• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasmonic properties of graphene on uniaxially anisotropic substrates?

    2021-03-19 03:21:18ShengchuanWang汪圣川BinYou游斌RuiZhang張銳KuiHan韓奎XiaopengShen沈曉鵬andWeihuaWang王偉華
    Chinese Physics B 2021年3期
    關(guān)鍵詞:張銳

    Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(張銳), Kui Han(韓奎),Xiaopeng Shen(沈曉鵬), and Weihua Wang(王偉華)

    School of Materials and Physics,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: graphene,plasmonics,anisotropy,hexagonal boron nitride

    1. Introduction

    Graphene, a two-dimensional (2D) carbon crystal, since first produced by the group led by Geim through exfoliation procedures in 2004,[1]has attracted much attention from physical,chemical,and material communities. Graphene has many extraordinary electrical and optical properties,[2,3]including high optical absorptance, tunable surface conductivity,[4]and ultra-fast electron transport.[5]Due to its unique electronic band structure, graphene behaves like a metal at far infrared and terahertz (THz) frequencies, which could support collective excitations such as plasmons. It has been proved theoretically[6-10]and experimentally[11-13]that graphene plasmons have many promising characteristics, such as ultralong inherent lifetime, highly-confined electromagnetic field,huge local field enhancement, strong light absorption,[14-17]and relatively low loss.[18]However, the loss could be extremely increased with graphene placed on some substrates such as silicon dioxide,[19-21]much more than that in suspended graphene. To solve the issue,hexagonal boron nitride(hBN)can be chosen as the substrate,for example,plasmonic loss in graphene-hBN heterostructures is only about 20% of that in graphene-silicon structures.[18]

    In addition to an ideal substrate for graphene, hBN has its own merit as an optical material. The hBN is a hyperbolic material in nature,[22]in which the dielectric constants are the same in plane(εxx=εyy=ε‖),but have opposite signs compared to that of out plane (ε‖·εzz=ε‖·ε⊥<0). Because of this property, hBN can be used in many fields to achieve peculiar optical response,[23]including negative refraction,[24]ultra-slow phase velocity, and nano-focusing.[25-31]Furthermore,graphene-hBN heterostructures support hybrid surfaceplasmon-phonon polariton modes, which could combine the advantages of graphene plasmons and surface phonons,[32]and similar to graphene plasmons, the hybrid modes can be further engineered through the structures and the doping of graphene.[33,34]Very recently, such heterostructure has been demonstrated as a prominent platform for investigating physics under extreme conditions, for instance plasmonic in nanoscale cavities[35,36]and electron scattering at arbitrarily low energies,[37]and designing photoelectric devices with diverse functionalities, such as ultrafast Zener-Klein transistor,[38]high-performance polarization splitter,[39]and active plasmonic switch.[40]

    On the other hand, the screening effect of isotropic substrate on graphene plasmons is well known (resonance frequency inversely proportional to dielectric constant),but hBN is a uniaxially anisotropic material. The anisotropy could change the behavior of graphene plasmons,thus provides another route to manipulate the plasmonic resonances.[41]However, most of the previous works only utilize the 2D nature of hBN and its lattice matching with graphene. The effects of anisotropic and hyperbolic properties of hBN on graphene plasmonic excitations are still not well understood,especially at epsilon-near-zero (ENZ) band. Obviously, promoting the relevant understanding is quite beneficial, which will essentially enrich the studies of graphene plasmonics and pave the way for related device applications. In this work, we mainly discuss the plasmonic properties of graphene nanoribbons on uniaxially anisotropic substrates,and especially as the components of dielectric constant approaching zero from both positive and negative sides. Such anisotropic dielectric substrates can be easily achieved in hBN at THz frequency region,which provides experimental possibilities of our work.

    2. Theoretical model of graphene on uniaxially anisotropic substrate

    Similar to noble metals, graphene also supports collective excitations,which are transverse magnetic(TM)polarized surface modes as well. In this part,we are going to study the fundamental properties of graphene plasmons as described in Fig.1. The graphene nanoribbon array is placed on a uniaxially anisotropic substrate,[42]whose dielectric matrix can be expressed as a tensor

    with εxx=εyy=ε‖and εzz=ε⊥. Above graphene,there is an isotropic medium with dielectric constant εr. In the region of z >0,the TM modes can be assumed to have the form

    and the electromagnetic fields in z <0 region (inside the anisotropic substrate)can be expressed as

    where the wave vectors in z direction are given by

    After matching the boundary conditions at z=0 for electric field Exand magnetic field Hy:

    we obtain the dispersion relation for the TM modes

    By explicitly writing the dependence of the conductivity on the wave vector q, it is possible to study nonlocal optical response, where the mean free path of electrons can be smaller than q?1. Throughout this work,we consider the nonretarded regime(q?ω/c),so equation(6)can be simplified to

    Here,σ(ω)is the surface conductivity of 2D graphene,which can be obtained from the linear response theory(so-called random phase approximation, RPA).[43]As the structures are up to hundreds of nanometers in size, their optical response is mostly determined by the leading term of the surface conductivity,and thus σ(ω)can be approximately reduced to a simple Drude form[44]

    with EFthe Fermi level and τ the relaxation time. This Drude surface conductivity is used throughout our work,and the parameters EF=0.4 eV,τ=0.5 ps.[45]However,we should emphasize that the quantum size effect and edge effect of optical response are ignored in our modelling, which will be extremely important as the structures scale down to tens of nanometers.[43,46]While in structures of hundreds of nanometers,the common treatment based on classical electromagnetic theory will give reliable results.

    Comparing with the well-known graphene dispersion relation,[47]we can easily obtain the effective dielectric constant of the anisotropic substrate[48]

    This theoretical formula only applies to semi-infinite substrates, and the dielectric components in all directions should be great than zero. It does not fit the Restatrahlen bands in hBN,[49]in which the eigenstates should be guided waves instead of plane waves. Using the dispersion relationship Eq. (7), we are able to estimate the plasmonic resonance frequencies for given wave vector q. The procedure can be easily performed in the structures with high symmetry,for example,in disks of radius R, q=n/R,[50]and in ribbons of width W,q=nπ/W,[51]where n is the order of plasmonic modes.

    In order to verify such a simple formula, we calculate the plasmonic resonance frequencies in graphene nanoribbons by means of full wave simulations, in which the plasmonic resonance frequencies can be extracted from the positions of the absorption peaks. In practice, the commercial finite element computation package COMSOL MULTIPHYSICS is employed for all full wave simulations. Because of the threedimensional(3D)modelling requirement, graphene is treated as a transitional boundary condition (TBC), with an artificial thickness tg(sufficiently small compared to the lateral size,tg=0.5 nm throughout the work) and thus an effective 3D permittivity[52]

    Since graphene ribbons possess translational invariance along y direction,it is sufficient to investigate field scattering in the plane of cross section, namely, x-z plane (see Fig.1). In practice, we place a single graphene ribbon (one-unit cell) in the center of a square waveguide, with the periodic boundary condition (PBC) in x direction and two ports in z direction.And then, the absorption spectra can be calculated from Sparameter. In such modelling, the anisotropic substrate can be directly implemented through the material setting, for instance,assigning different values to the diagonal terms in the matrix of dielectric constant.In order to simplify the following discussion,the effects of ε‖and ε⊥are investigated separately,for instance, as studying the effect of ε‖, the value of ε⊥is fixed to be 1, and vice versa. In particular, the variable component of permittivity is varied by either increasing from 1 to 10 or decreasing from 1 to 0(epsilon-near-zero,ENZ).For the permittivity exactly being 0,a tiny imaginary part of the order of 10?5is introduced for the convergence requirement of the simulations.

    Fig.1. Schematic diagram of an array of graphene nanoribbons on a uniaxially anisotropic substrate,and the TM mode with magnetic field along the ribbons. The width of graphene ribbons W =100 nm and the period of the array P=300 nm throughout the work expect noted otherwise. The graphene ribbons are infinitely long which indicates translational invariance along y direction.

    For the case of a single interface (ribbons of width W =100 nm and period P=300 nm on a semi-infinite substrate),the results obtained from simulations (dots) and the formula(solid curves) are shown in Fig.2, in which region I (blue shaded) is for ε‖>ε⊥and region II (pink shaded) is for ε‖<ε⊥. It is clear that the results from the formula show very good agreement with those from simulations,which confirms the validity of the formula. Furthermore, it can be seen that the curves from two figures are exactly consistent. Such consequence can be easily understood from the formula, in which the effective dielectric constant depends on the product of permittivities in parallel ε‖and in perpendicular direction ε⊥. However, the electric field distributions for the two situations are very different. In anisotropic substrates,the electric fields decay rapidly in the direction of low dielectric constant,which thereby causes energy concentrated in another direction.[53]When ε‖<ε⊥(see Fig.2(c)), the electric fields penetrate deeper into the substrate, while ε‖>ε⊥(see Fig.2(d)), the electric fields are more concentrated at the interface. This can also be explained by Eq.(4b)that as ε‖<ε⊥,Q2is relatively small and thus the electric field decays away from the interface slowly.

    Fig.2. The plasmonic frequencies as the function of ε⊥(a)and as the function of ε‖ (b), obtained from Eq.(7)and full wave simulations, in case of a semi-infinite substrate. Region I (blue shaded) for ε‖ >ε⊥and region II (pink shaded) for ε‖ <ε⊥. (c) and (d) The electric field distributions at situations marked in(a)and(b).

    In reality, the substrates can not be semi-infinite. If the substrates are not thick enough, the corresponding thickness will affect the plasmonic properties, and apparently the resonance frequencies. In order to study this effect, we take the substrate thickness of 300 nm, 200 nm, and 100 nm for numerical simulations. The corresponding simulation results are shown in Fig.3. Compared to the theoretical curve(obtained from the formula), the dots exhibit obvious deviations when reducing the thickness of the substrate. For fixed values of ε⊥and ε‖, the deviations are more significant for smaller thickness. However,the largest deviation of each thickness occurs at different regions. Since the theoretical curve is for a semiinfinite substrate, or equivalently a slab of infinite thickness,the results here indicate that the impact of thickness depends on the values of ε⊥and ε‖. In fact, such phenomena can be easily explained by the argument above. The impact of the thickness relies on the direction of energy concentration. If the energy penetrates deeper into the substrate, the thickness will play a more important role. To achieve such a consequence, the dielectric constant ε⊥should be larger than the dielectric constant ε‖(region II in Figs. 3(a) and 3(b)). In Fig.3(a) ε‖=1, and thus ε⊥should be larger than 1, while in Fig.3(b)ε⊥=1,and similarly ε‖should be smaller than 1.However,if both ε⊥and ε‖locate roughly from 1 to 4,100 nm would be thick enough,and the impact of the thickness could be ignored.

    Fig.3. The plasmonic frequencies as the function of ε⊥(a)and as the function of ε‖ (b), in case of the finite substrates with thicknesses of 300 nm,200 nm,and 100 nm. Region I(blue shaded)for ε‖>ε⊥and region II(pink shaded)for ε‖<ε⊥. (c)and(d)The electric field distributions at the situations marked in(a)and(b).

    As is well known,the most appealing feature of graphene plasmons is its active tunability by an external gate voltage.Specifically,the plasmonic properties will be varied for different Fermi level which is involved in surface conductivity(see Eq. (8)). Thus, it is very necessary to extend recent studies to structures with different Fermi level. We compute the resonance frequencies of graphene ribbons on hBN of 100 nm thickness (see Fig.1 for other parameters). The results are shown in Fig.4. It is clear that for both situations, the spectrum will globally shift up with increasing Fermi level and down with decreasing Fermi level. Meanwhile, the asymptotic behaviors at two limits, namely, large epsilon and ENZ,are also reserved as comparing with Fig.3.

    Fig.4. Resonance frequencies as the functions of ε⊥(a)and ε‖ (b),in graphene ribbons with the Fermi level of 0.2 eV(blue curves), 0.4 eV(red curves), and 0.6 eV (brown curves). The thickness of the hBN dielectric layer is set to 100 nm for all calculations.

    So far, we have discussed in detail the evolution of graphene plasmons as the function of non-negative dielectric components of the substrates.However,if one of the dielectric components is negative (hyperbolic material), the plasmonic properties would be changed dramatically due to the strong Coulomb screening. But if either ε⊥or ε‖is of a very small negative value, they will also lead to different consequences.For substrates of thickness 100 nm,the other parameters consistent with the above discussions, the simulation results are shown in Fig.5. It is clear that inside the hyperbolic material, the graphene plasmons are not bounded to the interface,but can propagate inside the hyperbolic slab. These modes are actually phonon-polariton modes,[54]guided in the slab. For non-magnetic media,the condition of the propagation solution in hyperbolic materials asymptotically approaches[55]

    Fig.5. Electric field distributions in graphene nanoribbons on 100 nm thick uniaxially anisotropic substrates. θ is the refractive angle of the guide wave inside the hyperbolic slab.

    3. Graphene on hBN

    Hexagonal boron nitride is a promising substrate for graphene. Since matching the lattice, the carrier mobility of graphene on hBN can be one order larger than that of graphene on silicon dioxide (SiO2).[56]Furthermore, hBN is a uniaxial anisotropic material, and a nature hyperbolic material at specific frequency region.[57]Thus the above discussions have lots of practical significance. In hBN, there are transverse(ωTO)and longitude optical phonons(ωLO),which determine its optical response,for example,the Lorentz-like expressions of dielectric functions given by[58]Here, the parameters are as follows: ε∞,‖= 4.87, ωTO,‖=41.1 THz,ωLO,‖=48.3 THz,?!?15.0 THz,and ε∞,⊥=2.95,ωTO,⊥=23.4 THz,ωLO,⊥=24.9 THz,?!?12.0 THz.These two dielectric components are plotted in Fig.6. At a large frequency region, hBN is a uniaxially anisotropic material with positive ε⊥and ε‖, and only exhibits hyperbolic behaviour at two isolated Restatrahlen bands (close to ω =ωLO,‖and ω =ωLO,⊥), where we can also find the frequency regions of epsilon-near-zero (insets shown in Fig.6). Hence, hBN also provides a platform for studying plasmonic properties as graphene on a uniaxial epsilon-near-zero substrate.

    Fig.6. Dispersion of two dielectric components of hBN, type I and type II Restatrahlen bands are shaded,dashed lines plot longitude optical phonon frequencies(epsilon-near-zero,ENZ regions).

    Fig.7. Plasmonic dispersions in suspended graphene (green dotted)and in graphene-hBN heterostructure(red dotted). HBN has thickness 100 nm as above.

    In order to examine further the plasmonic behavior when one of the dielectric components being a very small negative number(see Fig.5),we map the plasmonic dispersion of graphene-hBN heterostructures (100 nm thickness as above)in Fig.7,where the width W of graphene ribbons varies from 25 nm to 150 nm, and the period is three times the width.As before, we extract the plasmonic frequencies from simulations and the equivalent wavevector can be obtained through q=nπ/W (see illustration in Section 2). Compared to the plasmonic dispersion of suspended graphene (green dotted curve), the plasmonic dispersion of graphene-hBN is divided into three parts by two Reststrahlen bands of hBN (red dotted curves). It is clear that near the Reststrahlen band of type II, with varying the width of the ribbon, the dispersion curve crosses the epsilon-near-zero frequency band (dashed lines).The results presented here are consistent with the numerical simulation results shown in Fig.5.

    4. Conclusion

    猜你喜歡
    張銳
    Invariable mobility edge in a quasiperiodic lattice
    Boundary states for entanglement robustness under dephasing and bit flip channels*
    張銳:“匠”心筑就機(jī)器人之夢
    走親戚
    前線(2018年11期)2018-11-30 02:28:00
    說“玩”
    ——憶二胡藝術(shù)家張銳先生
    劇影月報(2017年4期)2017-11-16 00:17:49
    生死挑贊
    激發(fā)民間投資熱情亟需政策精準(zhǔn)發(fā)力
    Gyroscope Fault Diagnosis Using Fuzzy SVM to Unbalanced Samples
    張銳:越貼近 越精彩
    河南電力(2015年11期)2015-05-17 01:59:54
    張銳二胡演奏風(fēng)格初探
    北方音樂(2015年3期)2015-04-29 08:04:58
    国产一区二区三区综合在线观看 | 欧美日韩综合久久久久久| 久久国产精品男人的天堂亚洲 | 亚洲精品视频女| 免费av不卡在线播放| 人妻 亚洲 视频| 一个人免费看片子| av在线app专区| 中文字幕亚洲精品专区| 曰老女人黄片| 性色avwww在线观看| 美女内射精品一级片tv| 中文字幕av电影在线播放| 国产视频首页在线观看| 女人精品久久久久毛片| 日韩中字成人| freevideosex欧美| 亚洲av中文av极速乱| 久久久午夜欧美精品| 男女边摸边吃奶| 91久久精品电影网| 女性生殖器流出的白浆| 日韩熟女老妇一区二区性免费视频| 日韩在线高清观看一区二区三区| 成人美女网站在线观看视频| 老熟女久久久| 特大巨黑吊av在线直播| 亚洲欧美一区二区三区国产| 丰满少妇做爰视频| 免费观看无遮挡的男女| 91在线精品国自产拍蜜月| 青青草视频在线视频观看| 国产综合精华液| 亚洲欧洲精品一区二区精品久久久 | 免费大片黄手机在线观看| 亚洲丝袜综合中文字幕| 久热这里只有精品99| 丝袜喷水一区| 一级毛片aaaaaa免费看小| av在线app专区| 中文字幕免费在线视频6| 99热全是精品| 国产中年淑女户外野战色| 女性被躁到高潮视频| 老司机影院成人| 亚洲欧美一区二区三区国产| 黄色视频在线播放观看不卡| 亚洲av免费高清在线观看| 亚洲国产最新在线播放| 国产精品三级大全| 少妇人妻久久综合中文| 深夜a级毛片| 哪个播放器可以免费观看大片| 欧美高清成人免费视频www| 亚洲第一av免费看| 丁香六月天网| 涩涩av久久男人的天堂| 乱人伦中国视频| av黄色大香蕉| 国产免费又黄又爽又色| 国产日韩欧美在线精品| 国产免费又黄又爽又色| 在线观看免费视频网站a站| 99久久精品一区二区三区| 午夜影院在线不卡| 少妇被粗大的猛进出69影院 | 色婷婷av一区二区三区视频| 亚洲一区二区三区欧美精品| 人人妻人人爽人人添夜夜欢视频 | 99九九线精品视频在线观看视频| 少妇人妻一区二区三区视频| 五月伊人婷婷丁香| 色婷婷av一区二区三区视频| 草草在线视频免费看| 日本vs欧美在线观看视频 | 久久久久国产精品人妻一区二区| 美女cb高潮喷水在线观看| 精品国产国语对白av| 欧美日韩国产mv在线观看视频| 亚洲色图综合在线观看| 久久久久久久精品精品| 久久午夜福利片| 五月天丁香电影| 日本欧美国产在线视频| 最近手机中文字幕大全| 国内精品宾馆在线| av女优亚洲男人天堂| 亚洲精品成人av观看孕妇| 丝袜在线中文字幕| av在线老鸭窝| a级一级毛片免费在线观看| 80岁老熟妇乱子伦牲交| 亚洲在久久综合| 国产白丝娇喘喷水9色精品| 成人亚洲欧美一区二区av| 国产熟女欧美一区二区| 制服丝袜香蕉在线| 九九在线视频观看精品| 大话2 男鬼变身卡| 在线观看av片永久免费下载| 日韩av在线免费看完整版不卡| 国产免费福利视频在线观看| 国产亚洲5aaaaa淫片| 国产午夜精品久久久久久一区二区三区| 国产亚洲5aaaaa淫片| 在线观看免费日韩欧美大片 | 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久人人人人人人| 99视频精品全部免费 在线| 永久网站在线| 最新的欧美精品一区二区| 一区在线观看完整版| 日本vs欧美在线观看视频 | 中文字幕免费在线视频6| 国产成人精品一,二区| 亚洲性久久影院| 大陆偷拍与自拍| av网站免费在线观看视频| 亚洲一区二区三区欧美精品| 男人舔奶头视频| av播播在线观看一区| 26uuu在线亚洲综合色| 精品午夜福利在线看| 亚洲欧洲精品一区二区精品久久久 | 91久久精品国产一区二区三区| 亚洲国产精品一区三区| 高清不卡的av网站| 性色avwww在线观看| 下体分泌物呈黄色| 韩国av在线不卡| 国产日韩欧美亚洲二区| 色5月婷婷丁香| 大陆偷拍与自拍| 22中文网久久字幕| 哪个播放器可以免费观看大片| 欧美日韩在线观看h| 精品久久久久久电影网| 狂野欧美激情性xxxx在线观看| av国产精品久久久久影院| 国产在视频线精品| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜爱| 免费观看的影片在线观看| 最近的中文字幕免费完整| av线在线观看网站| 国产伦精品一区二区三区四那| 男女无遮挡免费网站观看| 精品酒店卫生间| 国产女主播在线喷水免费视频网站| 午夜日本视频在线| 亚洲欧洲国产日韩| 有码 亚洲区| 人人澡人人妻人| 午夜91福利影院| 秋霞在线观看毛片| 九九爱精品视频在线观看| 国产av一区二区精品久久| 麻豆成人av视频| 成人免费观看视频高清| 看十八女毛片水多多多| 久久热精品热| 精品国产乱码久久久久久小说| 日本av免费视频播放| 欧美精品国产亚洲| a级毛片免费高清观看在线播放| 青春草亚洲视频在线观看| 午夜福利视频精品| 精品人妻熟女av久视频| 国产精品久久久久久久久免| 午夜视频国产福利| 九九在线视频观看精品| 亚洲欧美精品专区久久| 色吧在线观看| 欧美日韩视频高清一区二区三区二| 久久97久久精品| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 亚洲精品国产av蜜桃| 大又大粗又爽又黄少妇毛片口| 免费看不卡的av| 国产精品.久久久| 91久久精品电影网| 亚洲熟女精品中文字幕| 九色成人免费人妻av| av在线播放精品| 51国产日韩欧美| 亚洲精品国产av蜜桃| 欧美变态另类bdsm刘玥| 国产白丝娇喘喷水9色精品| freevideosex欧美| 我的女老师完整版在线观看| 在线观看国产h片| 精品国产国语对白av| 免费看日本二区| 日韩一区二区视频免费看| 女性生殖器流出的白浆| 中文天堂在线官网| 日本wwww免费看| 一级二级三级毛片免费看| 午夜福利影视在线免费观看| 亚洲精品成人av观看孕妇| 少妇精品久久久久久久| 久久精品国产亚洲av涩爱| 插逼视频在线观看| 天天躁夜夜躁狠狠久久av| 少妇人妻 视频| 美女xxoo啪啪120秒动态图| 日韩亚洲欧美综合| 久久久久久人妻| 在线播放无遮挡| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 99热这里只有是精品在线观看| 美女视频免费永久观看网站| 国产淫语在线视频| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 亚洲自偷自拍三级| 国产精品久久久久久av不卡| 女的被弄到高潮叫床怎么办| 午夜免费观看性视频| 欧美区成人在线视频| 日韩伦理黄色片| 91在线精品国自产拍蜜月| 人妻系列 视频| 午夜视频国产福利| 免费观看在线日韩| 国产成人91sexporn| 久久97久久精品| 久久99热6这里只有精品| 精品视频人人做人人爽| 天堂中文最新版在线下载| 亚洲伊人久久精品综合| 久久6这里有精品| 妹子高潮喷水视频| 免费看不卡的av| 中文天堂在线官网| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 高清欧美精品videossex| av线在线观看网站| 欧美激情极品国产一区二区三区 | 秋霞在线观看毛片| 精品一品国产午夜福利视频| 99视频精品全部免费 在线| 婷婷色综合大香蕉| 18禁在线播放成人免费| 一级黄片播放器| 成人午夜精彩视频在线观看| 国产精品一区二区性色av| 日韩中文字幕视频在线看片| 精品国产国语对白av| av线在线观看网站| 我要看黄色一级片免费的| 亚洲国产精品国产精品| 久久女婷五月综合色啪小说| 一区二区av电影网| 久久6这里有精品| 97精品久久久久久久久久精品| av在线app专区| 久久女婷五月综合色啪小说| 99热国产这里只有精品6| 久久精品久久精品一区二区三区| 中文乱码字字幕精品一区二区三区| 亚洲精品一区蜜桃| 亚洲成色77777| 极品人妻少妇av视频| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 秋霞伦理黄片| 伊人亚洲综合成人网| 国产国拍精品亚洲av在线观看| 美女福利国产在线| 中文在线观看免费www的网站| 国产一区二区三区综合在线观看 | 亚洲av综合色区一区| 人人妻人人爽人人添夜夜欢视频 | 午夜激情久久久久久久| 一本大道久久a久久精品| 蜜桃久久精品国产亚洲av| 国产欧美亚洲国产| 精品久久久久久久久亚洲| 亚洲国产精品一区三区| 国产乱来视频区| 99re6热这里在线精品视频| 国产精品偷伦视频观看了| 视频中文字幕在线观看| 中文字幕亚洲精品专区| 亚洲中文av在线| 国产欧美日韩综合在线一区二区 | 国产 精品1| 日韩一区二区视频免费看| 国产永久视频网站| 男女国产视频网站| 欧美精品亚洲一区二区| 欧美97在线视频| a级毛片在线看网站| 大片电影免费在线观看免费| 狂野欧美白嫩少妇大欣赏| 少妇的逼水好多| 国产女主播在线喷水免费视频网站| 中国三级夫妇交换| 丰满少妇做爰视频| 日本欧美视频一区| 欧美精品一区二区大全| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 亚洲精华国产精华液的使用体验| 亚洲精品亚洲一区二区| 国产视频首页在线观看| 另类精品久久| 伊人久久精品亚洲午夜| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 丁香六月天网| 在线看a的网站| xxx大片免费视频| 国产美女午夜福利| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 最近中文字幕高清免费大全6| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 亚洲精品国产av成人精品| 一个人免费看片子| 美女大奶头黄色视频| 青春草亚洲视频在线观看| 亚洲成人一二三区av| h日本视频在线播放| 亚洲伊人久久精品综合| 日韩亚洲欧美综合| 在线播放无遮挡| 日韩中字成人| 亚洲va在线va天堂va国产| 国产高清三级在线| 国产女主播在线喷水免费视频网站| 我的女老师完整版在线观看| 国内精品宾馆在线| 久久婷婷青草| 久久热精品热| 亚洲av电影在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 人妻一区二区av| 看非洲黑人一级黄片| 国产精品久久久久成人av| 成人午夜精彩视频在线观看| 日本av免费视频播放| 大片免费播放器 马上看| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 男女国产视频网站| 久久精品久久久久久久性| 性高湖久久久久久久久免费观看| 如日韩欧美国产精品一区二区三区 | 日韩电影二区| 亚洲av国产av综合av卡| 91在线精品国自产拍蜜月| 中文在线观看免费www的网站| 人体艺术视频欧美日本| 国产亚洲最大av| 免费看日本二区| 欧美最新免费一区二区三区| 十分钟在线观看高清视频www | 亚洲av不卡在线观看| 成年人免费黄色播放视频 | 精品久久国产蜜桃| 超碰97精品在线观看| 欧美激情极品国产一区二区三区 | 自线自在国产av| 夫妻性生交免费视频一级片| 亚洲怡红院男人天堂| 99久国产av精品国产电影| 国产又色又爽无遮挡免| 观看av在线不卡| 18禁在线无遮挡免费观看视频| 丝袜喷水一区| 91午夜精品亚洲一区二区三区| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 久久国内精品自在自线图片| 亚洲,欧美,日韩| 日韩中字成人| 男人和女人高潮做爰伦理| 人妻一区二区av| 七月丁香在线播放| 乱系列少妇在线播放| 伊人久久精品亚洲午夜| 在线观看三级黄色| 色视频www国产| 女性生殖器流出的白浆| 又粗又硬又长又爽又黄的视频| 国产精品一区www在线观看| 自拍偷自拍亚洲精品老妇| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 看十八女毛片水多多多| 亚洲国产欧美在线一区| 在线免费观看不下载黄p国产| 中文资源天堂在线| 亚洲欧美成人综合另类久久久| 能在线免费看毛片的网站| av视频免费观看在线观看| 国产 一区精品| 大香蕉97超碰在线| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 久久人人爽人人片av| 久久鲁丝午夜福利片| 色吧在线观看| 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱| 亚洲精品乱久久久久久| 麻豆精品久久久久久蜜桃| 国产男女超爽视频在线观看| 日韩av免费高清视频| 极品教师在线视频| 亚洲电影在线观看av| 欧美少妇被猛烈插入视频| 蜜桃久久精品国产亚洲av| 美女脱内裤让男人舔精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产av码专区亚洲av| 97在线视频观看| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 99九九线精品视频在线观看视频| 高清毛片免费看| a级毛片在线看网站| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 最近中文字幕高清免费大全6| 成人二区视频| 欧美xxⅹ黑人| 久久青草综合色| 夜夜爽夜夜爽视频| 日产精品乱码卡一卡2卡三| 欧美日韩国产mv在线观看视频| 久久婷婷青草| 99久久精品热视频| 精品人妻熟女av久视频| h日本视频在线播放| 亚洲av电影在线观看一区二区三区| 丝瓜视频免费看黄片| 一区二区三区精品91| 春色校园在线视频观看| 精品人妻熟女毛片av久久网站| 日本vs欧美在线观看视频 | 国产永久视频网站| av国产精品久久久久影院| a级一级毛片免费在线观看| 日韩三级伦理在线观看| 亚洲精品国产av成人精品| 精品少妇黑人巨大在线播放| 亚洲欧洲精品一区二区精品久久久 | 老熟女久久久| 亚洲精品久久久久久婷婷小说| 午夜91福利影院| 五月开心婷婷网| 青青草视频在线视频观看| 男女无遮挡免费网站观看| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 国产精品一区二区性色av| 好男人视频免费观看在线| kizo精华| 大码成人一级视频| 亚洲人成网站在线播| 午夜日本视频在线| 麻豆成人午夜福利视频| 女人久久www免费人成看片| 久久人人爽av亚洲精品天堂| 黄色欧美视频在线观看| 亚洲国产av新网站| 在线亚洲精品国产二区图片欧美 | 久久国产精品大桥未久av | 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 中文字幕亚洲精品专区| 久久久午夜欧美精品| 成年人午夜在线观看视频| .国产精品久久| 久久97久久精品| 国产伦在线观看视频一区| 在线观看三级黄色| 新久久久久国产一级毛片| 美女主播在线视频| 国产精品99久久99久久久不卡 | 国产69精品久久久久777片| 国产av码专区亚洲av| av在线播放精品| 99久久精品一区二区三区| 极品人妻少妇av视频| 99热这里只有精品一区| 久久国产乱子免费精品| 日韩一区二区三区影片| 欧美精品人与动牲交sv欧美| 能在线免费看毛片的网站| 国产精品不卡视频一区二区| 国产精品一区二区三区四区免费观看| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 丝袜脚勾引网站| 99国产精品免费福利视频| 国产熟女午夜一区二区三区 | 一区在线观看完整版| 丝袜脚勾引网站| 中文字幕人妻丝袜制服| 男女国产视频网站| 丝袜喷水一区| 国产伦精品一区二区三区视频9| 欧美日韩av久久| 纵有疾风起免费观看全集完整版| 嫩草影院入口| 国产探花极品一区二区| 青春草亚洲视频在线观看| 免费看不卡的av| 欧美国产精品一级二级三级 | 国产精品国产三级专区第一集| 夜夜骑夜夜射夜夜干| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图 | 在线免费观看不下载黄p国产| 在线天堂最新版资源| 美女内射精品一级片tv| 黄色一级大片看看| 成人漫画全彩无遮挡| 91精品一卡2卡3卡4卡| 亚洲精品国产成人久久av| 成人午夜精彩视频在线观看| 亚洲精品国产成人久久av| 人妻 亚洲 视频| √禁漫天堂资源中文www| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 在线观看www视频免费| 国产亚洲5aaaaa淫片| a级毛色黄片| 在线观看免费日韩欧美大片 | 中文字幕精品免费在线观看视频 | 成年人午夜在线观看视频| 国产成人精品久久久久久| 亚洲av免费高清在线观看| 九九在线视频观看精品| 中文字幕精品免费在线观看视频 | 美女cb高潮喷水在线观看| 欧美区成人在线视频| 精品国产国语对白av| 亚洲av二区三区四区| 在线观看免费高清a一片| h日本视频在线播放| 精品卡一卡二卡四卡免费| 老司机影院毛片| 在线观看美女被高潮喷水网站| 亚洲精品一二三| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 国产精品女同一区二区软件| 人妻一区二区av| 91在线精品国自产拍蜜月| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 国产精品成人在线| 久热久热在线精品观看| 亚洲天堂av无毛| 亚洲精品国产av蜜桃| 日本vs欧美在线观看视频 | 观看av在线不卡| 精品99又大又爽又粗少妇毛片| 日本av免费视频播放| 丝袜在线中文字幕| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 国产伦精品一区二区三区视频9| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 乱人伦中国视频| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| 精品国产国语对白av| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 91久久精品电影网| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 99久国产av精品国产电影| 国产高清不卡午夜福利| 老司机亚洲免费影院| 成人毛片a级毛片在线播放| 草草在线视频免费看| 亚洲av在线观看美女高潮| 亚洲综合色惰| 男人添女人高潮全过程视频| 丰满乱子伦码专区| 亚洲性久久影院| 亚洲高清免费不卡视频| 国产精品久久久久久久电影| 简卡轻食公司| 午夜av观看不卡| 国产91av在线免费观看| av免费在线看不卡| 午夜免费观看性视频| 青春草亚洲视频在线观看| 国产伦理片在线播放av一区|