提供技術(shù)支持。
近紅外光譜式聯(lián)合收割機(jī)谷物蛋白質(zhì)含量檢測系統(tǒng)總體結(jié)構(gòu)如圖1所示,系統(tǒng)主要由螺旋采樣輸送機(jī)構(gòu)、近紅外光譜傳感器模塊、GPS/北斗定位模塊,步進(jìn)電機(jī)控制模塊、工控顯示一體機(jī)等組成。近紅外光譜傳感器采用TI DLP NIR scan Nano,波長采樣范圍900~1 700 nm。GPS/北斗定位模塊采用GNSS100B GNSS雙模模塊接收器。步進(jìn)電機(jī)由新動(dòng)力DSP28335 EU10開發(fā)板組合新動(dòng)力IR2136電機(jī)驅(qū)動(dòng)板進(jìn)行驅(qū)動(dòng)控制,工控顯示一體機(jī)(英特爾賽揚(yáng)J1900 CPU、內(nèi)存2 G、硬盤容量32 G、操作系統(tǒng)Window 7、顯示屏381mm具有GPS、RS232、RS485和CAN等通信接口,谷物蛋白質(zhì)含量檢測系統(tǒng)顯示終端內(nèi)嵌采樣和光譜采集控制系統(tǒng)和谷物蛋白質(zhì)含量預(yù)測模型。
該系統(tǒng)的螺旋采樣輸送機(jī)構(gòu)固定在谷物聯(lián)合收割機(jī)出糧攪籠出口處,螺旋采樣輸送機(jī)構(gòu)由步進(jìn)電機(jī)驅(qū)動(dòng),控制步進(jìn)電機(jī)的電機(jī)控制器由工控機(jī)通過RS485總線根據(jù)采樣時(shí)序?qū)Σ竭M(jìn)電機(jī)進(jìn)行控制,近紅外光譜傳感器采集谷物光譜數(shù)據(jù)經(jīng)處理解析后由RS485總線傳輸?shù)焦た匾惑w機(jī),經(jīng)過谷物蛋白質(zhì)預(yù)測模型處理后得到谷物蛋白質(zhì)含量信息,獲得的谷物蛋白質(zhì)含量信息、采樣分析地理位置等信息實(shí)時(shí)動(dòng)態(tài)顯示在系統(tǒng)終端上,并對(duì)數(shù)據(jù)進(jìn)行實(shí)時(shí)存儲(chǔ)。
近紅外光譜式谷物蛋白質(zhì)在線檢測系統(tǒng)硬件構(gòu)成如圖2a所示,系統(tǒng)由谷物近紅外光譜數(shù)據(jù)采集和地理位置信息采集單元,步進(jìn)電機(jī)控制單元和數(shù)據(jù)處理與顯示單元等幾個(gè)部分組成。采集的谷物近紅外光譜數(shù)據(jù)信息經(jīng)預(yù)測模型實(shí)時(shí)計(jì)算并顯示與存儲(chǔ)。其中,近紅外光譜信息采集單元是谷物蛋白質(zhì)含量在線檢測系統(tǒng)的核心部件。
谷物近紅外光譜采集工作原理如圖2b所示。聯(lián)合收割機(jī)出糧口的部分物料進(jìn)入谷物近紅外光譜采樣系統(tǒng)的谷物進(jìn)料口,谷物在由步進(jìn)電機(jī)驅(qū)動(dòng)的螺旋推送葉片的作用下向出料口移動(dòng),螺旋采樣機(jī)構(gòu)側(cè)壁開有采樣窗口,采樣窗口固定石英玻璃,近紅外光譜傳感器通過采樣窗口采集通過采樣窗口的谷物近紅外光譜信息。
采樣機(jī)構(gòu)的步進(jìn)電機(jī)根據(jù)檢測速率要求由控制器控制并間斷進(jìn)行谷物輸送,即在采集谷物近紅外光譜信息時(shí),控制步進(jìn)電機(jī)停止轉(zhuǎn)動(dòng)。螺旋輸送采用機(jī)構(gòu)采用水平布置方式,采樣窗口與谷物進(jìn)料口錯(cuò)位120°,利用谷物推送摩擦和重力原理降低谷物中灰塵在采樣窗口沉積,避免谷物籽粒較少時(shí)采集不到谷物光譜信息等干擾因素。為避免對(duì)谷物產(chǎn)生擠壓作用導(dǎo)致籽粒破碎,螺旋采樣機(jī)構(gòu)的螺旋采用等螺距單頭螺旋和實(shí)體螺旋葉片。
近紅外光譜式谷物蛋白質(zhì)在線檢測系統(tǒng)總體框架如圖3所示,控制器同時(shí)控制近紅外光譜傳感器進(jìn)行采樣,谷物近紅外光譜采樣光譜數(shù)據(jù)和GPS/北斗定位模塊采集的定位信號(hào)由RS485總線傳輸至上位機(jī)。近紅外光譜傳感器的工作電壓為5 V,步進(jìn)電機(jī)的工作電壓為24 V,工控顯示一體機(jī)的工作電壓為12 V,電機(jī)控制器工作電壓為5~24 V,GPS/北斗模塊工作電壓5 V。近紅外光譜傳感器設(shè)計(jì)有保護(hù)罩,采用密封防護(hù),避免室外作業(yè)雨水和灰塵等損壞傳感器。
谷物聯(lián)合收割機(jī)的近紅外光譜式谷物蛋白質(zhì)含量在線檢測系統(tǒng)基于Microsoft Visual Studio 2019 平臺(tái)開發(fā),采樣C#語言進(jìn)行程序編寫,實(shí)現(xiàn)谷物聯(lián)合收割機(jī)作業(yè)時(shí)的谷物近紅外光譜信息、谷物蛋白質(zhì)含量、地理位置信息等的接收、解析、顯示、存儲(chǔ)、圖表查看,采樣機(jī)構(gòu)螺旋輸送軸轉(zhuǎn)速、采樣分析頻率等的參數(shù)設(shè)置和控制功能。系統(tǒng)采用RS485總線通信,采樣時(shí)間間隔最短可設(shè)置為5 s。
軟件系統(tǒng)主要由系統(tǒng)參數(shù)設(shè)置模塊、數(shù)據(jù)處理與控制模塊、數(shù)據(jù)顯示與存儲(chǔ)等3個(gè)模塊組成。各部分功能如下:1)基本參數(shù)設(shè)置?;A(chǔ)參數(shù)設(shè)置包括采樣時(shí)間間隔、分析對(duì)象(小麥、水稻)、步進(jìn)電機(jī)轉(zhuǎn)速、數(shù)據(jù)存儲(chǔ)位置等基本參數(shù)設(shè)置。2)數(shù)據(jù)處理與控制模塊。數(shù)據(jù)處理與控制包括對(duì)谷物近紅外光譜傳感器采集的光譜信號(hào)、GPS/北斗地理位置信號(hào)的接收和解析,谷物蛋白質(zhì)含量預(yù)測模型的計(jì)算、步進(jìn)電機(jī)步數(shù)控制。3)數(shù)據(jù)顯示與存儲(chǔ)功能。數(shù)據(jù)顯示包括實(shí)現(xiàn)谷物聯(lián)合收割機(jī)作業(yè)過程中采樣實(shí)時(shí)位置、谷物蛋白質(zhì)含量信息的數(shù)據(jù)動(dòng)態(tài)顯示,也包括測試過程數(shù)據(jù)的圖表顯示與查看,實(shí)時(shí)采集的全部數(shù)據(jù)以Excel格式實(shí)時(shí)存儲(chǔ)在設(shè)定的存儲(chǔ)位置。
近紅外光譜分析是一種間接分析技術(shù)[21-23],在谷物蛋白質(zhì)含量快速測量方法中,利用近紅外光譜法測量作物籽粒蛋白質(zhì)含量的方法已成熟,美國谷物化學(xué)師協(xié)會(huì)已把近紅外光譜法列為谷物蛋白質(zhì)含量的標(biāo)準(zhǔn)測試方法[24-29]。該方法是首先通過測量待分析樣品的近紅外光譜,并按照國家或公認(rèn)標(biāo)準(zhǔn)對(duì)樣品組分含量進(jìn)行精確測定,再根據(jù)近紅外光譜圖和組分含量值建立定量分析模型,最后根據(jù)定量模型對(duì)預(yù)測樣品進(jìn)行測定,谷物蛋白質(zhì)質(zhì)含量預(yù)測模型的具體建模過程如圖4所示。
谷物近紅外光譜數(shù)據(jù)的準(zhǔn)確性及定量分析模型的精確性直接影響后續(xù)待測樣品預(yù)測的準(zhǔn)確性。由于本系統(tǒng)采用無損檢測方式,谷物(水稻、小麥)為顆粒狀且在采樣窗口處隨機(jī)分布,在采集谷物近紅外光譜數(shù)據(jù)時(shí),需剔除異常樣品以及其他光譜噪聲影響[30],本文利用多元散射校正(MSC)方法對(duì)谷物(水稻、小麥)采集的光譜數(shù)據(jù)進(jìn)行預(yù)處理。
為對(duì)利用谷物近紅外光譜數(shù)據(jù)矩陣和谷物蛋白質(zhì)含量向量建立的偏最小二乘預(yù)測模型的準(zhǔn)確性進(jìn)行檢驗(yàn),采用預(yù)測標(biāo)準(zhǔn)差(RMSEP)和決定系數(shù)2對(duì)預(yù)測模型的性能進(jìn)行評(píng)價(jià)。
基于設(shè)計(jì)的近紅外光譜式聯(lián)合收割機(jī)谷物蛋白質(zhì)在線檢測軟硬件系統(tǒng),運(yùn)用TI DLP NIR scan Nano近紅外光譜傳感器,谷物采樣的近紅外光譜波長范圍設(shè)定為900~1 700 nm,波長寬度設(shè)置為4.68 nm,硬件自動(dòng)掃描6次取平均值作為一次近紅外光譜采樣數(shù)據(jù),一次采樣系統(tǒng)總用時(shí)3.525 s,按5 s時(shí)間間隔進(jìn)行采樣,對(duì)采集近紅外光譜信息后的樣品留樣并送檢。2017-2018年期間,分別在河北石家莊,江蘇大豐、泰州、如皋、南京等地對(duì)28個(gè)小麥品種和33個(gè)水稻品種在不同地塊的近紅外光譜進(jìn)行采集,共計(jì)獲得水稻和小麥近紅外光譜數(shù)據(jù)共400組。采集的水稻、小麥在900~1 700 nm的吸光度數(shù)據(jù)如圖5所示。
測試樣品委托青島科創(chuàng)質(zhì)量檢測有限公司依據(jù)GB 5009.5-2016 凱氏定氮法對(duì)小麥和水稻樣品進(jìn)行水分烘干后測定蛋白質(zhì)含量。對(duì)水稻和小麥近紅外光譜數(shù)據(jù)各隨機(jī)選取180組為建模集,20組為校驗(yàn)集。采用多元散射校正(Multiplicative Scatter Correction, MSC)方法對(duì)建模集的光譜數(shù)據(jù)進(jìn)行預(yù)處理,對(duì)校正后的光譜建模集采用偏最小二乘法進(jìn)行預(yù)測模型構(gòu)建,小麥和水稻預(yù)測模型的蛋白質(zhì)含量預(yù)測值的預(yù)測模型分析結(jié)果如圖6所示,小麥蛋白質(zhì)含量預(yù)測模型的決定系數(shù)2為0.865,水稻蛋白質(zhì)含量預(yù)測模型的決定系數(shù)2為0.853。
對(duì)水稻和小麥各20組校驗(yàn)集數(shù)據(jù),先運(yùn)用建模集求得的多元散射校正系數(shù)進(jìn)行校正,再運(yùn)用建模集建立的偏最小二乘谷物蛋白質(zhì)預(yù)測模型進(jìn)行分析,得水稻和小麥的蛋白質(zhì)含量測量結(jié)果與標(biāo)準(zhǔn)結(jié)果對(duì)比如表1所示。
谷物蛋白質(zhì)含量在線檢測系統(tǒng)標(biāo)定試驗(yàn)表明,小麥蛋白質(zhì)含量測試結(jié)果與實(shí)際測量結(jié)果的絕對(duì)誤差范圍為-0.96%~1.22%,相對(duì)誤差范圍在-7.30%~9.53%,預(yù)測標(biāo)準(zhǔn)差RMSEP值為0.638%。水稻蛋白質(zhì)含量測試結(jié)果與實(shí)際測量結(jié)果的絕對(duì)誤差范圍為-0.60%~1.00%,相對(duì)誤差在-8.47%~9.71%之間,預(yù)測標(biāo)準(zhǔn)差RMSEP值為0.516%,谷物蛋白質(zhì)含量預(yù)測模型的精度可以用于田間谷物蛋白質(zhì)含量預(yù)測。
表1 谷物樣品蛋白質(zhì)含量測量與預(yù)測結(jié)果
2018年11月和2019年6月在江蘇省泰州市紅旗農(nóng)場開展了水稻、小麥聯(lián)合收獲機(jī)田間收獲作業(yè)環(huán)境下的蛋白質(zhì)含量在線檢測系統(tǒng)性能試驗(yàn)。田間試驗(yàn)主要考察系統(tǒng)測試精度、穩(wěn)定性及采樣分析時(shí)間間隔對(duì)系統(tǒng)測試精確性的影響,近紅外光譜式谷物蛋白質(zhì)含量在線檢測系統(tǒng)安裝于本單位自研的4LZ-6T通用型谷物聯(lián)合收割機(jī)科研樣機(jī)上(割幅2.75 m,功率140馬力(約103 kW),糧箱體積2.5 m3,喂入量6.0 kg/s),分別選擇3個(gè)水稻和小麥品種作物長勢均勻的地塊進(jìn)行田間試驗(yàn),收割機(jī)前進(jìn)速度設(shè)定為1 m/s,收獲期3塊田間小麥含水率分別為16.52%、16.71%和16.34%,3塊田間水稻含水率分別為17.41%、17.46%和17.38%,采樣分析間隔分別設(shè)置5、8和11 s,每個(gè)采樣分析間隔進(jìn)行3次數(shù)據(jù)測試,系統(tǒng)田間試驗(yàn)測試情況及18次試驗(yàn)的小麥和水稻吸收光譜如圖7所示,水稻和小麥蛋白質(zhì)含量測試田間試驗(yàn)數(shù)據(jù)如表2所示。
按谷物蛋白質(zhì)采樣分析時(shí)間間隔和谷物品種進(jìn)行2因素單獨(dú)測試值進(jìn)行方差分析[31],運(yùn)用IBM SPSS Statistics 20統(tǒng)計(jì)分析軟件進(jìn)行方差分析,方差分析結(jié)果如表3所示。
由表3谷物蛋白質(zhì)田間試驗(yàn)方差分析可知,采樣時(shí)間間隔對(duì)系統(tǒng)測試精度的影響不顯著,在水稻蛋白質(zhì)含量測試中水稻品種的差異對(duì)測試結(jié)果的影響顯著,小麥的測試品種差異對(duì)小麥蛋白質(zhì)含量的影響不顯著,主要是選取的3個(gè)小麥品種的蛋白質(zhì)含量差異本身不明顯,3個(gè)水稻品種的蛋白質(zhì)含量差異明顯,也說明測試系統(tǒng)能區(qū)分不同谷物測試品種之間蛋白質(zhì)含量的差異。雖然采樣時(shí)間間隔對(duì)谷物蛋白質(zhì)含量測試的差異不顯著,由表2也可發(fā)現(xiàn),采樣分析時(shí)間隨著間隔延長,測試值趨于穩(wěn)定,說明采樣時(shí)間間隔延長有利于測試穩(wěn)定性提高。
田間試驗(yàn)中,小麥蛋白質(zhì)含量的最大相對(duì)誤差為-6.69%,水稻蛋白質(zhì)含量的最大誤差為-8.02%,谷物蛋白質(zhì)田間測試總體趨勢為負(fù)偏差,對(duì)系統(tǒng)田間工作狀況及系統(tǒng)實(shí)際運(yùn)行情況進(jìn)行分析,主要原因可能是由于谷物收獲時(shí)籽粒含有秸稈、穎殼等雜質(zhì),檢測時(shí)雜質(zhì)有可能會(huì)處于采樣窗口處,此時(shí)采樣機(jī)構(gòu)中谷物光譜采集狀態(tài)和實(shí)際建模時(shí)為潔凈籽粒狀態(tài)存在一定差異,此外,田間谷物水分、溫度等參數(shù)變化也可能會(huì)影響系統(tǒng)檢測的精度。
表2 谷物樣品蛋白質(zhì)含量田間測試數(shù)據(jù)表
表3 谷物蛋白質(zhì)田間試驗(yàn)方差分析表
注:*表示<0.05(顯著)。
Note: * shows significant difference (<0.05).
1)基于近紅外光譜原理設(shè)計(jì)的谷物聯(lián)合收割機(jī)蛋白質(zhì)含量在線檢測系統(tǒng),內(nèi)嵌谷物蛋白質(zhì)含量預(yù)測模型、采樣機(jī)構(gòu)控制系統(tǒng),可實(shí)現(xiàn)谷物聯(lián)合收獲作業(yè)時(shí)谷物蛋白質(zhì)含量、位置等信息的實(shí)時(shí)測量、顯示和數(shù)據(jù)存儲(chǔ)。
2)系統(tǒng)標(biāo)定試驗(yàn)結(jié)果表明,采用多元散射校正和偏最小二乘法建立的谷物蛋白質(zhì)含量預(yù)測模型,小麥蛋白質(zhì)含量測試絕對(duì)誤差范圍為-0.96%~1.22%,相對(duì)誤差范圍在-7.30%~9.53%,預(yù)測標(biāo)準(zhǔn)差值為0.638%。水稻蛋白質(zhì)含量測試絕對(duì)誤差范圍為-0.60%~1.00%,相對(duì)誤差在-8.47%~9.71%之間,預(yù)測標(biāo)準(zhǔn)差值為0.516%,谷物蛋白質(zhì)含量預(yù)測模型的精度可以用于田間谷物蛋白質(zhì)含量預(yù)測。
3)系統(tǒng)田間動(dòng)態(tài)測試,小麥蛋白質(zhì)含量的最大相對(duì)誤差為-6.69%,水稻蛋白質(zhì)含量的最大誤差為-8.02%,系統(tǒng)運(yùn)行穩(wěn)定,采樣分析時(shí)間間隔對(duì)系統(tǒng)測試精度影響不顯著,采樣分析最短間隔可達(dá)5 s。降低采樣機(jī)構(gòu)內(nèi)谷物含雜率可進(jìn)一步提高系統(tǒng)檢測精度,水分和溫度等變化對(duì)系統(tǒng)測試精度和穩(wěn)定性的影響還有待后續(xù)進(jìn)一步研究。
[1] 羅小兵,張軟玉,陳世國,等.谷物種子中蛋白質(zhì)含量測定的核反應(yīng)分析法[J]. 原子核物理評(píng)論,2004,21(1):56-59. Luo Xiaobing, Zhang Ruanyu, Chen Shiguo, et al. Nuclear reaction method for measurement of protein content in seed of grain[J]. Nuclear Physics Review, 2004, 21(1): 56-59. (in Chinese with English abstract)
[2] 王朝輝,趙層,趙倩,等. 基于高光譜成像的大米中蛋白質(zhì)含量的可視化研究[J]. 食品研究與開發(fā),2020,41(6):124-129. Wang Zhaohui, Zhao Ceng, Zhao Qian, et al. Visualization of protein content in rice based on hyper-spectral imaging[J]. Food Research and Development, 2020, 41(6): 124-129. (in Chinese with English abstract)
[3] Zhu L, Sun J, Wu G C, et al. Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy[J]. Journal of Cereal Science, 2018, 82: 175-182
[4] 王芊,李存軍,王大成,等. 基于氮素和水分的冬小麥籽粒蛋白質(zhì)含量監(jiān)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(增刊2):22-26. Wang Qian, Li Cunjun, Wang Dacheng, et al. Monitoring wheat grain protein content based on nitrogen and water content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(Supp. 2): 22-26. (in Chinese with English abstract)
[5] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機(jī)械化水平促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):1-11. Luo Xiwen, Liao Juan, Hu lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[6] 張偉,楊剛,雷軍波,等. 基于微波反射法的谷物含水率在線檢測裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):21-28. Zhang Wei, Yang Gang, Lei Junbo, et al. Development of on-line detection device for grain moisture contentusing microwave reflection method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 21-28. (in Chinese with English abstract)
[7] 陳進(jìn),王月紅,練毅,等. 高頻電容式聯(lián)合收獲機(jī)谷物含水量在線監(jiān)測裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):36-45. Chen Jin, Wang Yuehong, Lian Yi, et al. Development of on-line monitoring device of grain moisture content in combine harvester with high frequency capacitance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 36-45. (in Chinese with English abstract)
[8] 付興蘭,張兆國,安曉飛,等. 光電漫反射式聯(lián)合收割機(jī)谷物產(chǎn)量計(jì)量系統(tǒng)研發(fā)與性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):24-30. Fu Xinglan, Zhang Zhaoguo, An Xiaofei, et al. Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 24-30. (in Chinese with English abstract)
[9] Taylor James, Whelan Brett, Thylen Lars, et al. Monitoring wheat protein content on-harvester: Australian experiences[C]. 5th European Conference on Precision Agriculture, 2006.
[10] Montes J M, Utz H F, Schipprack W, et al. Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters[J]. Journal Compliation, 2006(125): 591-595.
[11] 李晉華,楊志良,王召巴,等. 近紅外漫透射技術(shù)檢測玉米成分[J]. 紅外技術(shù),2013,35(11):732-736. Li Jinhua, Yang Zhiliang, Wang Zhaoba, et al. The corn content measurement with near infrared diffuse transmission[J]. Infrared Technology, 2013, 35(11): 732-736. (in Chinese with English abstract)
[12] Miralbe S C. Discrimination of European wheat varieties using near infrared reflectance spectroscopy[J]. Food Chemistry, 2008(106): 386-389.
[13] Long D S, Engel R E, Siemens M C. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy[J]. Agronomy Journal, 2008, 100(2): 247-252.
[14] 楊艷杰. 久保田智能農(nóng)業(yè)系統(tǒng)KSAS助力農(nóng)民增收[N/OL]. 農(nóng)機(jī)通網(wǎng),2015-04-18[2019-12-01]. http: //www. nongjitong. com/news/2015/365270. html.
[15] 劉玲玲. 小麥品質(zhì)近紅外光譜分析系統(tǒng)關(guān)鍵技術(shù)研究[D]. 北京:中國農(nóng)業(yè)機(jī)械化科學(xué)研究院,2013. Liu Lingling. Study on the Critical Technique of NIR Wheat Quality Analysis System[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2013. (in Chinese with English abstract)
[16] 潘智. 谷物蛋白質(zhì)近紅外檢測儀的研制[D]. 長春:吉林大學(xué),2017. Pan Zhi. Development of Grain Protein Near-Infrared Detector[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)
[17] 黃漢英,趙思明,胡月來,等. 一種稻米品質(zhì)的近紅外檢測方法與應(yīng)用CN105181643A[P]. 2015-10.
[18] 聞明. 基于LED的便攜式近紅外整粒小麥成分分析儀的研制[D]. 北京:中國農(nóng)業(yè)大學(xué),2004. Wen Ming. Development of Portable LED-based NIR Integrity Wheat Component Measuring Apparatus[D]. Beijing: China Agricultural University, 2004. (in Chinese with English abstract)
[19] 唐月明. 稻谷品種和品質(zhì)的光譜快速無損檢測研究[D]. 杭州:浙江大學(xué),2008. Tang Yueming. Study on Fast and Non-Destructive Inspect and Analysis of Varieties and Quality of Paddy Based on Spectroscopy Technology[D]. Hangzhou: Zhejiang University, 2008. (in Chinese with English abstract)
[20] 方彥. 利用近紅外光譜法測定玉米品質(zhì)的研究[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2004. Fang Yan. Study on the Determination of Corn Quality by Near Infrared Spectroscopy[D]. Lanzhou: Gansu Agricultural University, 2004. (in Chinese with English abstract)
[21] 劉翠玲,吳靜珠,孫曉榮. 近紅外光譜技術(shù)在食品品質(zhì)檢測方法中的研究[M]. 北京:機(jī)械工業(yè)出版社,2016. Liu Cuiling, Wu Jingzhu, Sun Xiaorong. Study on the Method of Food Quality Detection by Near Infrared Spectroscopy[M]. Beijing: China Machine Press, 2016. (in Chinese with English abstract)
[22] 李曉麗,唐月明,何勇,等. 基于可見/近紅外光譜的水稻品種快速鑒別研究[J]. 光譜學(xué)與光譜分析,2008,28(3):578-581. Li Xiaoli, Tang Yueming, He Yong, et al. Discrimination of varieties of paddy based on Vis/NIR spectroscopy combined with chemometrics[J]. Spectroscopy and Spectral Analysis, 2008, 28(3): 578-581. (in Chinese with English abstract)
[23] Porep Jan U, Kammerer Dietmar R, Carle Reinhold. On-line application of near infrared(NIR) spectroscopy in food priduction[J]. Trends in Food Science & Technology, 2015(46): 211-230.
[24] 譚正林,吳謀成,傅廷棟. 近紅外光譜技術(shù)在農(nóng)產(chǎn)品品質(zhì)檢測中的應(yīng)用[J]. 中國油料作物學(xué)報(bào),2012,34(4):455-460. Tan Zhenglin, Wu Moucheng, Fu Tingdong. Application review of near infrared spectroscopy on quality analyzing of agricultural products[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(4): 455-460. (in Chinese with English abstract)
[25] 孫通,徐惠榮,應(yīng)義斌. 近紅外光譜分析技術(shù)在農(nóng)產(chǎn)品/食品品質(zhì)在線無損檢測中的應(yīng)用研究進(jìn)展[J]. 光譜學(xué)與光譜分析,2009,29(1):122-126. Sun Tong, Xu Huirong, Ying Yibin. Progress in application of near infrared spectroscopy to nondestructive on-line detection of products/food quality[J]. Spectroscopy and Spectral Analysis, 2009, 29(1): 122-126. (in Chinese with English abstract)
[26] Delwiche S R. Protein content of single kernels of wheat by near-infrared reflectance spectroscopy[J]. Journal of Cereal Science, 1998(27): 241-254.
[27] Sampaio Pedro Sousa, Soaresa Andreia, Castanho Ana, et al. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms[J]. Food Chemistry, 2018(242): 196-204.
[28] 高文淑,張錄達(dá),王萬軍. 應(yīng)用付里葉變換近紅外漫反射光譜法測定幾種谷物籽粒中蛋白質(zhì)的含量[J]. 北京農(nóng)業(yè)大學(xué)學(xué)報(bào),1990,16(增刊):29-72. Gao Wenshu, Zhang Luda, Wang Wanjun. Determination of protein contents for cereal seed by ftnirdrs method[J]. Acta Agriculturae Universitatis Pekinensis, 1990, 16(Supp.): 29-72. (in Chinese with English abstract)
[29] Salgó András, Gergely Szilveszter. Analysis of wheat grain development using NIR spectroscopy[J]. Journal of Cereal Science, 2012, 2012(56): 31-38.
[30] 閔順耕,李寧,張明祥. 近紅外光譜分析中異常值的判別與定量模型優(yōu)化[J]. 光譜學(xué)與光譜分析,2004,24(10):1205-1209. Min Shungeng, Li Ning, Zhang Mingxiang. Outlier diagnosis and calibration model optimization for near infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2004, 24(10): 1205-1209. (in Chinese with English abstract)
[31] 徐向宏,何明珠. 試驗(yàn)設(shè)計(jì)與Design-Expert、SPSS應(yīng)用[M]. 北京:科學(xué)出版社,2010. Xu Xianghong, He Mingzhu. Experimental Design and Application of Design-Expert and SPSS[M]. Beijing: Science Press, 2010. (in Chinese with English abstract)
Design of near-infrared spectral grain protein detection system for combine-harvesters
Zhang Min, Wu Chongyou※, Chen Xu, Zhu Daojing, Jin Mei, Wang Gang
(,,210014,)
An in-line detection system of grain protein content was developed in this study, in order to realize the real-time identification and record the sampling geographical location information in a novel harvester combined with near-infrared spectroscopy during grain harvesting. The detection system was mainly composed of a near-infrared spectral sensor module, spiral sampling and conveying mechanism, control module, GPS/Beidou positioning module, and industrial display integrator. The specific working procedure was followed for the in-line detection system in a near-infrared spectroscopy on combine harvester. The grain first discharged from the outlet of a combine-harvester through the spiral sampling and conveying mechanism. A PID controller was used to adjust the stepper motor of sampling mechanism, according to the requirements of detection rate, thereby to realize the intermittent grain transmission. A near-infrared spectral sensor was also adjusted to capture the spectrum, when the stepper motor stopped turning. A RS485 bus was used for data transmission to host computer, where the obtained data included the grain near-infrared spectrum, and the positioning signal of GPS/Beidou positioning module. A data processing software was developed to control the near-infrared sensor and sampling mechanism. After data post-processing in the grain protein prediction model, the information of grain protein and sampling location was in situ displayed, and storage for later use. An indoor calibration, and a field dynamic test were carried out to verify the performance of prediction model for grain protein content and online detection system. In the prediction model of wheat protein content, the decision coefficient was 0.865, the absolute error range was ?0.96% to 1.22%, the relative error range was ?7.30% to 9.53%, and the Root Mean Square Error of Prediction (RMSEP) was 0.638%. In the prediction model of rice protein content, the decision coefficient was 0.853, the absolute error range was ?0.60% to 1.00%, the relative error range was ?8.47% to 9.71%, and the RMSEP was 0.516%. In the dynamic field test, the maximum relative error of wheat protein content was ?6.69%, whereas, the maximum error of rice protein content was ?8.02%. It infers that the sampling and analysis interval have no significantly influence on the detection system, where the system stability and detection accuracy meet the need of grain protein online detection in the field. The finding can provide a scientific basis for precision agricultural operation.
grains; near-infrared spectrum; protein; combine-harvester; undamage online detection system
張敏,吳崇友,陳旭,等. 近紅外光譜式聯(lián)合收割機(jī)谷物蛋白質(zhì)含量檢測系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):36-43.doi:10.11975/j.issn.1002-6819.2021.01.005 http://www.tcsae.org
Zhang Min, Wu Chongyou, Chen Xu, et al. Design of near-infrared spectral grain protein detection system for combine-harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 36-43. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.005 http://www.tcsae.org
2020-08-06
2020-12-23
中國農(nóng)科院重大平臺(tái)推進(jìn)計(jì)劃(Y2017PT41);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(穗粒類收獲機(jī)械創(chuàng)新團(tuán)隊(duì))
張敏,博士,研究員,主要從事收獲技術(shù)裝備研發(fā)。Email:zhangmin01@caas.cn
吳崇友,博士,研究員,博士生導(dǎo)師,主要從事收獲機(jī)械研究。Email:542681935@qq.com
10.11975/j.issn.1002-6819.2021.01.005
S237
A
1002-6819(2021)-01-0036-08