• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Nb and Mo additions on thermal behavior,microstructure and magnetic property of FeCoZrBGe alloy?

    2021-03-19 03:21:32YamingSun孫亞明ZhiqunWang王志群ShiChongXu徐仕翀andZhongHua華中
    Chinese Physics B 2021年3期
    關(guān)鍵詞:華中

    Yaming Sun(孫亞明), Zhiqun Wang(王志群), Shi-Chong Xu(徐仕翀), and Zhong Hua(華中),?

    1National Demonstration Center for Experimental Physics Education,Jilin Normal University,Siping 136000,China

    2State Grid Economic Research Institute of East Inner Mongolia Electric Power Company Limited,Hohhot 010020,China

    Keywords: alloy,Nb addition,Mo addition,transmission electron microscopy

    1. Introduction

    Fe-based nanocrystalline materials as one kind of the fundamental functional materials of electronic industry promote the development of related industries to the direction of high efficiency,energy saving and green environmental protection,playing a great role in promoting the progress of modern power and electrical industry technology, which has drawn a great deal of attention.[1-6]

    Doping engineering is an effective method and widely used to tailor structures and properties of nanoscale materials, facilitating the construction of various multifunctional materials and devices. It has been reported that transition metals doped in Fe-based alloys have important effects.[7-9]Nb and Mo are popular adding elements due to the fact that they can improve microstructure and properties of Febased alloys effectively.[10,11]Moreover, the effects of Nb and Mo on microstructure and properties of Fe-based alloys have some difference. For FeCuVSiB alloys, Mo was not as effective as Nb in limiting grain growth.[12]For Mo-doped Fe73.5Si13.5B9Nb3?xMoxCu1(x=0,1.5,2 and 3)alloys,when Nb was gradually replaced by Mo, the thermal stabilities of both the ferro-paramagnetic transition of the amorphous phase and the precipitation of the α′′-Fe1?xSixphase were found to deteriorate.[13]For Fe-Si-B-M-Cu(M=Nb,Mo)alloys,replacing Nb by Mo can enhance oxidation resistance.[14]

    Our research team has been engaged in the research of FeCoZrB alloys for a long time.[15-17]There is a large heat of mixing between the members of this series. During the process of crystallization, besides Fe(Co) crystallization phase, metastable phase or ZrCo3B2phase can easily form. Adding Nb can slightly reduce the negative enthalpy of mixing of this alloy system, while adding Mo will significantly reduce the negative enthalpy of mixing of this alloy system.[18]Theoretically,the effect of Mo addition on the crystallization phase should be greater than that of Nb addition, which is different from other alloys.[11-14]In this paper,Fe40Co40Zr9?yMyB10Ge1(y=0-4;M=Nb,Mo)amorphous alloys were prepared and annealed at their primary crystallization peak. The effects of Nb and Mo contents on the microstructure and properties of FeCoZrBGe alloys are investigated systemically and compared, to explore which element is more beneficial to microstructure and properties for the Fe40Co40Zr9B10Ge1alloy.

    2. Experimental details

    Nominal composition Fe40Co40Zr9?yMyB10Ge1(y = 0,1, 2, 3, 4; M=Nb, Mo) alloy ingots were prepared by arc melting with the mixtures of high pure elements. The ingots were remelted for 4 times with the magnetic stirring to ensure the homogeneity under the protection of high purity argon. Then mother alloy ingots were put into a special quartz tube. Amorphous alloy ribbons of Fe40Co40Zr9?yMyB10Ge1(y=0,1,2,3,4;M=Nb,Mo)were prepared by a single roller melt spinning technique(the copper-wheel rate is 38 m/s)and annealed at their primary crystallization peak in vacuum.

    Differential scanning calorimetry(DSC)was recorded by a simultaneous thermal analyzer (STA, 449F5). The structures of alloys were checked by x-ray diffractometer (XRD,D/max 2500/PC, Cu-Kα, λ = 1.5406 ?A, 40 kV, 200 mA).Grain size D of α-Fe(Co) crystals was calculated by Jade 5.0. Microstructures were analyzed by transmission electron microscopy (TEM, FEI Talos F200). Fischione Model 1050 TEM Mill was used to prepare TEM samples. Using digitalmicrograph software to analyze TEM images. Coercivity Hcwas measured by a DC B-H loop tracer(RIKEN BHS40).

    3. Results and discussion

    Figure 1 shows the DSC traces of Fe40Co40Zr9?yMyB10Ge1(y=0, 1, 2, 3, 4; M=Nb, Mo) amorphous alloys. Both the shape and the location of crystallization peaks change with the addition of Nb and Mo. There are three exothermic peaks in the DSC trace of the Fe40Co40Zr9B10Ge1alloy. With the increase of Nb/Mo content, the primary crystallization temperature Tp1shifts to low temperature. The deviation of the secondary crystallization peak, Tp2, is irregular and the third crystallization temperature Tp3shifts to high temperature. The shift of primary crystallization temperature Tp1is related to the atomic radii. The atomic radii of Zr,Nb and Mo is 0.160,0.148 and 0.140 nm, respectively. During the crystallization process, Zr, Nb and Mo distribute in the residual amorphous matrix. The diffusion rate of atomic with small radius is fast,which decreases the crystallization temperature of the system.Therefore, the primary crystallization temperature Tp1shifts to low temperature with the increase of Nb or Mo content.

    Fig.1. DSC traces of as-quenched Fe40Co40Zr9?yMyB10Ge1 (y=0,1,2,3,4;M=Nb,Mo)alloys.

    The primary crystallization peak(Tp1)and the secondary crystallization peak(Tp2)of Fe40Co40Zr9?yMyB10Ge1(y=0,1, 2, 3, 4; M=Nb, Mo)alloys are shown in Fig.2. The gap between the primary crystallization (Tp1) and the secondary crystallization peak(Tp2)of the Mo-containing alloys is much wider compared to the Nb-containing alloys. In addition, the higher the content of Mo is, the wider the gap is. When addition ratio is 4 at%, the effect of Nb is far less than that of Mo on the gap between primary and secondary crystallization temperatures.Adding Mo can increase the annealing scope effectively and the temperature interval can reach 150.5 K when Mo addition is 4 at%.

    Fig.2. Primary crystallization peak(Tp1)and secondary crystallization peak(Tp2)of Fe40Co40Zr9?yMyB10Ge1(y=0,1,2,3,4;M=Nb,Mo)alloys.

    XRD of Fe40Co40Zr9?yMyB10Ge1(y=0,1,2,3,4;M=Nb, Mo) amorphous alloys annealed at crystallization peak temperatures is given in Fig.3. For the Fe40Co40Zr9B10Ge1alloy,α-Fe(Co)phase,β-Mn type phase and amorphous phase are observed. The crystallization volume fraction is low. For the Mo-containing and Nb-containing alloys,the primary crystallization phase is only α-Fe(Co) phase. There is almost no shift of diffraction peak. With the increase of Mo and Nb content, the diffraction peak strength of α-Fe(Co) phase increases. In other words, the crystallization volume fraction of α-Fe(Co)phase increases with the increase of Mo and Nb content.

    Fig.3. XRD of Fe40Co40Zr9?yMyB10Ge1 (y=0, 1, 2, 3, 4; M=Nb,Mo)amorphous alloys after annealing.

    According to the results of XRD, the grain sizes [α-Fe(Co)]of Fe40Co40Zr9?yMyB10Ge1(y=1,2,3,4;M=Nb,Mo) alloys after annealing are given in Fig.4. With the increase of Nb and Mo content, the grain size decreases. The downward trends are obvious. At the same content of Mo and Nb,the grain size[α-Fe(Co)]of Mo-containing alloys is lower compared to Nb-containing.

    Fig.4. Grain sizes[α-Fe(Co)]of Fe40Co40Zr9?yMyB10Ge1 (y=1, 2,3,4;M=Nb,Mo)alloys with different M contents.

    Figure 5 gives the transmission electron microscopy(TEM) images, the corresponding selected-area electron diffraction (SAED) patterns, high resolution transmission electron microscope (HRTEM) images, fourier transform (FFT) images and grain-size distribution images of Fe40Co40Zr9?yMyB10Ge1(y = 0, 4; M = Nb, Mo) alloys after annealing. The TEM image and SAED pattern of Fe40Co40Zr9B10Ge1alloy are shown in Fig.5(a1). The diffraction rings of α-Fe(Co) phase and β-Mn type phase are indexed. The enlarged area of A and B are shown in Figs. 5(a2) and 5(a3), respectively. The corresponding fast fourier transform (FFT) images are shown in the upper right corner. For Fig.5(a2), the FFT shows that the zone axis is body-centered cubic [111] and grain A is α-Fe(Co). For Fig.5(a3), the FFT shows that the zone axis is cubic [411]and grain B is β-Mn type. The TEM image and SAED pattern of the Fe40Co40Zr5Nb4B10Ge1alloy are shown in Fig.5(b1),and the diffraction rings of α-Fe(Co)phase are indexed. The enlarged area is shown in Fig.5(b2). The calculated d-space is 0.201 nm,which is consistent with the value for(110)plane of α-Fe(Co) phase. From Fig.5(b3), the mean grain size is approximately 8.9 nm. The TEM image and SAED pattern of the Fe40Co40Zr5Mo4B10Ge1alloy are shown in Fig.5(c1),and the diffraction rings of α-Fe(Co)phase are indexed. The fine α-Fe(Co) nanocrystals are found to be distributed in the residual amorphous phase. An enlarged area is shown in Fig.5(c2). The calculated d-space is 0.201 nm,which is consistent with the value for(110)plane of α-Fe(Co)phase.From Fig.5(b3),the mean grain size is approximately 6.8 nm. From the TEM images [Figs. 5(a1), 5(b1), 5(c1)], both the crystallization volumes fraction of Fe40Co40Zr5Nb4B10Ge1alloy and Fe40Co40Zr5Mo4B10Ge1alloy are larger than that of the Fe40Co40Zr9B10Ge1alloy without additive elements. From the HRTEM images[Figs.5(a2), 5(b2), 5(c2)], the grain size[α-Fe(Co)]of the Fe40Co40Zr9B10Ge1alloy is larger than that of the Nb- and Mo-containing alloys. The width of grainsize distribution can be determined by the geometric standard deviation (σ). From grain-size distribution [Figs. 5(b3) and 5(c3)],the geometric standard deviation(σ)for the grain size distribution of Mo-containing alloy with 4 at% Mo is sightly broader than that of Nb-containing alloy with 4 at%Nb.

    Fig.5. Transmission electron microscopy(TEM)images[(a1), (b1), (c1)], the corresponding selected-area electron diffraction(SAED)patterns [the upper right corner of [(a1), (b1), (c1)], high resolution transmission electron microscope images [(a2), (a3), (b2), (c2)], Fourier transform(FFT)images[the upper right corner of(a2),(a3)]and grain-size distribution images[(b3),(c3),(c3)]of alloys after annealing. (a)Fe40Co40Zr9B10Ge1,(b)Fe40Co40Zr5Nb4B10Ge1,(c)Fe40Co40Zr5Mo4B10Ge1.

    Table 1. Enthalpy of mixing between Zr/Nb/Mo and other elements.

    Our research team has been engaged in the research of FeCoZrB alloys for a long time. During the process of crystallization,besides α-Fe(Co)crystallization phase,metastable phase or ZrCo3B2phase can easily form.[15-17]Table 1 gives the enthalpy of mixing between Zr/Nb/Mo and other elements.[18]There is a large negative enthalpy of mixing between the elements of FeCoZrBGe.Compared with Zr,adding Nb reduces the negative enthalpy of mixing, but adding Mo significantly reduces the enthalpy of mixing. If there is a large negative enthalpy of mixing among members,there is a greater attraction among members. The additions of Nb and Mo reduce the negative enthalpy of mixing,thus reducing the attraction between members and resulting in the difference of crystallization products. The effect of Mo addition on the crystallization phase of FeCoZrBGe alloys is greater than that of Nb addition.

    Hcof Fe40Co40Zr9?yMyB10Ge1(y=0, 1, 2, 3, 4; M=Nb, Mo) alloys with different M contents is shown in Fig.6.The large Hcof Fe40Co40Zr9B10Ge1alloy is due to the precipitation of β-Mn type phase. With increasing the M content,Hcdecreases and the decrease of Hcfor Mo-containing alloys is more obvious. For the Nb-containing and Mo-containing alloys,only α-Fe(Co)phase precipitates from amorphous matrix. Hcof Mo-containing alloy is lower compared to the Nbcontaining alloy. Suzuki et al.[19]revealed that the value of Hcis in direct proportion to D6and Vcry. From Figs.4 and 5,it is clear that the grain size of Nb-containing alloys is larger than that of Mo-containing alloys under the same proportion.The downward trends of grain size are obvious, which could result in the decrease of Hcquickly. However, the crystallization volume fraction of α-Fe(Co)phase increases with the increase of Mo and Nb contents,which could result in the increase of Hc. Bitoh et al.[20]revealed that the value of Hcis also related to the width of grain-size distribution of α-Fe nanocrystals and Hcincreases with increasing width of the grain-size distribution. The width of grain-size distribution of Mo-containing alloy with 4 at% Mo is slightly broader than that of Nb-containing alloy with 4 at% Nb [Figs. 5(b3) and 5(c3)]. Therefore, the downward trends of Hcbecome slow with the increase of Mo and Nb content.

    Fig.6. Coercivity(Hc)of Fe40Co40Zr9?yMyB10Ge1 (y=0,1,2,3,4;M=Nb,Mo)alloys with different M contents.

    4. Conclusion

    Amorphous alloy ribbons of Fe40Co40Zr9?yMyB10Ge1(y=0,1,2,3,4;M=Nb,Mo)prepared by melt spinning were annealed at their crystallization peak temperatures. The effect of M content on thermal behavior, microstructure and magnetic property were investigated systemically and compared.The effect of Mo addition is greater compared to Nb addition.

    (1)With increasing Nb or Mo content,the primary crystallization temperature decreases. The gap between primary and secondary crystallization peaks of Mo-containing alloys is wider compared to Nb-containing alloys.

    (2) For the Fe40Co40Zr9B10Ge1alloy, the primary crystallization phases of α-Fe(Co) and β-Mn type are observed.For the Mo-containing and Nb-containing alloys,the primary crystallization phase is only α-Fe(Co)phase. With increasing Nb or Mo content,the grain size of α-Fe(Co)phase decreases.The grain size of Mo-containing alloy is smaller compared to Nb-containing alloy under the same proportion.

    (3)With increasing Nb or Mo content,Hcdecreases. Hcof Mo-containing alloy is smaller compared to Nb-containing alloy under the same proportion. For Fe40Co40Zr9B10Ge1alloy,high Mo addition proportion(4 at%)has better effect than high Nb addition proportion on the annealing scope,grain size and Hc.

    猜你喜歡
    華中
    Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments
    華中要塞:義陽(yáng)三關(guān)
    華中建筑2021年總目錄
    華中建筑(2021年12期)2022-01-17 02:08:42
    新四軍華中抗戰(zhàn)
    明年或激增40%?華中3萬(wàn)多噸加州鱸市場(chǎng)誰(shuí)能笑到最后?
    飼料廠近半數(shù)膨化線都來(lái)自這家公司,如今他將引領(lǐng)華中膨化料大轉(zhuǎn)型
    基于華中HNC-818AT數(shù)控系統(tǒng)的數(shù)控車(chē)床升級(jí)改造
    上下同欲者勝 風(fēng)雨同舟者興——記武漢華中數(shù)控股份有限公司
    《華中學(xué)術(shù)》來(lái)稿注意事項(xiàng)
    基于華中數(shù)控的PKC-1000P2磁流變拋光機(jī)床控制系統(tǒng)設(shè)計(jì)與開(kāi)發(fā)
    91在线观看av| 欧美丝袜亚洲另类 | 久久婷婷成人综合色麻豆| 男人舔女人的私密视频| 国产91精品成人一区二区三区| 亚洲精品中文字幕一二三四区| 在线观看免费午夜福利视频| 窝窝影院91人妻| 亚洲欧美精品综合一区二区三区| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av香蕉五月| 天天躁夜夜躁狠狠躁躁| 久久久久久免费高清国产稀缺| 757午夜福利合集在线观看| 亚洲第一电影网av| 高清毛片免费观看视频网站| 老司机在亚洲福利影院| 亚洲欧美日韩高清专用| 午夜老司机福利片| 美女 人体艺术 gogo| 性欧美人与动物交配| 国产高清videossex| 精品国内亚洲2022精品成人| 丁香六月欧美| 成人欧美大片| 国产av一区在线观看免费| 久99久视频精品免费| 九九热线精品视视频播放| 99在线人妻在线中文字幕| 国产精品日韩av在线免费观看| 琪琪午夜伦伦电影理论片6080| 18禁美女被吸乳视频| 在线观看日韩欧美| 中文字幕高清在线视频| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 久久精品91无色码中文字幕| 最近最新中文字幕大全电影3| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 欧洲精品卡2卡3卡4卡5卡区| 国产视频一区二区在线看| 一a级毛片在线观看| 搡老妇女老女人老熟妇| 成熟少妇高潮喷水视频| 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 日日干狠狠操夜夜爽| 欧美丝袜亚洲另类 | 男人舔奶头视频| 天堂√8在线中文| 午夜福利视频1000在线观看| 怎么达到女性高潮| 男人舔奶头视频| 欧美性猛交黑人性爽| 在线观看日韩欧美| 久久精品国产综合久久久| 又粗又爽又猛毛片免费看| 亚洲熟妇熟女久久| 女警被强在线播放| 午夜日韩欧美国产| 久久久久亚洲av毛片大全| 亚洲真实伦在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 哪里可以看免费的av片| 99热这里只有精品一区 | 麻豆久久精品国产亚洲av| 97碰自拍视频| 中文字幕人成人乱码亚洲影| 欧美午夜高清在线| 国产精品日韩av在线免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美色视频一区免费| 午夜福利在线观看吧| 最近最新中文字幕大全免费视频| 51午夜福利影视在线观看| 久久天躁狠狠躁夜夜2o2o| 操出白浆在线播放| 亚洲av成人精品一区久久| 亚洲人成网站在线播放欧美日韩| 亚洲av成人av| x7x7x7水蜜桃| www日本在线高清视频| 国产成人系列免费观看| www.www免费av| 最新美女视频免费是黄的| 国产视频一区二区在线看| 亚洲男人天堂网一区| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 午夜福利成人在线免费观看| 欧美日韩精品网址| АⅤ资源中文在线天堂| 很黄的视频免费| 精品久久久久久成人av| 国产精品久久久久久久电影 | 搡老岳熟女国产| 亚洲av熟女| 美女 人体艺术 gogo| 久久久久免费精品人妻一区二区| 一a级毛片在线观看| 18美女黄网站色大片免费观看| 亚洲国产中文字幕在线视频| 久久人妻av系列| 久久香蕉激情| 淫妇啪啪啪对白视频| svipshipincom国产片| 夜夜夜夜夜久久久久| 久久草成人影院| 欧美色欧美亚洲另类二区| 欧美一级毛片孕妇| xxx96com| 国产伦一二天堂av在线观看| 熟女电影av网| 国产欧美日韩精品亚洲av| 男女之事视频高清在线观看| 色综合站精品国产| x7x7x7水蜜桃| 后天国语完整版免费观看| 夜夜看夜夜爽夜夜摸| 一二三四在线观看免费中文在| 又粗又爽又猛毛片免费看| 免费av毛片视频| 国产精品av久久久久免费| tocl精华| 日韩欧美在线二视频| 国产精品亚洲美女久久久| 99re在线观看精品视频| 国产真实乱freesex| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 黄片大片在线免费观看| 亚洲av成人一区二区三| 丰满的人妻完整版| 精品熟女少妇八av免费久了| 国产精品国产高清国产av| 国产主播在线观看一区二区| 国产真实乱freesex| 韩国av一区二区三区四区| 丁香欧美五月| 这个男人来自地球电影免费观看| 亚洲av成人一区二区三| 国产私拍福利视频在线观看| 久久久精品国产亚洲av高清涩受| 白带黄色成豆腐渣| 国产不卡一卡二| 免费看十八禁软件| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 精品久久久久久久末码| 国产av麻豆久久久久久久| 久久久久亚洲av毛片大全| 两个人视频免费观看高清| 久久久久精品国产欧美久久久| 精品一区二区三区视频在线观看免费| 香蕉av资源在线| 国产私拍福利视频在线观看| 国内毛片毛片毛片毛片毛片| bbb黄色大片| 久久久精品大字幕| 亚洲 国产 在线| 欧美日韩乱码在线| 久久国产精品人妻蜜桃| 国产精品久久久久久亚洲av鲁大| 91av网站免费观看| 精品第一国产精品| 村上凉子中文字幕在线| 99riav亚洲国产免费| 一级毛片高清免费大全| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 欧美日本视频| 国产精品一及| 两人在一起打扑克的视频| 黄色成人免费大全| 嫩草影院精品99| 成人三级做爰电影| 超碰成人久久| 免费av毛片视频| 国产麻豆成人av免费视频| 又黄又爽又免费观看的视频| 视频区欧美日本亚洲| 99久久综合精品五月天人人| 久久久久久人人人人人| 亚洲精品久久国产高清桃花| 9191精品国产免费久久| 一二三四社区在线视频社区8| 成人国语在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 99国产极品粉嫩在线观看| 大型av网站在线播放| 91老司机精品| 亚洲欧美日韩无卡精品| 亚洲av熟女| 啦啦啦观看免费观看视频高清| 村上凉子中文字幕在线| 欧美乱妇无乱码| 国产精品野战在线观看| 免费av毛片视频| 免费在线观看成人毛片| 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| svipshipincom国产片| 97碰自拍视频| 亚洲色图 男人天堂 中文字幕| 亚洲国产日韩欧美精品在线观看 | 欧美日韩国产亚洲二区| 久久婷婷人人爽人人干人人爱| 嫁个100分男人电影在线观看| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 非洲黑人性xxxx精品又粗又长| 777久久人妻少妇嫩草av网站| 99在线人妻在线中文字幕| 欧美日韩亚洲国产一区二区在线观看| 嫩草影视91久久| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 1024香蕉在线观看| 欧美一级毛片孕妇| 精品人妻1区二区| 麻豆av在线久日| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 国产精品亚洲av一区麻豆| 小说图片视频综合网站| 天天添夜夜摸| 免费观看精品视频网站| 在线永久观看黄色视频| 老司机午夜福利在线观看视频| 亚洲电影在线观看av| 舔av片在线| 成人国语在线视频| 神马国产精品三级电影在线观看 | 精品国产亚洲在线| 亚洲国产精品成人综合色| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 91麻豆av在线| 国产精品影院久久| 麻豆国产av国片精品| 成人国产综合亚洲| 我要搜黄色片| 黑人操中国人逼视频| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 三级国产精品欧美在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 丁香欧美五月| 女警被强在线播放| 老司机靠b影院| 一个人观看的视频www高清免费观看 | 中亚洲国语对白在线视频| 看免费av毛片| 好男人电影高清在线观看| 免费在线观看完整版高清| 久久久久久久久久黄片| 狠狠狠狠99中文字幕| 国产成人aa在线观看| 欧美一区二区国产精品久久精品 | 成人18禁在线播放| 一边摸一边做爽爽视频免费| 免费电影在线观看免费观看| 在线观看美女被高潮喷水网站 | 狂野欧美激情性xxxx| 亚洲国产精品合色在线| avwww免费| 又大又爽又粗| 一级毛片女人18水好多| 日韩免费av在线播放| 亚洲av成人av| 亚洲国产中文字幕在线视频| 美女大奶头视频| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 国产成人aa在线观看| 夜夜看夜夜爽夜夜摸| 人成视频在线观看免费观看| 一本大道久久a久久精品| 天堂√8在线中文| 国产片内射在线| 亚洲欧美日韩无卡精品| 欧美黄色淫秽网站| 2021天堂中文幕一二区在线观| 久久香蕉激情| 免费在线观看影片大全网站| 一本久久中文字幕| 午夜两性在线视频| 这个男人来自地球电影免费观看| av福利片在线观看| 欧美日韩乱码在线| 一本综合久久免费| av在线天堂中文字幕| 久久久精品大字幕| 亚洲18禁久久av| 国产片内射在线| 国产不卡一卡二| 首页视频小说图片口味搜索| 色在线成人网| 亚洲成人久久爱视频| 午夜两性在线视频| 这个男人来自地球电影免费观看| 变态另类成人亚洲欧美熟女| 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 亚洲国产欧美人成| 麻豆一二三区av精品| 日韩欧美三级三区| 国产精品一区二区免费欧美| 欧美黑人精品巨大| 91麻豆av在线| 亚洲乱码一区二区免费版| 欧美成狂野欧美在线观看| 一本综合久久免费| 一个人免费在线观看电影 | 日本黄大片高清| 欧美黑人巨大hd| 亚洲专区字幕在线| 叶爱在线成人免费视频播放| 在线国产一区二区在线| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 欧美日韩一级在线毛片| 不卡一级毛片| 毛片女人毛片| 老司机靠b影院| 成人手机av| 手机成人av网站| 亚洲中文av在线| 两个人看的免费小视频| 午夜a级毛片| 成人三级做爰电影| 久久亚洲精品不卡| 国内久久婷婷六月综合欲色啪| 男人舔女人下体高潮全视频| 欧美极品一区二区三区四区| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 午夜影院日韩av| 黄色片一级片一级黄色片| 国产一级毛片七仙女欲春2| 这个男人来自地球电影免费观看| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 成人国产综合亚洲| 母亲3免费完整高清在线观看| 婷婷亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 国产乱人伦免费视频| 久久久久久久精品吃奶| 一二三四在线观看免费中文在| 日本 欧美在线| 婷婷精品国产亚洲av| 母亲3免费完整高清在线观看| 曰老女人黄片| 亚洲国产精品成人综合色| 国产精品一区二区三区四区免费观看 | 好男人电影高清在线观看| 操出白浆在线播放| 国产精品影院久久| 久久久国产成人精品二区| 色在线成人网| 色av中文字幕| 一区福利在线观看| 日韩欧美国产在线观看| 深夜精品福利| 欧美中文综合在线视频| 少妇人妻一区二区三区视频| 91麻豆av在线| 国产av一区二区精品久久| 首页视频小说图片口味搜索| 久久婷婷成人综合色麻豆| 亚洲一码二码三码区别大吗| 搞女人的毛片| 两个人视频免费观看高清| 亚洲一区中文字幕在线| 久久亚洲真实| 久久国产精品影院| 亚洲五月婷婷丁香| 午夜视频精品福利| 国产麻豆成人av免费视频| 男人舔奶头视频| 在线看三级毛片| 亚洲成人精品中文字幕电影| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三| 国产av一区在线观看免费| 午夜免费观看网址| 国产探花在线观看一区二区| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看 | 婷婷精品国产亚洲av| 久久精品成人免费网站| 国产亚洲精品久久久久久毛片| 99riav亚洲国产免费| 动漫黄色视频在线观看| 亚洲成av人片免费观看| 久久久久久人人人人人| 国产视频内射| 一a级毛片在线观看| 国内久久婷婷六月综合欲色啪| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| 亚洲18禁久久av| 成人欧美大片| 香蕉丝袜av| 日韩国内少妇激情av| 最近最新中文字幕大全免费视频| 小说图片视频综合网站| 欧美人与性动交α欧美精品济南到| 亚洲 国产 在线| 国产区一区二久久| 午夜a级毛片| 中文在线观看免费www的网站 | 国产亚洲精品av在线| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 国产成人精品久久二区二区91| 免费无遮挡裸体视频| a在线观看视频网站| 午夜两性在线视频| 一进一出抽搐动态| 亚洲美女黄片视频| 日本在线视频免费播放| 午夜福利18| 欧美人与性动交α欧美精品济南到| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| 97超级碰碰碰精品色视频在线观看| 在线观看www视频免费| 男女视频在线观看网站免费 | 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 91大片在线观看| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 久久久久九九精品影院| 777久久人妻少妇嫩草av网站| а√天堂www在线а√下载| 日日夜夜操网爽| 国产成年人精品一区二区| 一本精品99久久精品77| 国产真人三级小视频在线观看| 国产区一区二久久| 日韩欧美国产一区二区入口| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 激情在线观看视频在线高清| 中国美女看黄片| 亚洲成人久久性| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 伦理电影免费视频| 琪琪午夜伦伦电影理论片6080| 久久久久久免费高清国产稀缺| 在线观看免费午夜福利视频| 国产精品久久久av美女十八| 91大片在线观看| 国产亚洲欧美在线一区二区| 成人高潮视频无遮挡免费网站| 欧美黑人巨大hd| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区| 国产精品久久久人人做人人爽| 黄色a级毛片大全视频| av有码第一页| 不卡av一区二区三区| 男女视频在线观看网站免费 | 欧美丝袜亚洲另类 | 岛国在线免费视频观看| 熟女电影av网| 国内精品久久久久久久电影| 99re在线观看精品视频| 国产又黄又爽又无遮挡在线| 久久久久久国产a免费观看| 中文字幕高清在线视频| 大型av网站在线播放| 国产精品亚洲一级av第二区| 国产成人aa在线观看| www日本黄色视频网| 欧美大码av| 90打野战视频偷拍视频| 国产精品国产高清国产av| 午夜免费激情av| 亚洲专区中文字幕在线| 国产单亲对白刺激| 国产精品久久久人人做人人爽| 国产激情久久老熟女| 国产精品一及| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 婷婷六月久久综合丁香| 成人一区二区视频在线观看| 岛国在线免费视频观看| 老司机靠b影院| 免费看日本二区| 国产欧美日韩一区二区三| 真人做人爱边吃奶动态| 男女视频在线观看网站免费 | 亚洲欧美日韩高清专用| 成人av一区二区三区在线看| 中文字幕精品亚洲无线码一区| 美女大奶头视频| 欧美成人免费av一区二区三区| 成人三级黄色视频| 亚洲国产中文字幕在线视频| 国产精品日韩av在线免费观看| 婷婷亚洲欧美| 可以在线观看的亚洲视频| 成人三级黄色视频| 亚洲欧美日韩高清在线视频| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| bbb黄色大片| 久久亚洲精品不卡| 精品高清国产在线一区| 精品久久久久久久末码| www.自偷自拍.com| 久久久久精品国产欧美久久久| 91成年电影在线观看| 国产精品免费视频内射| 亚洲欧美激情综合另类| 久久中文看片网| 国产伦在线观看视频一区| 日本一二三区视频观看| 最好的美女福利视频网| 日本一本二区三区精品| 性色av乱码一区二区三区2| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 丰满人妻一区二区三区视频av | 欧美丝袜亚洲另类 | 两性夫妻黄色片| 亚洲国产精品999在线| 午夜精品一区二区三区免费看| 18禁美女被吸乳视频| 黄色 视频免费看| 欧美日韩亚洲国产一区二区在线观看| 国产精品九九99| 免费无遮挡裸体视频| 热99re8久久精品国产| 国内揄拍国产精品人妻在线| 丁香六月欧美| 亚洲五月天丁香| 午夜福利在线在线| 亚洲欧洲精品一区二区精品久久久| 亚洲无线在线观看| 亚洲人成网站在线播放欧美日韩| 国产97色在线日韩免费| 在线免费观看的www视频| 国产亚洲精品一区二区www| a在线观看视频网站| 午夜福利18| 亚洲天堂国产精品一区在线| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 日本撒尿小便嘘嘘汇集6| 精品国产美女av久久久久小说| 丁香六月欧美| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 精品国产乱子伦一区二区三区| 日韩av在线大香蕉| 国产爱豆传媒在线观看 | 国产av不卡久久| 老司机在亚洲福利影院| 一进一出抽搐动态| 国产91精品成人一区二区三区| 特级一级黄色大片| 99精品久久久久人妻精品| 黄色女人牲交| 国产成+人综合+亚洲专区| 两性夫妻黄色片| 在线观看一区二区三区| 麻豆一二三区av精品| 久久久久九九精品影院| 精华霜和精华液先用哪个| 国产1区2区3区精品| 亚洲精华国产精华精| 欧美日本亚洲视频在线播放| 怎么达到女性高潮| 中亚洲国语对白在线视频| 午夜影院日韩av| 99精品在免费线老司机午夜| 中国美女看黄片| 成人三级黄色视频| 精品久久久久久久人妻蜜臀av| 日本 欧美在线| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 国产黄色小视频在线观看| 天天躁夜夜躁狠狠躁躁| 在线播放国产精品三级| 国产黄色小视频在线观看| 18禁观看日本| 黄色丝袜av网址大全| 久久中文字幕一级| 午夜视频精品福利| 免费看日本二区| 久久精品国产清高在天天线| 国产高清videossex|