方幸 劉雪琳 丁培麗
【摘要】 洋蔥伯克霍爾德菌是臨床常見的機會致病菌,其感染多見于肺囊性纖維化及免疫抑制患者,可引起呼吸系統(tǒng)、泌尿系統(tǒng)、血流感染、顱內(nèi)感染等,尤其肺內(nèi)感染造成不可逆的肺組織損傷。目前對于洋蔥伯克霍爾德菌治療的抗生素選擇較少,同時由于其耐藥率高,很難被清除,因此臨床對于洋蔥伯克霍爾德菌感染的治療手段有限且效果不佳。本文就該細菌的耐藥機制進行總結,為基礎及臨床研發(fā)并使用抗菌藥物提供相關思路。
【關鍵詞】 洋蔥伯克霍爾德菌 耐藥 外膜通透屏障 外排泵系統(tǒng) β-內(nèi)酰胺酶
Research on Drug Resistance Mechanism of Burkholderia Cepacia/FANG Xing, LIU Xuelin, DING Peili. //Medical Innovation of China, 2021, 18(32): -188
[Abstract] Burkholderia cepacia is one of the most common clinical opportunistic pathogens, it often affects patients with pulmonary cystic fibrosis and the patients who are in immunosuppression, it can cause respiratory, urinary, bloodstream, and intracranial infections, especially in the lungs, the infection causes irreversible lung tissue damage. At present, there are few antibiotics for the treatment of Burkholderia cepacia, at the same time, due to its high drug resistance rate, it is difficult to be eliminated, therefore, the clinical treatment of Burkholderia cepacia infection is limited and the effect is not good. This article summarize the drug resistance mechanism of this kind of bacteria, and provide relevant ideas for basic and clinical development and use of antibacterial drugs.
[Key words] Burkholderia cepacia Drug resistance Outer membrane diffusion Efflux pump β-lactamase
First-author’s address: The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
doi:10.3969/j.issn.1674-4985.2021.32.046
洋蔥伯克霍爾德菌是水、土壤和植物中普遍存在的革蘭陰性非乳糖發(fā)酵細菌,即使在有機溶劑、防腐劑或者低營養(yǎng)條件下仍能存活數(shù)月,且對于消毒劑有很好的耐受性[1],被認為是肺囊性纖維化及免疫抑制患者院內(nèi)感染的高危條件致病菌[2]。洋蔥伯克霍爾德菌可造成顱內(nèi)感染、肺炎、泌尿系統(tǒng)感染,甚至血流感染,其感染后的特征為多重固有的抗生素耐藥[3],因此洋蔥伯克霍爾菌感染后尤其是對于肺囊性纖維化及免疫抑制患者難以治療且無法使用抗生素達到有效根除[4]。
細菌已經(jīng)進化出多種耐藥策略,且可同時協(xié)同使用不同的生物機制(包括先天性及獲得性)來達到更高的耐藥性[5],包括(1)細菌本身細胞膜介導的抗菌藥物的低滲透性;(2)細胞的主動流出系統(tǒng);(3)通過底物切割或者化學修飾如磷酸化、乙?;?、腺苷化等作用造成酶失活;(4)通過基因突變來改變靶目標,或者使用耐藥靶目標替代易感靶目標;(5)特異性結合蛋白進行藥物隔絕;(6)通過增加基因轉錄導致細菌增殖。而洋蔥伯克霍爾德菌對多類抗生素的高水平的先天性及獲得性耐藥機制很大程度歸因于:外膜通透性的降低[6-8],修飾酶(如β-內(nèi)酰胺酶)的產(chǎn)生[9],抗生素靶點改變及外排泵系統(tǒng)的作用[10-12]。
1 外膜通透屏障降低
洋蔥伯克霍爾德菌耐抗菌藥物的第一道防線即為外膜通透屏障,這是細菌固有的抗生素耐藥性,是一種被動機制,由其本身的理化特性決定,不受暴露于抗菌藥物種類及量的影響,是一種不對稱的雙層膜,研究表明,洋蔥伯克霍爾德菌的細胞膜主要組成部分為脂多糖(LPS)和限制性孔蛋白,這種結構是細菌對于多粘菌素耐藥的主要決定因素[13],限制性孔蛋白成分可以減少藥物穿透。是細菌對抗菌藥物耐藥的促成機制。細菌外膜通透屏障的降低大大減少了抗菌藥物的作用,這是細菌耐藥的內(nèi)在固有機制,暫時并無相關針對洋蔥伯克霍爾德菌的這種外膜通透屏障的抗菌藥物研究。這種抗生素內(nèi)在抗性不僅本身可以形成對抗菌藥物的防線,同時大多數(shù)的細菌外膜上含有多種藥物流出泵系統(tǒng),可以組成并誘導主動外排系統(tǒng)的表達[14-15],負責藥物從細胞中主動排出。
2 外排泵系統(tǒng)
目前細菌耐藥的外排泵機制研究是一個重要的趨勢,很多研究發(fā)現(xiàn)耐藥-結節(jié)-分化(RND)外排系統(tǒng)的表達是革蘭陰性菌對多類抗菌藥物耐藥的主要原因,而洋蔥伯克霍爾德菌中CeoAB-OpcM基因系統(tǒng)屬于革蘭陰性桿菌的RND外排泵家族[16],RND外排泵的過度表達可促使抗菌藥物被排出體外,從而引起多重耐藥。該菌外排泵系統(tǒng)一般由膜融合蛋白(membrane fusion protein,MFP)、RND轉運蛋白、外膜通道蛋白三個部分組成,當細菌遇到抗菌藥物時,細菌的RND轉運蛋白具有識別抗菌藥物功能,與膜融合蛋白和外膜通道形成復合物,直接將藥物轉運到細胞外[17]。
一項對于洋蔥伯克霍爾德菌的研究結果顯示,外排泵系統(tǒng)在該種細菌中普遍存在且高表達,同時在此種菌內(nèi)發(fā)現(xiàn)了14個RND泵編碼基因[11]。至少6個活躍的RND泵系統(tǒng)(RND-1、RND-3、RND-4、RND-8、RND-9、RND-10)與洋蔥伯克霍爾德菌的抗性相關[18-22],RND-3和RND-4對于頭孢他啶、氯霉素、喹諾酮類(環(huán)丙沙星、左氧氟沙星)及妥布霉素、甲氧芐啶/磺胺甲惡唑等抗菌藥物的耐藥性介導具有重要意義[19,23-24],且文獻[25-27]指出RND-4和RND-9的過表達不僅影響了細菌的耐藥性,同時也提高了細菌對洗必泰等消毒劑的耐受,這也是洋蔥伯克霍爾德菌耐藥,耐消毒劑,甚至在院內(nèi)造成爆發(fā)流行的原因之一。這些外排泵的作用協(xié)同外膜通透屏障很大程度上增加了洋蔥伯克霍爾德菌對于抗菌藥物及其他有毒化合物的抵抗性。
然而,這些高表達的RND外排泵系統(tǒng)的研究對于臨床治療耐藥性菌株的貢獻卻尚未得到確切的研究報道[18,28-29],由于RND外排泵對于外排底物的廣泛性,造成更多的抗菌藥物被排出體外,引起多重耐藥,因此對于RND外排泵抑制劑的研究造成了很大的阻礙。
3 修飾酶產(chǎn)生——β內(nèi)酰胺酶產(chǎn)生
β-內(nèi)酰胺酶在細菌耐β-內(nèi)酰胺類抗菌藥物中發(fā)揮了重要作用,洋蔥伯克霍爾德菌對于β-內(nèi)酰胺類抗生素的首次耐藥報道是對于該菌株的PenA-PenR基因系統(tǒng)研究中發(fā)現(xiàn)的[9],此細菌至少能夠編碼A、C、D類β-內(nèi)酰胺基因,可誘導β-內(nèi)酰胺酶[30],借助分子中的絲氨酸活性位點產(chǎn)β-內(nèi)酰胺酶,結合抗生素中的β-內(nèi)酰胺環(huán),使其對細菌失活[31],且這些基因可以通過群體感染性產(chǎn)生水平轉移,使得同種其他細菌中同時產(chǎn)生該編碼基因,誘導整體對β-內(nèi)酰胺類抗生素產(chǎn)生耐藥[32]。
Pen-A類基因突變導致A類β-內(nèi)酰胺酶過表達,這是假單胞菌屬的獲得性頭孢他啶、美羅培南等藥物耐藥的主要原因[33-39],該基因位于菌株2號染色體上,其突變或經(jīng)過關鍵氨基酸殘基化等修飾后造成頭孢菌素類和美羅培南敏感性降低[40]。除此之外,編碼AmpC(AmpCβ-內(nèi)酰胺酶,又稱頭孢菌素類酶,其具有水解廣譜頭孢菌素類抗菌藥物活性的作用)基因突變可導致AmpC在許多革蘭陰性桿菌中過表達,同時由于AmpC的上調(diào),使得該種細菌AmpD(一種細胞壁循環(huán)酶)的過表達,加之其傾向于可逆的重復突變,可反向激活AmpC靶目標的轉錄,優(yōu)化菌株的調(diào)控系統(tǒng),提高菌株對β-內(nèi)酰胺類抗生素耐藥性[41]。因此,針對該基因位點,研究如何阻斷其可逆的重復突變,或許可以抑制細菌的此種耐藥機制。
4 抗生素靶基因的突變
洋蔥伯克霍爾德菌抗生素靶基因突變引起的耐藥性大多與氟喹諾酮類藥物和甲氧芐啶耐藥有關。甲氧芐啶的抗菌作用靶目標為二氫葉酸還原酶,早在1989年,Burns等[10]就發(fā)現(xiàn)甲氧芐啶無法抑制來自耐藥洋蔥伯克霍爾德菌菌株的蛋白。而喹諾酮的耐藥機制研究中發(fā)現(xiàn)對于環(huán)丙沙星的耐藥菌株中發(fā)現(xiàn)大多數(shù)菌株出現(xiàn)了Thr83Ile或Asp87Asn的基因突變,導致的結果為菌株對于環(huán)丙沙星最小抑菌濃度(MIC)增加12~64倍,而Ser80Leu突變可直接導致環(huán)丙沙星MIC>256 μg/mL[42]。這種靶基因的突變大大減少了抗菌藥物的抗菌活性,是導致細菌耐藥的另一機制。
綜上所述,作為重要的條件致病菌,洋蔥伯克霍爾德菌感染呈上升趨勢,且由于其固有及獲得性的耐藥機制共同協(xié)同造成廣泛耐藥,且多數(shù)存在這些共同因素結合作用,治療難度加大,這也為研究人員和臨床醫(yī)生建立了獨特且困難的挑戰(zhàn),由于這些機制的相互作用尚未得到更好地進一步闡述,因此對于洋蔥伯克霍爾德感染的抗菌治療有待研究,為洋蔥伯克霍爾德菌感染的患者提供更好的臨床治療策略。
參考文獻
[1] Torbeck L,Raccasi D,Guilfoyle D,et al.Burkholderia cepacia: This Decision Is Overdue[J].PDA Journal of Pharmaceutical Science and Technology,2011,65(5):535-543.
[2] Abbott I J,Peleg A Y.Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies[J].Seminars in Respiratory and Critical Care Medicine,2015,36(1):99-110.
[3] Quinn J P.Clinical problems posed by multiresistant nonfermenting gram-negative pathogens[J].Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America,1998,27(Suppl 1):S117-124.
[4] Lord R,Jones A M,Horsley A.Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation[J].Cochrane Database Systematic Review,2016(1):CD009529.
[5] Blair J M,Webber M A,Baylay A J,et al.Molecular mechanisms of antibiotic resistance[J].Microbiology Spectrum,2016,13(1):42-51.
[6] Aronoff S C.Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a β-lactam-resistant mutant and in resistant cystic fibrosis isolates[J].Antimicrobial Agents and Chemotherapy,1988,32(11):1636-1639.
[7] Moore R A,Hancock R E.Involvement of outer membrane of Pseudomonas cepacia in aminoglycoside and polymyxin resistance[J].Antimicrobial Agents and Chemotherapy,1986,30(6):923-926.
[8] Parr T R Jr,Moore R A,Moore L V,et al.Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia[J].Antimicrobial Agents and Chemotherapy,1987,31(1):121-123.
[9] Trépanier S,Prince A,Huletsky A.Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator[J].Antimicrobial Agents and Chemotherapy,1997,41(11):2399-2405.
[10] Burns J L,Lien D M,Hedin L A.Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia[J].Antimicrobial Agents and Chemotherapy,1989,33(8):1247-1251.
[11] Guglierame P,Pasca M R,De R E,et al.Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome[J].BMC Microbiol,2006,20(6):66.
[12] Schweizer H P.When it comes to drug discovery not all Gram-negative bacterial biodefence pathogens are created equal: Burkholderia pseudomallei is different[J].Microbial Biotechnology,2012,5(5):581-583.
[13] Olaitan A O,Morand S,Rolain J M.Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria[J].Front Microbiol,2014,26(5):643.
[14] Nikaido H.Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria[J].Seminars in Cell & Developmental Biology,2001,12(3):215-223
[15] Ryan B M,Dougherty T J,Beaulieu D,et al.Efflux in bacteria: what do we really know about it?[J].Expert Opinion on Investigational Drugs,2001,10(8):1409-1422.
[16] Li X Z,Nikaido H,Poole K.Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa[J].Antimicrobial Agents and Chemotherapy,1995,39(9):1948-1953.
[17] Lomovskaya O,Watkins W J.Efflux pumps:their role in antibacterial drug discovery[J].Current Medicinal Chemistry,2001,8(14):1699-1711.
[18] Bazzini S,Udine C,Sass A,et al.Deciphering the role of RND efflux transporters in Burkholderia cenocepacia[J/OL].Public Library of Science One,2011,6(4):e18902.
[19] Buroni S,Matthijs N,Spadaro F,et al.Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells[J].Antimicrobial Agents and Chemotherapy,2014,58(12):7424-7429.
[20] Nikaido H,Pagès J M.Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria[J].FEMS Microbiology Review,2012,36(2):340-363.
[21] Buroni S,Pasca M R,F(xiàn)lannagan R S,et al.Assessment of three Resistance- Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance[J].BMC Microbiology,2009,9:200.
[22] Fernández L,Hancock R W.Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance[J].Clinical Microbiology Review,2012,25(4):661-681.
[23] Tseng S P,Tsai W C,Liang C Y,et al.The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity[J/OL].Public Library of Science One,2014,9(8):e104986.
[24] Scoffone V C,Spadaro F,Udine C,et al.Mechanism of resistance to an antitubercular 2-thiopyridine derivative that is also active against Burkholderia cenocepacia[J].Antimicrobial Agents and Chemotherapy,2014,58(4):2415-2417.
[25] Coenye T,Van A H,Peeters E,et al.Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms[J].Antimicrobial Agents and Chemotherapy,2011,55(5):1912-1919.
[26] Nunvar J,Hogan A M,Buroni S,et al.Burkholderia CenocepaciaThe Effect of 2-Thiocyanatopyridine Derivative 11026103 on : Resistance Mechanisms and Systemic Impact[J].Antibiotics (Basel),2019,8(4):159.
[27] Scoffone V C,Ryabova O,Makarov V,et al.Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia[J].Front Microbiol,2015,6:815.
[28] Buroni S,Pasca M R,F(xiàn)lannagan R S,et al.Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance[J].BMC Microbiology,2009,9:200.
[29] Nair B M,Cheung K J,Griffith A,et al.Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar Ⅲ (B. cenocepacia)[J].The Journal of Clinical Investigation,2004,113(3):464-473.
[30] Poirel L,Rodriguez-Martinez J M,Plésiat P,et al.Naturally occurring Class A ss-lactamases from the Burkholderia cepacia complex[J].Antimicrobial Agents and Chemotherapy,2009,53(3):876-882.
[31] Rhodes K A,Schweizer H P.Antibiotic resistance in Burkholderia species[J].Drug Resistance Updates,2016,9(28):82-90.
[32] Bush K,Jacoby G A.Updated functional classification of β-lactamases[J].Antimicrobial Agents and Chemotherapy,2010,54(3):969-976.
[33] Tribuddharat C,Moore R A,Baker P,et al.Burkholderia pseudomallei class a beta-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition[J].Antimicrobial Agents and Chemotherapy,2003,47(7):2082-2087.
[34] Sam I C,See K H,Puthucheary S D.Variations in ceftazidime and amoxicillin -clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei[J].Journal of Clinical Microbiology,2009,47(5):1556-1558.
[35] Sarovich D S,Price E P,Limmathurotsakul D,et al.
Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection[J].Infection and Drug Resistance,2012,5:129-132.
[36] Sarovich D S,Price E P,Von Schulze A T,et al.Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia[J/OL].Public Library of Science One,2012,7(2):e30789.
[37] Viberg L T,Sarovich D S,Kidd T J,et al.Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients[J/OL].Microbiology,2017,8(2):e00356.
[38] Bugrysheva J V,Sue D,Gee J E,et al.Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis[J/OL].Antimicrobial Agents and Chemotherapy,2017,61(6):e00010.
[39] Chirakul S,Norris M H,Pagdepanichkit S,et al.Transcriptional and post- transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance[J].Scientific Reports,2018,8(1):10652.
[40] Somprasong N,Hall C M,Webb J R,et al.Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A β-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria[J/OL].Microbiology,2020,11(2):e00592.
[41] Hwang J,Kim H S.Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through ampD Mutations in Burkholderia cenocepacia[J].Antimicrobial Agents and Chemotherap,2015,59(12):7602-7610.
[42] Pope C F,Gillespie S H,Pratten J R,et al.Fluoroquinolone-resistant mutants of Burkholderia cepacia[J].Antimicrobial Agents and Chemotherap,2008,52(3):1201-1203.
(收稿日期:2021-02-04) (本文編輯:張爽)