• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      草莓干冰噴射速凍過(guò)程的數(shù)值模擬與優(yōu)化

      2021-04-01 02:00:46寧?kù)o紅趙延峰孫朝陽(yáng)
      關(guān)鍵詞:干冰速凍液氮

      寧?kù)o紅,趙延峰,孫朝陽(yáng)

      草莓干冰噴射速凍過(guò)程的數(shù)值模擬與優(yōu)化

      寧?kù)o紅,趙延峰,孫朝陽(yáng)

      (天津商業(yè)大學(xué)天津市制冷技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300134)

      為了有效提高速凍后草莓的品質(zhì),該研究提出干冰噴射速凍草莓的方法,設(shè)計(jì)了干冰噴射速凍草莓的速凍間和干冰噴射裝置,利用Comsol軟件對(duì)速凍間內(nèi)干冰噴射草莓速凍過(guò)程的溫度場(chǎng)、速度場(chǎng)和壓力場(chǎng)進(jìn)行模擬,研究了不同干冰噴入速度(0.10、0.15、0.20、0.25、0.30、0.40、0.50 m/s),噴入口半徑(18、20、23、25、30 mm),以及干冰噴入速度為0.20、0.30 m/s時(shí)模型內(nèi)干冰體積分?jǐn)?shù)變化對(duì)草莓速凍效果的影響。結(jié)果表明:隨著干冰入口半徑的增加和干冰噴入速度的提高,草莓會(huì)更快的凍結(jié)。在入口半徑為25 mm,流速為0.30 m/s情況下,可以高效實(shí)現(xiàn)草莓速凍。對(duì)干冰速凍草莓降溫性能進(jìn)行分析,并與現(xiàn)有液氮噴淋速凍草莓降溫性能進(jìn)行比較,結(jié)果表明:干冰速凍草莓通過(guò)最大冰晶帶和草莓完全凍結(jié)的時(shí)間分別減少63.9%和41.7%,草莓能最大限度地保持原有的新鮮狀態(tài)和營(yíng)養(yǎng)成分。對(duì)優(yōu)化的結(jié)果進(jìn)行試驗(yàn)驗(yàn)證,草莓表面溫度和中心溫度達(dá)到標(biāo)準(zhǔn)時(shí)誤差分別為3.70%和6.03%,草莓干冰速凍前后的品質(zhì)指標(biāo)均優(yōu)于草莓速凍標(biāo)準(zhǔn)。研究結(jié)果為進(jìn)一步開(kāi)發(fā)節(jié)能環(huán)保的干冰速凍草莓裝置提供參考。

      冷凍;數(shù)值模擬;優(yōu)化;干冰噴射;草莓

      0 引 言

      依據(jù)時(shí)間-溫度-耐受性原則,食品的品質(zhì)依賴于溫度,溫度越低,食品的儲(chǔ)存時(shí)間越長(zhǎng)[1]。速凍食品近年來(lái)在國(guó)內(nèi)外食品消費(fèi)中的比例逐漸增大。研究者在食品速凍方面進(jìn)行了大量試驗(yàn)[2-6]和模擬研究[7-12]。王金鋒等[13-15]對(duì)速凍噴嘴結(jié)構(gòu)做了研究。羅瑞明等[16],劉春菊等[17]采用動(dòng)態(tài)模擬的方法研究?jī)銎返淖兓?。樊建等[18]通過(guò)液氮速凍草莓的研究發(fā)現(xiàn)草莓速凍品質(zhì)量與溫度有關(guān)。玄哲浩等[19]對(duì)液氮噴射速凍計(jì)算分析,提出了噴嘴的布置和噴射方法。有學(xué)者搭建了開(kāi)放式干冰噴射冷卻芯片系統(tǒng),為干冰噴射的相關(guān)研究提供了思路[20-21]。Xie等[22]對(duì)噴霧冷卻進(jìn)行了相關(guān)研究,驗(yàn)證了噴霧冷卻的可行性。黃忠民等[12]在液氮速凍后對(duì)凍品的品質(zhì)指標(biāo)測(cè)定較為全面。Fennema[23]研究發(fā)現(xiàn),速凍食品的質(zhì)量取決于食品的速凍速度。準(zhǔn)確計(jì)算和預(yù)測(cè)食品冷凍過(guò)程中各變量參數(shù)及所需的冷凍時(shí)間,可以指導(dǎo)速凍加工過(guò)程的控制以及速凍設(shè)備的設(shè)計(jì),對(duì)保證產(chǎn)品質(zhì)量、降低速凍裝置能耗具有重要意義[24]。

      為滿足速凍食品工業(yè)化發(fā)展,需對(duì)食品速凍裝置不斷創(chuàng)新。自然工質(zhì)干冰是固態(tài)二氧化碳,其融點(diǎn)為?78.5 ℃,沸點(diǎn)為?56.6 ℃,并具有很高的相變潛熱,其能實(shí)現(xiàn)低溫環(huán)境的超快速凍結(jié),能最大限度地保持食品原有的新鮮狀態(tài)和營(yíng)養(yǎng)成分,提高速凍食品的品質(zhì),在速凍食品加工方面有著較大的優(yōu)勢(shì)。

      由于草莓表皮脆弱,采后呼吸強(qiáng)度較高[25],在常溫條件下僅能存放1~2 d便開(kāi)始腐爛[26]。因此,草莓通常經(jīng)過(guò)冷凍處理后加工成草莓醬、草莓汁、草莓罐頭和草莓干等[27]。但凍結(jié)過(guò)程對(duì)細(xì)胞壁、胞間層和原生質(zhì)體會(huì)造成不可逆轉(zhuǎn)的結(jié)構(gòu)損傷,從而導(dǎo)致草莓細(xì)胞結(jié)構(gòu)的破壞和營(yíng)養(yǎng)物質(zhì)的流失[4]。利用干冰快速凍結(jié)草莓,細(xì)胞內(nèi)的水分形成細(xì)小量多、分布均勻的冰晶體,因而細(xì)胞和原生質(zhì)受損傷的程度較低,解凍時(shí)可將凍結(jié)的大部分汁液吸回并保持原態(tài)[26],而汁液中常溶有各種酸類(lèi)、鹽類(lèi)、萃取物質(zhì)、可溶性蛋白質(zhì)和維生素等,草莓保留了大部分汁液,可充分保留營(yíng)養(yǎng)成分和風(fēng)味。

      本文提出干冰噴射速凍草莓的方法,設(shè)計(jì)了干冰噴射速凍草莓的速凍間。利用Comsol軟件對(duì)速凍間內(nèi)干冰噴射草莓的速凍過(guò)程的溫度場(chǎng)、速度場(chǎng)和壓力場(chǎng)進(jìn)行模擬,對(duì)干冰速凍草莓降溫性能進(jìn)行分析,并對(duì)優(yōu)化的結(jié)果進(jìn)行試驗(yàn)驗(yàn)證,對(duì)草莓速凍前后的品質(zhì)指標(biāo)進(jìn)行對(duì)比分析,與現(xiàn)有液氮速凍草莓降溫性能進(jìn)行比較,以期待為進(jìn)一步開(kāi)發(fā)節(jié)能環(huán)保的干冰速凍草莓裝置提供依據(jù)。

      1 模型建立

      1.1 物理模型

      速凍間模型尺寸為長(zhǎng)500 mm×500 mm×800 mm(長(zhǎng)×寬×高),其結(jié)構(gòu)形式為低溫箱式。左側(cè)4個(gè)入口為干冰的噴入口(如圖1所示),設(shè)置5組試驗(yàn),入口半徑分別為18、20、23、25和30 mm,右側(cè)為氣體二氧化碳出口,半徑設(shè)置為50 mm。模型中材料的參數(shù)及特性如表1所示。草莓?dāng)R板尺寸400 mm× 400 mm×5 mm(長(zhǎng)×寬×高),草莓半徑設(shè)置為15 mm,高度設(shè)置為40 mm,2個(gè)草莓間距為15 mm??窟叺牟葺c擱板邊界距離為5 mm,一盤(pán)草莓的數(shù)量有81個(gè),速凍間內(nèi)共擺放4盤(pán)草莓,每層擱板相距160 mm。

      表1 模型所選材料的參數(shù)

      注:1.表中的Cp(T)、eta(T)、K(T)和Rho(Pa,T)均表示該屬性為溫度和壓力的函數(shù),無(wú)具體數(shù)值。2.模型擱板為鋼材,干冰發(fā)生相變?yōu)闅鈶B(tài)二氧化碳。

      Note: 1. The Cp(T), eta(T), K(T) and Rho(Pa,T) in the table all indicate that the attribute is a function of temperature and pressure, without specific values. 2. The model shelf is made of steel, and the dry ice is transformed into gaseous carbon dioxide.

      1.2 數(shù)學(xué)模型

      對(duì)模型換熱情況進(jìn)行分析,首先低溫干冰顆粒沖擊草莓表面和擱板進(jìn)行強(qiáng)制對(duì)流換熱。假設(shè)流體為不可壓縮的牛頓型流體、流體物性為常數(shù)且無(wú)內(nèi)熱源、黏性耗散產(chǎn)生的耗散熱忽略不計(jì)[28],則該換熱過(guò)程符合第三類(lèi)邊界條件[29]。

      模型傳熱部分基于能量守恒方程:

      模型流體傳熱部分:

      據(jù)材料屬性以及模型設(shè)置的初始速度計(jì)算雷諾數(shù),判斷流動(dòng)為層流還是湍流。

      =/(5)

      當(dāng)設(shè)置最大值為0.5 m/s時(shí),=1 977<2 000,為層流。

      =11+22(6)

      模型相變材料參數(shù)如表2所示。

      表2 模型相變相關(guān)參數(shù)

      1.3 邊界條件

      模型利用Comsol軟件對(duì)幾何模型的物理場(chǎng)進(jìn)行耦合處理,再對(duì)模型進(jìn)行網(wǎng)格劃分,平均單元質(zhì)量為0.5 cm,其中四面體740 705個(gè),金字塔形10 910個(gè),棱柱形148 038個(gè),三角形81 954個(gè),四邊形136個(gè),邊單元13 344個(gè),頂點(diǎn)單元2 024個(gè)。對(duì)草莓進(jìn)行較細(xì)化網(wǎng)格劃分,壁面采用較粗化網(wǎng)格單元。草莓初始溫度為273.15 K。啟用Comsol中的瞬態(tài)求解器,時(shí)間設(shè)置為600 s,時(shí)間步長(zhǎng)設(shè)置為5 s,容差因子設(shè)置為0.5,進(jìn)行求解。

      2 速凍空間熱流場(chǎng)

      2.1 干冰噴射系統(tǒng)

      干冰顆粒噴射系統(tǒng),如圖2所示,主要由二氧化碳?xì)馄?、減壓閥、流量調(diào)節(jié)閥、流量計(jì)和干冰噴嘴組成。打開(kāi)二氧化碳?xì)馄康拈y門(mén),液態(tài)二氧化碳從氣瓶中流出,經(jīng)減壓閥、流量調(diào)節(jié)閥、流量計(jì)至干冰噴嘴,隨著液態(tài)二氧化碳的流出,經(jīng)減壓閥溫度急劇下降并到達(dá)氣固邊界,從而在室溫(25 ℃)和大氣壓力(0.1 MPa)下形成顆粒,可以用焦耳-湯姆遜膨脹效應(yīng)來(lái)解釋?zhuān)黧w通過(guò)孔板的流動(dòng)被認(rèn)為是絕熱膨脹過(guò)程。利用流量調(diào)節(jié)閥可以調(diào)節(jié)干冰顆粒的噴出速度。一般情況下,高壓二氧化碳?xì)馄康臍怏w壓力約為15.5 MPa,在室溫(25 ℃)下打開(kāi)閥門(mén)流出液態(tài)二氧化碳。隨著流經(jīng)減壓閥的溫度和壓力下降,氣泡形成,氣體比例增加,直到達(dá)到固體氣體的邊界,液體轉(zhuǎn)化為固體,形成干冰顆粒的百分比由噴嘴入口的相態(tài)、溫度和壓力決定??梢哉{(diào)節(jié)減壓閥至5.5 MPa,從而控制干冰的固相分?jǐn)?shù),使干冰固相分?jǐn)?shù)約占50%。干冰噴射進(jìn)入速凍間內(nèi)掠過(guò)草莓表面,吸收草莓的熱量,使草莓降溫凍結(jié),干冰吸收熱量升華為二氧化碳從出口排出。

      如圖3所示,從A到B是第一個(gè)階段,液體二氧化碳流經(jīng)減壓閥,在壓力和溫度下降的情況下等焓擴(kuò)張,到達(dá)混合固體和氣體的B點(diǎn)。B點(diǎn)的干冰經(jīng)過(guò)噴嘴出口吸收熱量升華為二氧化碳?xì)怏w,到達(dá)C點(diǎn)。流量調(diào)節(jié)閥采用精細(xì)調(diào)節(jié),熱質(zhì)量流量計(jì)可以收集更準(zhǔn)確的數(shù)據(jù),為了確定噴嘴入口的條件,在熱質(zhì)量流量計(jì)和噴嘴之間固定了一個(gè)PT100溫度傳感器和一個(gè)壓力傳感器,以測(cè)量溫度和絕對(duì)壓力。用內(nèi)徑10 mm的橡膠材質(zhì)軟管連接組件,為了減少設(shè)備與環(huán)境之間的傳熱,軟管、閥門(mén)和噴嘴都采用了熱絕緣。采用數(shù)據(jù)采集子系統(tǒng)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行監(jiān)控、采集和記錄。

      2.2 干冰噴入口尺寸的影響

      將被冷凍物預(yù)冷可以大幅度減少耗費(fèi)的能源[30],設(shè)草莓預(yù)冷到273.15 K。通過(guò)查閱相關(guān)資料可知速凍需在20 min內(nèi)將草莓中心溫度降至?18℃以下,外表溫度降至?35 ℃以下,在食品冷凍過(guò)程中,需要迅速通過(guò)初期最易冷凍的溫度帶(最大冰晶生成帶),將食品細(xì)胞中的水分保持小冰晶狀態(tài),減少細(xì)胞破壞,防止解凍時(shí)原成分通過(guò)水滴流出。

      分別設(shè)置入口半徑分別為18、20、23、25和30 mm,通過(guò)Comsol中固體和傳熱模塊迭代計(jì)算得到草莓表面和中心達(dá)到速凍要求溫度的時(shí)間,見(jiàn)表3;并對(duì)照其溫度場(chǎng)、速度場(chǎng)、截面速度場(chǎng)獲得如圖4所示的結(jié)果。在噴射流速0.30 m/s的條件下,隨著入口半徑的加大,草莓中心溫度降至?18℃的時(shí)間逐漸減少,但是相應(yīng)的固相分?jǐn)?shù)在一定范圍變化??梢钥闯鲈谌肟诎霃綖?3、25 mm時(shí),草莓表面至?35℃時(shí)間與草莓中心溫度降至?18℃溫度時(shí)間相隔較少。入口半徑25 mm時(shí)出口固相分?jǐn)?shù)較低,干冰在速凍間內(nèi)積壓較少,草莓溫度分布均勻。綜合考慮入口半徑為25 mm為優(yōu)選。

      表3 不同半徑下計(jì)算數(shù)據(jù)

      注:噴射流速為0.30 m·s-1。

      Note: Jet velocity is 0.30 m·s-1.

      2.3 干冰噴入口速度的影響

      由表4所示的計(jì)算結(jié)果可以看出,隨著入口流速增大,草莓表面和中心達(dá)到速凍要求溫度的時(shí)間逐漸減少,但是隨著流速的增加,會(huì)有干冰積壓,當(dāng)流速為0.10、0.20和0.30 m/s時(shí),出口固相分?jǐn)?shù)較少,草莓溫度分布均勻;原因是由于4個(gè)入口噴射的干冰在模型內(nèi)相互擾動(dòng),出口處的擾動(dòng)又各不相同。草莓表面至?35 ℃時(shí)間與草莓中心至?18 ℃溫度時(shí)間相隔較少。但是干冰流速0.10,0.20 m/s時(shí)凍結(jié)速度較慢。比較得出0.30 m/s流速較佳。

      表4 不同速度下計(jì)算數(shù)據(jù)

      注:入口半徑為25 mm。

      Note: Entrance radius is 25 mm.

      3 草莓凍結(jié)過(guò)程

      3.1 每層中心草莓溫度變化

      圖5可知25 mm入口半徑,0.30 m/s流速下每層中心草莓表面溫度與中心溫度與其他層中心草莓的溫度的差別,每層草莓溫度不同是由于每層干冰的流動(dòng)與擾動(dòng)不相同,所以每層接觸干冰的量不同,所以造成了溫度差異,草莓表面溫度差異最大為11 ℃,草莓中心溫度差異最大為7℃。到350 s速凍結(jié)束時(shí),所有草莓中心溫度均達(dá)到?18℃,符合速凍要求。因此,入口半徑為25 mm,流速為0.30 m/s為此速凍模型的較優(yōu)選擇。

      3.2 模型內(nèi)干冰體積分?jǐn)?shù)變化

      入口處干冰的體積分?jǐn)?shù)設(shè)定為50%,另外50%為氣態(tài)二氧化碳。圖6所示為開(kāi)始時(shí)和達(dá)到平衡時(shí)模型內(nèi)干冰體積分?jǐn)?shù)。圖6a,圖6c為噴入速度為0.20 m/s時(shí)干冰體積分?jǐn)?shù)前后的變化,圖6b,圖6d為噴入速度0.30 m/s時(shí)的干冰體積分?jǐn)?shù)前后的變化。圖6a,圖6b可以看到噴射速度較低時(shí),在20 s內(nèi)干冰還未充滿空間,但是速度設(shè)定為0.30 m/s時(shí),在20 s時(shí)充滿干冰程度高于入口流速0.20 m/s,所以速凍效果更好。達(dá)到平衡后,模型內(nèi)的干冰體積分?jǐn)?shù)距入口距離的越遠(yuǎn)越少,是因?yàn)榻?jīng)過(guò)換熱之后干冰升華成二氧化碳?xì)怏w排出,可以從圖6c,圖6d中看出,流速為0.30 m/s模型的干冰體積分?jǐn)?shù)均小于等于同樣顏色流速為0.20 m/s的模型,說(shuō)明同等時(shí)間內(nèi)0.30 m/s的模型內(nèi)干冰更快吸熱變成二氧化碳?xì)怏w,從而縮短速凍時(shí)間。證明該模型速凍效果良好,干冰速凍切實(shí)可行。

      3.3 干冰噴射速凍與液氮噴淋速凍方式比較

      將干冰速凍草莓與文獻(xiàn)[19,31]中液氮噴淋速凍草莓相比較,結(jié)果見(jiàn)表5。

      表5 兩種速凍方式的比較

      可以看出,干冰速凍草莓通過(guò)最大冰晶帶和草莓完全凍結(jié)的時(shí)間更少,較液氮噴淋速凍草莓分別減少63.9%和41.7%,原因是干冰噴射噴嘴口徑大且噴射速度高于液氮噴淋(約為0.05 m/s),草莓表面接觸到更多的冷源,使溫度下降較快,干冰溫度與液氮相差100 ℃左右,容易控制凍品的溫度。超快速凍使草莓細(xì)胞內(nèi)的膠體結(jié)合水和細(xì)胞間隙中的游離水能同時(shí)凍結(jié)成無(wú)數(shù)微細(xì)均勻的冰晶體,細(xì)胞組織不受破壞,解凍后的草莓能最大限度地保持原有的新鮮狀態(tài)和營(yíng)養(yǎng)成分[8]。且干冰價(jià)格較液氮低廉,相比液氮更加容易獲取。

      4 試驗(yàn)驗(yàn)證

      4.1 對(duì)優(yōu)化的結(jié)果進(jìn)行試驗(yàn)驗(yàn)證

      試驗(yàn)所用的干冰噴射速凍裝置見(jiàn)圖7,主要由保溫箱體和橡膠管連接的液態(tài)二氧化碳?xì)夤藿M成,該圖為試驗(yàn)結(jié)束速凍草莓從速凍箱內(nèi)取出。

      將擱板兩條對(duì)角線上的草莓中心和表面(約1 mm處)分別插入PT100熱電偶,與其他未連接熱電偶的草莓一起放入保溫箱內(nèi)進(jìn)行試驗(yàn),將熱電偶接入橫河MX100數(shù)據(jù)采集器中,溫度變化及凍結(jié)溫度曲線由計(jì)算機(jī)顯示并自動(dòng)記錄和繪制。

      按照模擬出優(yōu)化結(jié)果噴嘴入口半徑設(shè)置為25 mm,流速設(shè)置為0.30 m/s,收集全部草莓表面溫度降至?35 ℃的時(shí)間和全部草莓中心溫度降至?18 ℃的時(shí)間,分別與模擬出的結(jié)果做比較。

      如圖8所示,所測(cè)草莓中降溫最慢草莓溫度達(dá)標(biāo)可以認(rèn)定試驗(yàn)結(jié)束,在223 s時(shí),所有草莓表面溫度達(dá)到?35 ℃,與模擬215 s時(shí)達(dá)標(biāo)誤差較小,誤差為3.70%。在376 s時(shí),所有草莓中心溫度達(dá)到?18℃,與模擬結(jié)果350 s相差較大,誤差為7.40%。經(jīng)過(guò)多次試驗(yàn),得出中心溫度達(dá)到?18 ℃時(shí)間,時(shí)間分別為360、393、344 s,誤差分別為2.80%、12.20%、1.70%,平均誤差為6.03%。綜合分析是草莓大小形狀與模型橢圓有差距,越接近模型尺寸,得到的結(jié)果越接近模擬的時(shí)間。

      4.2 草莓理化性質(zhì)的變化

      測(cè)定速凍前后草莓品質(zhì)指標(biāo):失水率、色差、維生素C、可溶性固形物、花青素含量。

      失水率(%)測(cè)定采用稱量法。用耀華牌XK3190-A19E型電子秤分別測(cè)定速凍前后草莓的質(zhì)量。

      式中0為樣品原質(zhì)量,g;1為凍結(jié)后質(zhì)量,g。

      式中為處理樣品的亮度;0為新鮮樣品的亮度;為處理樣品的紅度,0為新鮮樣品的紅度;為處理樣品的黃度;0為新鮮樣品的黃度。

      色澤測(cè)定時(shí),隨機(jī)挑選10個(gè)樣品。測(cè)定草莓的、和值,結(jié)果取平均值,用以反映不同處理方法下草莓的色澤差異。

      采用2,6-二氯靛酚滴定方法測(cè)定速凍前后果品中維生素C的含量;可溶性固形物含量采用日本ATAGO牌PLA-BXIACID5糖度儀測(cè)定;根據(jù)花青素甲醇提取液的吸收光譜特性,再利用紫外可見(jiàn)分光光度計(jì)在特定波長(zhǎng)下測(cè)定其吸光度值,最后與標(biāo)準(zhǔn)曲線比較計(jì)算花青素的含量。

      品質(zhì)指標(biāo)測(cè)定結(jié)果如表6所示。與速凍草莓標(biāo)準(zhǔn)CXS52-1981(2019版)相比,干冰速凍方式相關(guān)參數(shù)均優(yōu)于其要求。

      表6 速凍前后草莓品質(zhì)

      5 結(jié) 論

      通過(guò)對(duì)速凍間內(nèi)干冰噴射草莓的速凍過(guò)程進(jìn)行數(shù)值模擬,對(duì)草莓速凍降溫性能進(jìn)行分析,并與現(xiàn)有液氮噴淋速凍草莓的降溫性能進(jìn)行比較:

      1)在入口半徑為18、20、23、25和30 mm,噴射流速為0.30 m/s的條件下,隨著入口半徑的加大,草莓中心降至?18 ℃的時(shí)間逐漸減少,但是相應(yīng)的固相分?jǐn)?shù)也相應(yīng)變化。25 mm出口固相分?jǐn)?shù)較低,干冰在速凍間內(nèi)積壓較少,草莓溫度分布均勻,可以較快實(shí)現(xiàn)草莓速凍。

      2)在0.10、0.15、0.20、0.25、0.30、0.40、0.50 m/s條件下,隨著干冰入口流速的增大,草莓表面和中心達(dá)到速凍要求溫度的時(shí)間逐漸減少,凍結(jié)時(shí)間縮短,但隨著流速的增加,會(huì)有干冰積壓,流速為0.3 m/s時(shí),出口固相分?jǐn)?shù)較少,草莓溫度分布均勻。草莓表面降至?35 ℃時(shí)間與草莓中心降至?18 ℃溫度時(shí)間相隔較少。

      3)通過(guò)試驗(yàn)驗(yàn)證優(yōu)化結(jié)果,噴嘴入口半徑設(shè)置為25 mm,流速設(shè)置為0.3 m/s情況下,在223 s時(shí),所有草莓表面溫度達(dá)到?35 ℃,誤差為3.7%,與模擬出結(jié)果誤差較小。在376 s時(shí),所有草莓中心溫度達(dá)到?18 ℃,平均誤差為6.03%,與模擬結(jié)果350 s相差較大,是由于草莓大小形狀與模型橢圓有所差距,越接近模型尺寸,得到的結(jié)果越接近模擬出的時(shí)間。通過(guò)速凍前后草莓失水率,色澤度,維生素C,可溶性固體,花青素等指標(biāo)進(jìn)行測(cè)定,發(fā)現(xiàn)干冰噴射速凍方式符合速凍食品的標(biāo)準(zhǔn)。

      [1]Zeuthen P. Thermal processing and quality of foods[J]. International Journal of Radiation Oncology Biology Phyics, 1984, 32(971): 178.

      [2]潘治利,駱洋翔,艾志錄,等. 不同凍藏溫度條件下速凍湯圓品質(zhì)變化及其機(jī)制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):304-310.

      Pan Zhili, Luo Yangxiang, Ai Zhilu, et al. Quality change and its mechanism of quick-frozen rice dumplings under condition of different frozen temperatures[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 304-310. (in Chinese with English abstract)

      [3]譚熙耀,吳繼紅,廖小軍,等. 高壓二氧化碳技術(shù)速凍雙孢菇工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(3):375-380.

      Tan Xiyao, Wu Jihong, Liao Xiaojun, et al. Optimization on quick freezing technology of agaricus bisporus by high pressure carbon dioxide[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 375-380. (in Chinese with English abstract)

      [4]王喜芳,李保國(guó),朱珩. 草莓液氮速凍特性及營(yíng)養(yǎng)品質(zhì)的研究[J]. 包裝工程,2018,39(23):62-68.

      Wang Xifang, Li Baoguo, Zhu Hang. Quick-frozen characteristics and nutritional quality of strawberries in liquid nitrogen spraying freezer[J]. Packaging Engineering, 2018, 39(23): 62-68. (in Chinese with English abstract)

      [5]郭旭峰,陶樂(lè)仁. 液氮噴淋流態(tài)化速凍系統(tǒng)及冷凍性能研究[J]. 工程熱物理學(xué)報(bào),2003,27(3):475-477.

      Guo Xufeng, Tao Leren. Investigation on freezing characteristic of liquid nitrogen spray fluidized cooling system[J]. Journal of Engineering Thermophysics, 2003, 27(3): 475-477. (in Chinese with English abstract)

      [6]劉貴慶,陶樂(lè)仁,鄭志皋. 液氮噴霧流態(tài)化速凍機(jī)的研制[J]. 冷飲與速凍食品工業(yè),2004,10(3):28-30.

      Liu Guiqing, Tao Leren, Zheng Zhigao. Development of liquid nitrogen spraying fluidified qucik freezer[J].Beverage & Fast Frozen Food Industry, 2004, 10(3): 28-30. (in Chinese with English abstract)

      [7]成芳,楊小梅,由昭紅,等. 食品冷凍過(guò)程的數(shù)值模擬技術(shù)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(7):162-170.

      Cheng Fang, Yang Xiaomei, You Zhaohong, et al. Application of numerical simulation in the research of Food freezing process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 162-170. (in Chinese with English abstract)

      [8]唐君言,邵雙全,徐洪波,等. 食品速凍方法與模擬技術(shù)研究進(jìn)展[J]. 制冷學(xué)報(bào),2018,39(6):4-12.

      Tang Junyan, Shao Shuangquan, Xu Hongbo, et al. Progress in research on the food quick-freezing method and simulation technology[J]. Journal of Refrigeration, 2018, 39(6): 4-12. (in Chinese with English abstract)

      [9]趙遠(yuǎn)恒,郭嘉,陳六彪,等. 食品液氮速凍技術(shù)研究進(jìn)展[J]. 制冷學(xué)報(bào),2019,40(2):4-14.

      Zhao Yuanheng, Guo Jia, Chen Liubiao, et al. Review of liquid nitrogen quick-freezing technology in food. Journal of Refrigeration, 2019, 40(2): 4-14. (in Chinese with English abstract)

      [10]姚智華,陳杰平. 食品真空冷凍干燥準(zhǔn)穩(wěn)態(tài)模型的研究[J]. 安徽科技學(xué)院學(xué)報(bào),2007,21(1):37-40.

      Yao Zhihua, Chen Jieping. Study on the stable numerical model to vacuum freezing drying[J]. Journal of Anhui Science and Technology University, 2007, 21(1): 37-40. (in Chinese with English abstract)

      [11]姚智華,張華. 凍干機(jī)干燥室內(nèi)熱質(zhì)傳遞的數(shù)值模擬[J]. 安徽科技學(xué)院學(xué)報(bào),2013,27(1):86-89.

      Yao Zhihua, Zhang Hua. Numerical simulation of mass and heat transfer in freeze drying chambers[J]. Journal of Anhui Science and Technology University, 2013, 27(1): 86-89. (in Chinese with English abstract)

      [12]黃忠民,齊國(guó)強(qiáng),艾志錄,等. 液氮冷媒介質(zhì)對(duì)速凍餃子凍裂率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):278-283.

      Huang Zhongmin, Qi Guoqiang, Ai Zhilu, at al. Effect of liquid nitrogen frozen on dumpling frost crack rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015, 31(14): 278-283. (in Chinese with English abstract)

      [13]王金鋒,李文俊,謝晶,等. 兩種噴嘴結(jié)構(gòu)對(duì)沖擊式速凍機(jī)流場(chǎng)及換熱特征的影響[J]. 食品與機(jī)械,2017,33(12):80-85,90.

      Wang Jinfeng, Li Wenjun, Xie Jing, et al. Influence of two different nozzle forms on the flow field and heat transfer characteristics of quick freezer[J]. Food & Machinery, 2017, 33(12): 80-85, 90. (in Chinese with English abstract)

      [14]謝晶,柳雨嫣,王金鋒. 噴嘴結(jié)構(gòu)對(duì)氣流沖擊式速凍機(jī)鋼帶表面換熱特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):292-298.

      Xie Jing, Liu Yuyan, Wang Jinfeng. Effects of nozzle structures of air impinging freezer on heat transfer characteristics of steel strip surface[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 292-298. (in Chinese with English abstract)

      [15]汪盧,雷澤勇,鄧健,等. 基于FLUENT干冰清洗噴嘴氣固兩相流場(chǎng)仿真研究[J]. 山東化工,2019,48(6):120-122,124.

      Wang Lu, Lei Zeyong, Deng Jian, et al. Simulation of gas-soild two-phase flow field in dry ice cleaning nozzles based on FLUENT[J]. Shandong Chemical Industry, 2019, 48(6): 120-122, 124. (in Chinese with English abstract)

      [16]羅瑞明,董平,李亞蕾,等. 干切牛肉冷凍干燥中解析干燥過(guò)程的動(dòng)態(tài)模擬及優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(7):271-276.

      Luo Ruiming, Dong Ping, Li Yalei, et al. Dynamic simulation and optimization for desorption drying process during freeze drying of cooked beef slice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 271-276. (in Chinese with English abstract)

      [17]劉春菊,錢(qián)旻,宋江峰,等. 速凍蓮藕片貯藏過(guò)程中品質(zhì)變化動(dòng)力學(xué)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):301-308.

      Liu Chunju, Qian Min, Song Jiangfeng, et al. Establishment of dynamic model for quality change in frozen lotus root slices during storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 301-308. (in Chinese with English abstract)

      [18]樊建,趙天瑞,曹建新,等. 草莓液氮速凍工藝研究[J]. 制冷學(xué)報(bào),2008,29(2):60-62.

      Fan Jian, Zhao Tianrui, Cao Jianxin, et al. Study on strawberry freezing techniqueby liquid nitrogen quick freezing[J]. Journal of Refrigeration, 2008, 29(2): 64-66. (in Chinese with English abstract)

      [19]玄哲浩,高青,李艷,等. 液氮噴淋冷凍性能計(jì)算分析[J]. 低溫工程,2007(3):50-54.

      Xuan Zhehao, Gao Qing, Li Yan, et al. Analysis of freezing characteristics on spraying liquid nitrogen[J]. Cryogenics, 2007(3): 50-54. (in Chinese with English abstract)

      [20]Li J X, Li Y Z, Li E H, et al. Experimental investigation of spray-sublimation cooling system with CO2dry-ice particles[J]. Applied Thermal Engineering, 2020, 174: 115285.

      [21]Wang Y, Zhou N, Yang Z, et al. Experimental investigation of aircraft spray cooling system with different heating surfaces and different additives[J]. Applied Thermal Engineering, 2016, 103: 510-521.

      [22]Xie J L, Tan Y B, Duan F, et al. Study of heat transfer enhancement for structured surfaces in spray cooling[J]. Applied Thermal Engineering, 2013, 59(2): 464-472.

      [23]Fennema O. An over-all view of low temperature food preservation[J]. Cryobiology, 1996, 3(3): 197-213.

      [24]Lemus-Mondaca R A, Vega-Gavez A, Moraga N O. Computational simulational and developments applied to food thermal processing[J]. Food Engineering Reviews, 2011, 3(4): 121-135.

      [25]Abd-Elhady M. Effect of citric acid, calcium lactate and low temperature pre-freezing treatment on the quality of frozen strawberry[J]. Annals of Agricultural Sciences, 2014, 59(1): 69-75.

      [26]劉菲,張偉. 草莓貯存保鮮技術(shù)的研究進(jìn)展[J]. 包裝工程,2016,37(5):103-109.

      Liu Fei, Zhang Wei. Research progress in straw berry storage preservation technology[J]. Packaging Engineering, 2016, 37(5): 103-109. (in Chinese with English abstract)

      [27]Holzwarth M, Korhummel S, Carle R, et al. Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries[J]. Food Research International, 2012, 48(1): 241-248.

      [28]舒志濤,謝晶,楊大章. 不同結(jié)構(gòu)的條縫噴嘴對(duì)沖擊射流換熱的影響[J]. 制冷學(xué)報(bào),2019,40(6):90-97.

      Shu Zhitao, Xie Jing, Yang Dazhang. Effect of slit nozzles of different structures on the heat transfer of impinging jets[J]. Journal of Refrigeration, 2019, 40(6): 90-97. (in Chinese with English abstract)

      [29]張懋平. 液氮超速凍技術(shù)[J]. 制冷,1995(1):22-27.

      Zhang Maoping. Technique on liquid nitrogen flash freezer[J]. Refrigeration, 1995(1): 22-27. (in Chinese with English abstract)

      [30]賀紅霞,申江,朱宗升. 果蔬預(yù)冷技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 食品科技,2019,44(2):46-52.

      He Hongxia, Shen Jiang, Zhu Zongsheng. Research status and development trends on precooling technology of fruits and vegetables[J]. Food Scinece and Technology, 2019, 44(2): 46-52. (in Chinese with English abstract)

      [31]賀紅霞,申江,張川,等. 不同冰溫真空干燥壓力對(duì)草莓品質(zhì)的影響[J]. 食品研究與開(kāi)發(fā),2018,39(9):44-47.

      He Hongxia, Shen Jiang, Zhang Chuan, et al. Effect of different ice-temperature vacuum drying pressure on the quality of strawberry[J]. Food Resrarch and Development, 2018, 39(9): 44-47. (in Chinese with English abstract)

      Numerical simulation and optimization of quick freezing process of strawberry by dry ice spray

      Ning Jinghong, Zhao Yanfeng, Sun Zhaoyang

      (300134,)

      Quick-frozen fruits and vegetables have a high demand on the processing device for rapid freezing, due to the ever-increasing requirements for the high quality and nutritional value to the taste of consumers in food production. The purpose of this study is to use the sublimation process of dry ice particles, further to form the superfast freezing in low temperature environment, in order to adequately keep the original color, flavor, and high quality nutrition of frozen products, shorten the freezing time, and improve the freezing efficiency. Taking the strawberry as the research material, natural dry ice particles were sprayed into a quick-freezing room, concurrently skimmed the surface of strawberry, and fully contacted with the strawberry to exchange the heat. Therefore, a new innovated platform was designed, including the fabrication of dry ice pellet, spraying system, a quick-freezing room, and a feasible pallet. A thermomechanical model of strawberry in the quick-freezing room was established, to simulate the distribution of temperature, velocity, and pressure during the dry ice spraying using the Comsol multiphysics software. The inlet radius of the dry ice jet was set under the conditions of 18, 20, 23, 25 and 30 mm, and the injection velocity was set as 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50 m/s, thereby to determine the time when the core temperature and surface temperature of strawberry met the requirements of quick freezing. The solid fraction of dry ice in different time was compared-when the injection velocities of dry ice were 0.20 and 0.30 m/s. The results showed that the freezing time of strawberry decreased, while the freezing efficiency increased-with the increase of the inlet radius and the spray speed of dry ice. When the inlet radius was 25 mm and the flow velocity was 0.30 m/s, the core temperature of all strawberries reached -18℃ at 350s, indicating the uniform distribution of temperature, and the shortest duration between the strawberry surface to -35 ℃ and the strawberry core to -18 ℃. In this case, it was expected to effectively prevent the surface cracking caused by the excessive difference of internal and external temperature in a strawberry. Meanwhile, the solid fraction of exported dry ice was less than others, indicating the quick freezing of strawberry realized with the maximum efficiency. Compared with liquid nitrogen spraying, the zone of the maximum ice crystal formation and the freezing time of dry frozen strawberry reduced by 63.9% and 41.7%, respectively, indicating the excellent cooling performance using dry ice spray. In addition, the quick-frozen quality of strawberry was significantly improved, due to the less freezing time, the improved freezing efficiency, and the reduced energy consumption of system operation, meanwhile, to better preserve the strawberry juice, original color, flavor, and nutrition. An experiment was also used to verify the optimal parameters, where the experimental and simulation errors were 3.70% and 6.03%, respectively, when the surface temperature and core temperature reached the standard value. Specifically, the physical and chemical properties of strawberries were better than the standard after being quick-frozen. The finding can lay a sound foundation for further development of energy-saving and environment-friendly dry frozen devices for fruits and vegetables.

      freezing; numerical simulation; optimization; dry ice spraying; strawberry

      寧?kù)o紅,趙延峰,孫朝陽(yáng). 草莓干冰噴射速凍過(guò)程的數(shù)值模擬與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):306-314.doi:10.11975/j.issn.1002-6819.2021.01.036 http://www.tcsae.org

      Ning Jinghong, Zhao Yanfeng, Sun Zhaoyang. Numerical simulation and optimization of quick freezing process of strawberry by dry ice spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 306-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.036 http://www.tcsae.org

      2020-07-27

      2020-12-10

      天津市自然科學(xué)基金項(xiàng)目(18JCYBJC22200);國(guó)家級(jí)大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目(202010069013)

      寧?kù)o紅,博士,教授。研究方向?yàn)橹评湎到y(tǒng)節(jié)能與優(yōu)化。Email:ningjinghong@126.com

      10.11975/j.issn.1002-6819.2021.01.036

      TB61

      A

      1002-6819(2021)-01-0306-09

      猜你喜歡
      干冰速凍液氮
      干冰滅火
      “干冰”不是冰,使用需當(dāng)心
      液氮冷凍與阿維A口服聯(lián)合治療多發(fā)性跖疣療效觀察
      液氮罐的使用
      如果將干冰溶化,能在里面游泳嗎?
      速度食品下的健康密碼
      大眾健康(2017年1期)2017-04-13 15:32:09
      巧煮速凍餃子
      凍死那個(gè)
      意林(2016年6期)2016-04-06 16:03:13
      液氮冷凍加中藥面膜治療面部雀斑46例
      液氮罐日常使用時(shí)的注意事項(xiàng)
      沛县| 沙田区| 海口市| 雅江县| 安福县| 沙雅县| 南安市| 合水县| 谢通门县| 永春县| 本溪市| 广西| 安吉县| 邻水| 甘谷县| 托克逊县| 苍山县| 泉州市| 哈密市| 青浦区| 灌云县| 连江县| 华容县| 晋宁县| 班玛县| 巴林右旗| 鄂托克前旗| 高密市| 黄石市| 应城市| 筠连县| 南雄市| 盐源县| 古蔺县| 郴州市| 章丘市| 建阳市| 桓仁| 凯里市| 上饶市| 专栏|