• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasmonic properties of graphene on uniaxially anisotropic substrates?

    2021-03-19 03:21:18ShengchuanWang汪圣川BinYou游斌RuiZhang張銳KuiHan韓奎XiaopengShen沈曉鵬andWeihuaWang王偉華
    Chinese Physics B 2021年3期
    關(guān)鍵詞:張銳

    Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(張銳), Kui Han(韓奎),Xiaopeng Shen(沈曉鵬), and Weihua Wang(王偉華)

    School of Materials and Physics,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: graphene,plasmonics,anisotropy,hexagonal boron nitride

    1. Introduction

    Graphene, a two-dimensional (2D) carbon crystal, since first produced by the group led by Geim through exfoliation procedures in 2004,[1]has attracted much attention from physical,chemical,and material communities. Graphene has many extraordinary electrical and optical properties,[2,3]including high optical absorptance, tunable surface conductivity,[4]and ultra-fast electron transport.[5]Due to its unique electronic band structure, graphene behaves like a metal at far infrared and terahertz (THz) frequencies, which could support collective excitations such as plasmons. It has been proved theoretically[6-10]and experimentally[11-13]that graphene plasmons have many promising characteristics, such as ultralong inherent lifetime, highly-confined electromagnetic field,huge local field enhancement, strong light absorption,[14-17]and relatively low loss.[18]However, the loss could be extremely increased with graphene placed on some substrates such as silicon dioxide,[19-21]much more than that in suspended graphene. To solve the issue,hexagonal boron nitride(hBN)can be chosen as the substrate,for example,plasmonic loss in graphene-hBN heterostructures is only about 20% of that in graphene-silicon structures.[18]

    In addition to an ideal substrate for graphene, hBN has its own merit as an optical material. The hBN is a hyperbolic material in nature,[22]in which the dielectric constants are the same in plane(εxx=εyy=ε‖),but have opposite signs compared to that of out plane (ε‖·εzz=ε‖·ε⊥<0). Because of this property, hBN can be used in many fields to achieve peculiar optical response,[23]including negative refraction,[24]ultra-slow phase velocity, and nano-focusing.[25-31]Furthermore,graphene-hBN heterostructures support hybrid surfaceplasmon-phonon polariton modes, which could combine the advantages of graphene plasmons and surface phonons,[32]and similar to graphene plasmons, the hybrid modes can be further engineered through the structures and the doping of graphene.[33,34]Very recently, such heterostructure has been demonstrated as a prominent platform for investigating physics under extreme conditions, for instance plasmonic in nanoscale cavities[35,36]and electron scattering at arbitrarily low energies,[37]and designing photoelectric devices with diverse functionalities, such as ultrafast Zener-Klein transistor,[38]high-performance polarization splitter,[39]and active plasmonic switch.[40]

    On the other hand, the screening effect of isotropic substrate on graphene plasmons is well known (resonance frequency inversely proportional to dielectric constant),but hBN is a uniaxially anisotropic material. The anisotropy could change the behavior of graphene plasmons,thus provides another route to manipulate the plasmonic resonances.[41]However, most of the previous works only utilize the 2D nature of hBN and its lattice matching with graphene. The effects of anisotropic and hyperbolic properties of hBN on graphene plasmonic excitations are still not well understood,especially at epsilon-near-zero (ENZ) band. Obviously, promoting the relevant understanding is quite beneficial, which will essentially enrich the studies of graphene plasmonics and pave the way for related device applications. In this work, we mainly discuss the plasmonic properties of graphene nanoribbons on uniaxially anisotropic substrates,and especially as the components of dielectric constant approaching zero from both positive and negative sides. Such anisotropic dielectric substrates can be easily achieved in hBN at THz frequency region,which provides experimental possibilities of our work.

    2. Theoretical model of graphene on uniaxially anisotropic substrate

    Similar to noble metals, graphene also supports collective excitations,which are transverse magnetic(TM)polarized surface modes as well. In this part,we are going to study the fundamental properties of graphene plasmons as described in Fig.1. The graphene nanoribbon array is placed on a uniaxially anisotropic substrate,[42]whose dielectric matrix can be expressed as a tensor

    with εxx=εyy=ε‖and εzz=ε⊥. Above graphene,there is an isotropic medium with dielectric constant εr. In the region of z >0,the TM modes can be assumed to have the form

    and the electromagnetic fields in z <0 region (inside the anisotropic substrate)can be expressed as

    where the wave vectors in z direction are given by

    After matching the boundary conditions at z=0 for electric field Exand magnetic field Hy:

    we obtain the dispersion relation for the TM modes

    By explicitly writing the dependence of the conductivity on the wave vector q, it is possible to study nonlocal optical response, where the mean free path of electrons can be smaller than q?1. Throughout this work,we consider the nonretarded regime(q?ω/c),so equation(6)can be simplified to

    Here,σ(ω)is the surface conductivity of 2D graphene,which can be obtained from the linear response theory(so-called random phase approximation, RPA).[43]As the structures are up to hundreds of nanometers in size, their optical response is mostly determined by the leading term of the surface conductivity,and thus σ(ω)can be approximately reduced to a simple Drude form[44]

    with EFthe Fermi level and τ the relaxation time. This Drude surface conductivity is used throughout our work,and the parameters EF=0.4 eV,τ=0.5 ps.[45]However,we should emphasize that the quantum size effect and edge effect of optical response are ignored in our modelling, which will be extremely important as the structures scale down to tens of nanometers.[43,46]While in structures of hundreds of nanometers,the common treatment based on classical electromagnetic theory will give reliable results.

    Comparing with the well-known graphene dispersion relation,[47]we can easily obtain the effective dielectric constant of the anisotropic substrate[48]

    This theoretical formula only applies to semi-infinite substrates, and the dielectric components in all directions should be great than zero. It does not fit the Restatrahlen bands in hBN,[49]in which the eigenstates should be guided waves instead of plane waves. Using the dispersion relationship Eq. (7), we are able to estimate the plasmonic resonance frequencies for given wave vector q. The procedure can be easily performed in the structures with high symmetry,for example,in disks of radius R, q=n/R,[50]and in ribbons of width W,q=nπ/W,[51]where n is the order of plasmonic modes.

    In order to verify such a simple formula, we calculate the plasmonic resonance frequencies in graphene nanoribbons by means of full wave simulations, in which the plasmonic resonance frequencies can be extracted from the positions of the absorption peaks. In practice, the commercial finite element computation package COMSOL MULTIPHYSICS is employed for all full wave simulations. Because of the threedimensional(3D)modelling requirement, graphene is treated as a transitional boundary condition (TBC), with an artificial thickness tg(sufficiently small compared to the lateral size,tg=0.5 nm throughout the work) and thus an effective 3D permittivity[52]

    Since graphene ribbons possess translational invariance along y direction,it is sufficient to investigate field scattering in the plane of cross section, namely, x-z plane (see Fig.1). In practice, we place a single graphene ribbon (one-unit cell) in the center of a square waveguide, with the periodic boundary condition (PBC) in x direction and two ports in z direction.And then, the absorption spectra can be calculated from Sparameter. In such modelling, the anisotropic substrate can be directly implemented through the material setting, for instance,assigning different values to the diagonal terms in the matrix of dielectric constant.In order to simplify the following discussion,the effects of ε‖and ε⊥are investigated separately,for instance, as studying the effect of ε‖, the value of ε⊥is fixed to be 1, and vice versa. In particular, the variable component of permittivity is varied by either increasing from 1 to 10 or decreasing from 1 to 0(epsilon-near-zero,ENZ).For the permittivity exactly being 0,a tiny imaginary part of the order of 10?5is introduced for the convergence requirement of the simulations.

    Fig.1. Schematic diagram of an array of graphene nanoribbons on a uniaxially anisotropic substrate,and the TM mode with magnetic field along the ribbons. The width of graphene ribbons W =100 nm and the period of the array P=300 nm throughout the work expect noted otherwise. The graphene ribbons are infinitely long which indicates translational invariance along y direction.

    For the case of a single interface (ribbons of width W =100 nm and period P=300 nm on a semi-infinite substrate),the results obtained from simulations (dots) and the formula(solid curves) are shown in Fig.2, in which region I (blue shaded) is for ε‖>ε⊥and region II (pink shaded) is for ε‖<ε⊥. It is clear that the results from the formula show very good agreement with those from simulations,which confirms the validity of the formula. Furthermore, it can be seen that the curves from two figures are exactly consistent. Such consequence can be easily understood from the formula, in which the effective dielectric constant depends on the product of permittivities in parallel ε‖and in perpendicular direction ε⊥. However, the electric field distributions for the two situations are very different. In anisotropic substrates,the electric fields decay rapidly in the direction of low dielectric constant,which thereby causes energy concentrated in another direction.[53]When ε‖<ε⊥(see Fig.2(c)), the electric fields penetrate deeper into the substrate, while ε‖>ε⊥(see Fig.2(d)), the electric fields are more concentrated at the interface. This can also be explained by Eq.(4b)that as ε‖<ε⊥,Q2is relatively small and thus the electric field decays away from the interface slowly.

    Fig.2. The plasmonic frequencies as the function of ε⊥(a)and as the function of ε‖ (b), obtained from Eq.(7)and full wave simulations, in case of a semi-infinite substrate. Region I (blue shaded) for ε‖ >ε⊥and region II (pink shaded) for ε‖ <ε⊥. (c) and (d) The electric field distributions at situations marked in(a)and(b).

    In reality, the substrates can not be semi-infinite. If the substrates are not thick enough, the corresponding thickness will affect the plasmonic properties, and apparently the resonance frequencies. In order to study this effect, we take the substrate thickness of 300 nm, 200 nm, and 100 nm for numerical simulations. The corresponding simulation results are shown in Fig.3. Compared to the theoretical curve(obtained from the formula), the dots exhibit obvious deviations when reducing the thickness of the substrate. For fixed values of ε⊥and ε‖, the deviations are more significant for smaller thickness. However,the largest deviation of each thickness occurs at different regions. Since the theoretical curve is for a semiinfinite substrate, or equivalently a slab of infinite thickness,the results here indicate that the impact of thickness depends on the values of ε⊥and ε‖. In fact, such phenomena can be easily explained by the argument above. The impact of the thickness relies on the direction of energy concentration. If the energy penetrates deeper into the substrate, the thickness will play a more important role. To achieve such a consequence, the dielectric constant ε⊥should be larger than the dielectric constant ε‖(region II in Figs. 3(a) and 3(b)). In Fig.3(a) ε‖=1, and thus ε⊥should be larger than 1, while in Fig.3(b)ε⊥=1,and similarly ε‖should be smaller than 1.However,if both ε⊥and ε‖locate roughly from 1 to 4,100 nm would be thick enough,and the impact of the thickness could be ignored.

    Fig.3. The plasmonic frequencies as the function of ε⊥(a)and as the function of ε‖ (b), in case of the finite substrates with thicknesses of 300 nm,200 nm,and 100 nm. Region I(blue shaded)for ε‖>ε⊥and region II(pink shaded)for ε‖<ε⊥. (c)and(d)The electric field distributions at the situations marked in(a)and(b).

    As is well known,the most appealing feature of graphene plasmons is its active tunability by an external gate voltage.Specifically,the plasmonic properties will be varied for different Fermi level which is involved in surface conductivity(see Eq. (8)). Thus, it is very necessary to extend recent studies to structures with different Fermi level. We compute the resonance frequencies of graphene ribbons on hBN of 100 nm thickness (see Fig.1 for other parameters). The results are shown in Fig.4. It is clear that for both situations, the spectrum will globally shift up with increasing Fermi level and down with decreasing Fermi level. Meanwhile, the asymptotic behaviors at two limits, namely, large epsilon and ENZ,are also reserved as comparing with Fig.3.

    Fig.4. Resonance frequencies as the functions of ε⊥(a)and ε‖ (b),in graphene ribbons with the Fermi level of 0.2 eV(blue curves), 0.4 eV(red curves), and 0.6 eV (brown curves). The thickness of the hBN dielectric layer is set to 100 nm for all calculations.

    So far, we have discussed in detail the evolution of graphene plasmons as the function of non-negative dielectric components of the substrates.However,if one of the dielectric components is negative (hyperbolic material), the plasmonic properties would be changed dramatically due to the strong Coulomb screening. But if either ε⊥or ε‖is of a very small negative value, they will also lead to different consequences.For substrates of thickness 100 nm,the other parameters consistent with the above discussions, the simulation results are shown in Fig.5. It is clear that inside the hyperbolic material, the graphene plasmons are not bounded to the interface,but can propagate inside the hyperbolic slab. These modes are actually phonon-polariton modes,[54]guided in the slab. For non-magnetic media,the condition of the propagation solution in hyperbolic materials asymptotically approaches[55]

    Fig.5. Electric field distributions in graphene nanoribbons on 100 nm thick uniaxially anisotropic substrates. θ is the refractive angle of the guide wave inside the hyperbolic slab.

    3. Graphene on hBN

    Hexagonal boron nitride is a promising substrate for graphene. Since matching the lattice, the carrier mobility of graphene on hBN can be one order larger than that of graphene on silicon dioxide (SiO2).[56]Furthermore, hBN is a uniaxial anisotropic material, and a nature hyperbolic material at specific frequency region.[57]Thus the above discussions have lots of practical significance. In hBN, there are transverse(ωTO)and longitude optical phonons(ωLO),which determine its optical response,for example,the Lorentz-like expressions of dielectric functions given by[58]Here, the parameters are as follows: ε∞,‖= 4.87, ωTO,‖=41.1 THz,ωLO,‖=48.3 THz,?!?15.0 THz,and ε∞,⊥=2.95,ωTO,⊥=23.4 THz,ωLO,⊥=24.9 THz,?!?12.0 THz.These two dielectric components are plotted in Fig.6. At a large frequency region, hBN is a uniaxially anisotropic material with positive ε⊥and ε‖, and only exhibits hyperbolic behaviour at two isolated Restatrahlen bands (close to ω =ωLO,‖and ω =ωLO,⊥), where we can also find the frequency regions of epsilon-near-zero (insets shown in Fig.6). Hence, hBN also provides a platform for studying plasmonic properties as graphene on a uniaxial epsilon-near-zero substrate.

    Fig.6. Dispersion of two dielectric components of hBN, type I and type II Restatrahlen bands are shaded,dashed lines plot longitude optical phonon frequencies(epsilon-near-zero,ENZ regions).

    Fig.7. Plasmonic dispersions in suspended graphene (green dotted)and in graphene-hBN heterostructure(red dotted). HBN has thickness 100 nm as above.

    In order to examine further the plasmonic behavior when one of the dielectric components being a very small negative number(see Fig.5),we map the plasmonic dispersion of graphene-hBN heterostructures (100 nm thickness as above)in Fig.7,where the width W of graphene ribbons varies from 25 nm to 150 nm, and the period is three times the width.As before, we extract the plasmonic frequencies from simulations and the equivalent wavevector can be obtained through q=nπ/W (see illustration in Section 2). Compared to the plasmonic dispersion of suspended graphene (green dotted curve), the plasmonic dispersion of graphene-hBN is divided into three parts by two Reststrahlen bands of hBN (red dotted curves). It is clear that near the Reststrahlen band of type II, with varying the width of the ribbon, the dispersion curve crosses the epsilon-near-zero frequency band (dashed lines).The results presented here are consistent with the numerical simulation results shown in Fig.5.

    4. Conclusion

    猜你喜歡
    張銳
    Invariable mobility edge in a quasiperiodic lattice
    Boundary states for entanglement robustness under dephasing and bit flip channels*
    張銳:“匠”心筑就機(jī)器人之夢
    走親戚
    前線(2018年11期)2018-11-30 02:28:00
    說“玩”
    ——憶二胡藝術(shù)家張銳先生
    劇影月報(2017年4期)2017-11-16 00:17:49
    生死挑贊
    激發(fā)民間投資熱情亟需政策精準(zhǔn)發(fā)力
    Gyroscope Fault Diagnosis Using Fuzzy SVM to Unbalanced Samples
    張銳:越貼近 越精彩
    河南電力(2015年11期)2015-05-17 01:59:54
    張銳二胡演奏風(fēng)格初探
    北方音樂(2015年3期)2015-04-29 08:04:58
    成人特级黄色片久久久久久久 | 亚洲av国产av综合av卡| 免费日韩欧美在线观看| 国产亚洲欧美精品永久| 亚洲国产av新网站| 精品熟女少妇八av免费久了| 性高湖久久久久久久久免费观看| 国产精品二区激情视频| 国产淫语在线视频| 国产男靠女视频免费网站| 伊人久久大香线蕉亚洲五| 每晚都被弄得嗷嗷叫到高潮| 色老头精品视频在线观看| 国产精品久久久久成人av| 精品高清国产在线一区| 男男h啪啪无遮挡| 久久ye,这里只有精品| 欧美一级毛片孕妇| 婷婷丁香在线五月| 久久精品国产99精品国产亚洲性色 | 亚洲第一欧美日韩一区二区三区 | 久久久久久久久免费视频了| 无人区码免费观看不卡 | 欧美激情久久久久久爽电影 | 9191精品国产免费久久| 久久午夜综合久久蜜桃| 黄色丝袜av网址大全| 黄色丝袜av网址大全| 9色porny在线观看| 久久热在线av| 久久久久精品人妻al黑| 国产精品亚洲一级av第二区| 女同久久另类99精品国产91| 一级毛片电影观看| 精品国产一区二区久久| 亚洲熟女精品中文字幕| 男人操女人黄网站| 亚洲av日韩在线播放| 天天添夜夜摸| 国产一区二区激情短视频| 国产av一区二区精品久久| 国产在线一区二区三区精| videos熟女内射| 久久精品国产a三级三级三级| 久久久久久人人人人人| 黑人巨大精品欧美一区二区蜜桃| 超碰97精品在线观看| 日韩中文字幕欧美一区二区| 老司机在亚洲福利影院| 777久久人妻少妇嫩草av网站| 免费日韩欧美在线观看| 色婷婷久久久亚洲欧美| 欧美精品啪啪一区二区三区| 成人永久免费在线观看视频 | 婷婷成人精品国产| 亚洲国产欧美日韩在线播放| 亚洲国产成人一精品久久久| 久久婷婷成人综合色麻豆| 久久久久久人人人人人| 丝袜在线中文字幕| 欧美+亚洲+日韩+国产| 女人被躁到高潮嗷嗷叫费观| 亚洲精品中文字幕在线视频| 国产深夜福利视频在线观看| 乱人伦中国视频| 丝瓜视频免费看黄片| 亚洲av成人不卡在线观看播放网| 亚洲专区中文字幕在线| 自线自在国产av| 亚洲国产成人一精品久久久| 亚洲精品在线观看二区| 免费黄频网站在线观看国产| 啦啦啦免费观看视频1| 80岁老熟妇乱子伦牲交| 国产精品二区激情视频| 欧美激情极品国产一区二区三区| 国产亚洲欧美在线一区二区| videosex国产| 日韩欧美免费精品| 免费女性裸体啪啪无遮挡网站| 国产伦人伦偷精品视频| 大型av网站在线播放| 亚洲一区二区三区欧美精品| 捣出白浆h1v1| 国产亚洲欧美在线一区二区| 国产精品av久久久久免费| 考比视频在线观看| 午夜福利欧美成人| 黄色 视频免费看| 美女午夜性视频免费| 午夜福利乱码中文字幕| 考比视频在线观看| 日韩三级视频一区二区三区| 女性生殖器流出的白浆| 中文字幕人妻丝袜制服| av网站免费在线观看视频| 这个男人来自地球电影免费观看| 亚洲天堂av无毛| 视频区图区小说| 国产97色在线日韩免费| 国产精品免费大片| 黑人欧美特级aaaaaa片| 日日夜夜操网爽| 欧美日韩国产mv在线观看视频| 亚洲一区中文字幕在线| 日韩中文字幕欧美一区二区| 丝袜在线中文字幕| 亚洲全国av大片| 国产精品久久久av美女十八| 精品人妻在线不人妻| 国产欧美日韩精品亚洲av| 大陆偷拍与自拍| 国产男女超爽视频在线观看| 又大又爽又粗| 国产黄频视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕色久视频| 欧美另类亚洲清纯唯美| 黄色丝袜av网址大全| 国产av国产精品国产| www日本在线高清视频| 高潮久久久久久久久久久不卡| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久成人av| 变态另类成人亚洲欧美熟女 | 丝袜喷水一区| 亚洲国产毛片av蜜桃av| 日韩精品免费视频一区二区三区| 国产精品久久久人人做人人爽| 日本精品一区二区三区蜜桃| 日韩视频在线欧美| 亚洲熟女毛片儿| 精品国内亚洲2022精品成人 | 欧美日韩亚洲高清精品| 国精品久久久久久国模美| 日本撒尿小便嘘嘘汇集6| 天天操日日干夜夜撸| 欧美午夜高清在线| 国产精品亚洲一级av第二区| 在线观看免费高清a一片| e午夜精品久久久久久久| 满18在线观看网站| 亚洲中文av在线| 亚洲国产毛片av蜜桃av| 黑人巨大精品欧美一区二区mp4| 国产av国产精品国产| 色综合欧美亚洲国产小说| 色精品久久人妻99蜜桃| 一个人免费在线观看的高清视频| 午夜福利欧美成人| 国产真人三级小视频在线观看| 精品国产一区二区三区四区第35| 巨乳人妻的诱惑在线观看| 欧美黄色片欧美黄色片| 亚洲精品粉嫩美女一区| 亚洲男人天堂网一区| 色94色欧美一区二区| 亚洲黑人精品在线| 青草久久国产| 无人区码免费观看不卡 | 岛国在线观看网站| 妹子高潮喷水视频| 精品亚洲乱码少妇综合久久| 亚洲精品在线观看二区| 啦啦啦免费观看视频1| 亚洲久久久国产精品| 天天添夜夜摸| 久久精品91无色码中文字幕| 国产成人av教育| 丰满人妻熟妇乱又伦精品不卡| 窝窝影院91人妻| 老熟妇乱子伦视频在线观看| 亚洲成人免费电影在线观看| 午夜免费成人在线视频| 18禁国产床啪视频网站| 国产av精品麻豆| 性高湖久久久久久久久免费观看| 亚洲精品中文字幕一二三四区 | 国产成+人综合+亚洲专区| av免费在线观看网站| 三上悠亚av全集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 蜜桃在线观看..| 午夜福利在线免费观看网站| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 亚洲国产中文字幕在线视频| 亚洲欧美日韩高清在线视频 | 国产有黄有色有爽视频| 久久精品亚洲av国产电影网| 亚洲国产av影院在线观看| av网站在线播放免费| 亚洲国产欧美网| 精品一区二区三区视频在线观看免费 | 一边摸一边抽搐一进一出视频| 悠悠久久av| avwww免费| 欧美黑人欧美精品刺激| 久久人妻福利社区极品人妻图片| 国产av又大| av片东京热男人的天堂| 正在播放国产对白刺激| 日韩免费高清中文字幕av| 免费日韩欧美在线观看| 精品少妇一区二区三区视频日本电影| 婷婷成人精品国产| 日韩 欧美 亚洲 中文字幕| 99国产精品免费福利视频| 久久久水蜜桃国产精品网| 女性生殖器流出的白浆| 男女之事视频高清在线观看| 大香蕉久久成人网| 99久久国产精品久久久| 国产精品一区二区在线不卡| 丰满少妇做爰视频| 下体分泌物呈黄色| 亚洲欧洲精品一区二区精品久久久| aaaaa片日本免费| 欧美成人免费av一区二区三区 | 满18在线观看网站| 欧美日韩福利视频一区二区| 欧美日韩亚洲国产一区二区在线观看 | 欧美老熟妇乱子伦牲交| 91av网站免费观看| 国产欧美日韩一区二区精品| 亚洲精品国产一区二区精华液| 午夜福利视频精品| 国产亚洲一区二区精品| 午夜福利视频在线观看免费| 人人妻人人爽人人添夜夜欢视频| 51午夜福利影视在线观看| 国产麻豆69| 精品少妇久久久久久888优播| av免费在线观看网站| 国产xxxxx性猛交| 亚洲人成77777在线视频| 一区二区三区精品91| 99久久国产精品久久久| 精品少妇久久久久久888优播| 一级黄色大片毛片| 无遮挡黄片免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 午夜激情av网站| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 香蕉国产在线看| 久久久久国产一级毛片高清牌| 国产成+人综合+亚洲专区| 老熟女久久久| www.999成人在线观看| 欧美精品人与动牲交sv欧美| 成人国语在线视频| 亚洲色图综合在线观看| 成人特级黄色片久久久久久久 | 精品福利永久在线观看| 中文字幕人妻熟女乱码| 欧美大码av| 97人妻天天添夜夜摸| 国产一区有黄有色的免费视频| 成人亚洲精品一区在线观看| 69精品国产乱码久久久| 国产片内射在线| 老熟妇乱子伦视频在线观看| 精品一区二区三卡| 精品免费久久久久久久清纯 | 国产精品秋霞免费鲁丝片| 日本av手机在线免费观看| 午夜两性在线视频| 日本欧美视频一区| 久久人妻福利社区极品人妻图片| 久久久精品国产亚洲av高清涩受| 日日爽夜夜爽网站| 麻豆乱淫一区二区| 亚洲国产毛片av蜜桃av| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| 久久 成人 亚洲| 中文字幕制服av| 亚洲精品国产精品久久久不卡| 欧美日韩视频精品一区| 成人18禁高潮啪啪吃奶动态图| 一边摸一边做爽爽视频免费| 精品人妻在线不人妻| 一级,二级,三级黄色视频| 男女高潮啪啪啪动态图| 国产精品免费视频内射| 欧美变态另类bdsm刘玥| 国产成人影院久久av| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区mp4| 久久天堂一区二区三区四区| 免费人妻精品一区二区三区视频| 久久热在线av| 亚洲熟女毛片儿| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 亚洲熟妇熟女久久| 波多野结衣一区麻豆| 久久青草综合色| 91字幕亚洲| 人人妻人人澡人人爽人人夜夜| 一本—道久久a久久精品蜜桃钙片| 免费在线观看视频国产中文字幕亚洲| 免费少妇av软件| a级毛片在线看网站| 丰满人妻熟妇乱又伦精品不卡| 变态另类成人亚洲欧美熟女 | 久久久国产精品麻豆| 亚洲国产av新网站| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 日韩视频一区二区在线观看| 色婷婷av一区二区三区视频| 无限看片的www在线观看| 免费黄频网站在线观看国产| 岛国毛片在线播放| 最黄视频免费看| 国产成人av激情在线播放| 悠悠久久av| 天堂动漫精品| 一进一出抽搐动态| 大片免费播放器 马上看| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 欧美成人午夜精品| 久久毛片免费看一区二区三区| 麻豆国产av国片精品| 久久 成人 亚洲| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 亚洲精品成人av观看孕妇| 免费少妇av软件| 久久精品91无色码中文字幕| 精品国产一区二区久久| netflix在线观看网站| 黑人巨大精品欧美一区二区mp4| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 天堂8中文在线网| 伊人久久大香线蕉亚洲五| 天堂中文最新版在线下载| 欧美日韩亚洲国产一区二区在线观看 | 免费看十八禁软件| 黄片播放在线免费| 男人舔女人的私密视频| 中文字幕人妻丝袜制服| 欧美成人免费av一区二区三区 | www.精华液| 一级黄色大片毛片| 捣出白浆h1v1| 久久久精品国产亚洲av高清涩受| 老司机深夜福利视频在线观看| 18禁国产床啪视频网站| 精品国产一区二区久久| 美国免费a级毛片| 亚洲国产看品久久| 国产黄频视频在线观看| 精品卡一卡二卡四卡免费| 午夜福利乱码中文字幕| 丝袜人妻中文字幕| 一级毛片精品| tube8黄色片| 高清毛片免费观看视频网站 | 老汉色∧v一级毛片| 成年人免费黄色播放视频| 在线观看免费午夜福利视频| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| 精品久久久久久电影网| 在线 av 中文字幕| 十八禁网站免费在线| 精品久久蜜臀av无| 亚洲熟女毛片儿| 国产精品一区二区在线观看99| 美女扒开内裤让男人捅视频| 成人特级黄色片久久久久久久 | 别揉我奶头~嗯~啊~动态视频| 9191精品国产免费久久| 亚洲精品在线观看二区| 一夜夜www| 最近最新中文字幕大全电影3 | 美女视频免费永久观看网站| 久久久久久久大尺度免费视频| 国产伦人伦偷精品视频| 国产野战对白在线观看| 黑人巨大精品欧美一区二区蜜桃| 午夜福利一区二区在线看| 女人爽到高潮嗷嗷叫在线视频| 少妇粗大呻吟视频| 免费观看人在逋| 午夜成年电影在线免费观看| 高清欧美精品videossex| 亚洲成人国产一区在线观看| 中亚洲国语对白在线视频| 怎么达到女性高潮| 又紧又爽又黄一区二区| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| av福利片在线| 两性午夜刺激爽爽歪歪视频在线观看 | 建设人人有责人人尽责人人享有的| 日本欧美视频一区| a在线观看视频网站| 多毛熟女@视频| 久久久久久人人人人人| 亚洲,欧美精品.| 麻豆av在线久日| 日日摸夜夜添夜夜添小说| 三上悠亚av全集在线观看| 黄色视频不卡| 久久精品成人免费网站| 国产精品美女特级片免费视频播放器 | 欧美精品人与动牲交sv欧美| 两个人看的免费小视频| 女同久久另类99精品国产91| 在线观看免费视频网站a站| 后天国语完整版免费观看| 国产一区二区 视频在线| 久久精品亚洲精品国产色婷小说| 欧美 日韩 精品 国产| 岛国毛片在线播放| 国产激情久久老熟女| 黄色成人免费大全| 自线自在国产av| 又大又爽又粗| 国产精品一区二区免费欧美| 日本五十路高清| 亚洲av欧美aⅴ国产| 欧美日韩成人在线一区二区| 我的亚洲天堂| 波多野结衣av一区二区av| av欧美777| 久久99一区二区三区| 真人做人爱边吃奶动态| 日韩免费av在线播放| 久久99一区二区三区| 少妇的丰满在线观看| 国产精品电影一区二区三区 | 日韩三级视频一区二区三区| 在线观看免费视频日本深夜| 嫩草影视91久久| 蜜桃国产av成人99| 99国产精品一区二区三区| 国产人伦9x9x在线观看| 国产在线精品亚洲第一网站| 精品福利观看| h视频一区二区三区| 在线观看免费午夜福利视频| 亚洲av成人一区二区三| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| 高潮久久久久久久久久久不卡| 国产无遮挡羞羞视频在线观看| 国产不卡一卡二| 亚洲精品自拍成人| 成人18禁在线播放| 99久久人妻综合| 天堂中文最新版在线下载| 精品国内亚洲2022精品成人 | 国产精品免费视频内射| 久久精品熟女亚洲av麻豆精品| 性高湖久久久久久久久免费观看| 免费不卡黄色视频| 亚洲一区中文字幕在线| 色在线成人网| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 久久久国产欧美日韩av| 亚洲av国产av综合av卡| 精品少妇久久久久久888优播| 国产高清激情床上av| 日韩精品免费视频一区二区三区| 国产精品美女特级片免费视频播放器 | 国产精品久久久久成人av| 午夜福利一区二区在线看| 亚洲免费av在线视频| 成人精品一区二区免费| 欧美国产精品va在线观看不卡| 捣出白浆h1v1| 国产一区二区 视频在线| 欧美黑人精品巨大| 日本撒尿小便嘘嘘汇集6| 男人舔女人的私密视频| 狠狠婷婷综合久久久久久88av| 精品久久蜜臀av无| av线在线观看网站| 欧美乱妇无乱码| 王馨瑶露胸无遮挡在线观看| 国产免费av片在线观看野外av| 国产精品免费一区二区三区在线 | 精品福利观看| 美女午夜性视频免费| 午夜福利在线观看吧| 黄色a级毛片大全视频| 韩国精品一区二区三区| 免费观看a级毛片全部| 美国免费a级毛片| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av香蕉五月 | 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久小说| av不卡在线播放| 免费少妇av软件| 久久九九热精品免费| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| 亚洲成人国产一区在线观看| 18禁黄网站禁片午夜丰满| 黄色 视频免费看| 性高湖久久久久久久久免费观看| 免费在线观看黄色视频的| 亚洲国产欧美一区二区综合| 婷婷丁香在线五月| 99国产极品粉嫩在线观看| 一级,二级,三级黄色视频| 欧美另类亚洲清纯唯美| 精品福利观看| 黄色视频不卡| 成人国语在线视频| 国产欧美日韩一区二区三区在线| 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 欧美成人午夜精品| 国产精品免费一区二区三区在线 | 超碰97精品在线观看| 日韩制服丝袜自拍偷拍| 亚洲av欧美aⅴ国产| 国产99久久九九免费精品| 国产一卡二卡三卡精品| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 曰老女人黄片| 好男人电影高清在线观看| 午夜福利乱码中文字幕| 99香蕉大伊视频| 国产成人啪精品午夜网站| 欧美性长视频在线观看| av免费在线观看网站| avwww免费| 黄色视频,在线免费观看| 日本av免费视频播放| 黑人欧美特级aaaaaa片| 麻豆乱淫一区二区| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 亚洲综合色网址| 国产老妇伦熟女老妇高清| av天堂在线播放| 国产亚洲欧美在线一区二区| 成人三级做爰电影| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 性色av乱码一区二区三区2| 人人妻人人澡人人看| 亚洲色图综合在线观看| 日本黄色视频三级网站网址 | 日韩熟女老妇一区二区性免费视频| 欧美日韩成人在线一区二区| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 成年人黄色毛片网站| 久久ye,这里只有精品| kizo精华| 成人国产av品久久久| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 成在线人永久免费视频| av天堂久久9| 国产高清视频在线播放一区| 亚洲精品粉嫩美女一区| 淫妇啪啪啪对白视频| 丝袜喷水一区| av福利片在线| 亚洲午夜精品一区,二区,三区| 99国产精品一区二区蜜桃av | 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 另类精品久久| 在线观看免费日韩欧美大片| 高清欧美精品videossex| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 日本五十路高清| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| 99re6热这里在线精品视频| 欧美中文综合在线视频| 考比视频在线观看| 女人精品久久久久毛片| 亚洲三区欧美一区| 又大又爽又粗| 美女国产高潮福利片在线看| 天天操日日干夜夜撸| 国产av国产精品国产| 久久久欧美国产精品| 91老司机精品| 男人舔女人的私密视频| 久久久久久久精品吃奶| 亚洲精品一卡2卡三卡4卡5卡| 精品免费久久久久久久清纯 | 五月开心婷婷网| 国产av又大| 不卡av一区二区三区| 日韩欧美一区二区三区在线观看 | 久久99热这里只频精品6学生| 亚洲精品粉嫩美女一区| 国产高清国产精品国产三级|