• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,mechanical,electronic properties,and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure:A first-principles study?

    2021-03-19 03:21:04DiyouJiang姜迪友WenboXiao肖文波andSanqiuLiu劉三秋
    Chinese Physics B 2021年3期
    關(guān)鍵詞:文波

    Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(劉三秋)

    1Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China

    2Fujian Science&Technology Innovation Laboratory for Energy Devices of China(21C-LAB),Ningde 352100,China

    3Department of Physics,Nanchang University,Nanchang 330047,China

    Keywords: quaternary carbide Ti3NiAl2C ceramics, structural properties, mechanical properties, electronic properties,Debye temperature,first-principles

    1. Introduction

    Mn+1AXnphases(M represents the early transition metal of B group, n represents 1/2/3, A stands for an element of A group, and X is C or N) have both metallic and ceramic properties with its hexagonal close-packed structure, which have attracted great interest from researchers due to its excellent performances such as high melting point, high temperature stability,high temperature resistant to oxidation,high corrosion resistance,high elastic modulus,significant machinability, excellent resistant to thermal shock, good thermal and electrical conductivity, low density and micro-ductility at room temperature.[1-10]In addition, Mn+1AXnphases also exhibit good radiation resistance,[11]especially at high temperatures,[12-15]and are considered as a potential structural material for nuclear fission and fusion reactors.[16-18]In the Mn+1AXnphases,many materials have been studied,such as Ti2AlC, [19,20] Ti3AlC2[21,22]and Ti3SiC2[23,24]compounds.

    On the other hand,the composite carbides of Ti2A1C and Ti3A1C formulations have high efficiency when used as abrasives for glass polishing. With nickel proposed as a possible binder, the research on the Ti-Ni-Al-C quaternary system began to arouse the interest of researchers. The quaternary system: titanium-nickel-aluminum-carbon (Ti3NiAl2C)was established for 1100?C (quench), and a quaternary ηcarbide with a lattice parameter of a=11.40-11.463 ?A was found to exist.[25]The H-phase Ti2AlC and the perovskite phase Ti3AlC are no longer stable in the presence of minor amounts of nickel.[25]Cubic Ti3NiAl2C compounds as quaternary carbide ceramics[25]may also have the characteristics of the Mn+1AXnphases. So far,however,this material has not been further investigated,especially in theory.

    In addition,high pressure can cause a material to undergo phase changes that change its chemical and physical properties, such as structural, mechanical, thermodynamic, optical, electronic, and magnetic properties.[26-35]At the same time, computational materials science can be used to investigate the structure performance relationship and design materials since the traditional experimental design is expensive and time-consuming. Computer simulation can improve the chemical and physical properties of specific compounds and greatly reduce the number of components to be prepared and characterized.[36-43]

    In this paper,our purpose is to improve the chemical and physical properties of cubic Ti3NiAl2C compounds through pressurization based on density functional theory. Therefore,we focus on investigating the effect of pressure on the mechanical properties of quaternary carbide Ti3NiAl2C ceramics.

    2. Model and computational details

    Figure 1 shows the crystal structure of cubic Ti3NiAl2C compounds, which belongs to the Fd-3m space group. The model of cubic Ti3NiAl2C compounds consists of 112 atoms,which including 16 C, 32 Al, 16 Ni, and 48 Ti atoms. The valence electron of C, Al, Ni, and Ti atoms is C-2s22p2, Al-3s23p1, Ni-4s23d8, and Ti-4s23d2, respectively. Using VASP software,the first principles method according to density functional theory (DFT) along with the plane-wave pseudopotential is used to complete the current calculations.[44,45]According to the projector augmented wave method(PAW),[46]it can characterize the relationship between core ions and valence electrons. The generalized gradient approximation(GGA)of Perdew and Wang (PW91) is used to calculate the exchangecorrelation potentials.[47]3×3×3 Monkhorst-Pack meshes as sampling k-point in Brillouin-zone.[48]All calculated plane wave cutoff energy is set to 430 eV,and further increasing the cutoff energy has little effect on the energy. Gaussian smearing method is used for all calculations,and its smearing width is 0.05 eV.

    According to the relationship between pressure and volume, the Birch-Murnaghan equation of state (EOS) can be expressed as[28,35,49]

    According to Voigt-Reuss-Hill averaging scheme,[50-53]a series of required mechanical parameters can be obtained by fitting the elastic constants, such as bulk modulus (B),Young’s modulus(E),shear modulus(G),Poisson’s ratio(ν),anisotropy coefficients (A), and Cauchy pressure (C′). The equation constructed can be expressed as

    Debye temperature (ΘD) is an important parameter for studying the thermodynamic properties. Therefore, it is necessary to explore the Debye temperature of quaternary carbide Ti3NiAl2C ceramics at different pressures.Debye temperature can be expressed as[54]

    where kBis the Boltzmann constant,h is the Planck constant,NAis the Avogadro number, ρ is the mass density, m is the molecular weight,n is total number of atoms per formula,and vmis the average sound velocity.

    The average sound velocity (vm) can be acquired by the following equation:[54]

    where vlis the longitudinal sound velocity and vsis the shear sound velocity,which can be calculated based on the B and G.The equation constructed is as follows:[55]

    3. Results and discussion

    3.1. Structural properties

    As shown in Fig.1, we pressurized and optimized the crystal structure of quaternary carbide Ti3NiAl2C ceramics with a pressure range of 0-110 GPa and an interval of 10 GPa.At the same time, the optimized atomic positions and crystal configurations are used as the model for the study of mechanical properties.

    cubic lattice at different pressures. The lattice constants of quaternary carbide Ti3NiAl2C ceramics decrease with the increase of pressure due to the shortened bond lengths,as shown in Fig.2.

    Table 1. The lattice constants a, b and , volume of cubic Ti3NiAl2C compounds at different pressures, and the bulk modulus B0(GPa)and its pressure derivative at 0 GPa.

    Table 1. The lattice constants a, b and , volume of cubic Ti3NiAl2C compounds at different pressures, and the bulk modulus B0(GPa)and its pressure derivative at 0 GPa.

    Pressure(GPa) a b c V B0 B′0 (GPa)0 11.454 11.454 11.454 1502.69 164.58 3.47552 10 11.244 11.244 11.244 1421.54 20 11.080 11.080 11.080 1360.35 30 10.939 10.939 10.939 1309.13 40 10.819 10.819 10.819 1266.39 50 10.713 10.713 10.713 1229.41 60 10.617 10.617 10.617 1196.81 70 10.531 10.531 10.531 1167.80 80 10.451 10.451 10.451 1141.42 90 10.380 10.380 10.380 1118.27 100 10.313 10.313 10.313 1096.77 110 10.247 10.247 10.247 1075.79

    Fig.1. Crystal structure model of cubic Ti3NiAl2C compounds. Black,pink,grey,and blue balls are C,Al,Ti,and Ni atoms,respectively.

    Fig.2. The bond lengths of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    The bond lengths of quaternary carbide Ti3NiAl2C ceramics decrease with the increasing pressure. At zero pressure,there are three kinds of bonds,namely Ti-Al,Ni-Al,and Ti-C bonds.At pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,the new bond lengths of Ti-Ni,Ti-Ti,Al-Al,Ti-Al, and Ti-Ti are produced, respectively. At the same time,we can see that the Ti-Ti and Ti-Al bonds appear twice in the process of pressurization. It indicates that pressurization can lead to the diversity of the bonding of quaternary carbide Ti3NiAl2C ceramics.

    Based on Eqs. (1) and (2), the relationship between volume and pressure can be expressed by the pressure-volume curve. At the same time, we can get these results by fitting the Birch-Murnaghan equation of state. Figure 3 plotted the pressure-volume curve of quaternary carbide Ti3NiAl2C ceramics,and the volume decreases with the increasing pressure.

    Fig.3.Birch-Murnaghan fitting curve of quaternary carbide Ti3NiAl2C ceramics based on volume(?A3)and pressure(GPa).

    As shown in Fig.4,we can normalize the lattice constant and volume of quaternary carbide Ti3NiAl2C ceramics to investigate the effect of pressure on the cell structure. We can see that the normalization constants of the lattice constant and volume decrease with the increase of pressure. Obviously,the normalization constant of the volume decreases faster. However, we can also see that quaternary carbide Ti3NiAl2C ceramics cannot be compressed endlessly. The reason is that as the pressure increases, the volume is continuously compressed, and the bond length between atoms is shortened,which leads to the increase of repulsive force between atoms and makes the crystal difficult to be compressed. We can see from Fig.4 that the volume of quaternary carbide Ti3NiAl2C ceramics is compressed to about 72%.

    Fig.4. The normalization parameter of the volumes and lattice constants of cubic Ti3NiAl2C compounds at different pressures.

    Table 2. Elastic constants(Cij,in GPa),Young’s modulus(E,in GPa),shear modulus(G,in GPa),bulk modulus(B,in GPa),B/G ratio,Poisson’s ratio(ν),Cauchy pressure(C′,in GPa)and anisotropic coefficients(A)of cubic Ti3NiAl2C compound at different pressures(GPa).

    3.2. Charge transfer

    The charge transfer between atoms can reduce the energy of the compounds to achieve a stable structure. Based on electronegativity analysis, the Ni and C atoms of quaternary carbide Ti3NiAl2C ceramics can gain charge, while the Ti and Al atoms can lose charge. Therefore, Ti and Al can produce positive charges, and C and Ni can produce negative charges.

    Fig.5. The transfer charges of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    As shown in Fig.5,we investigated the effect of pressure on the charge transfer of quaternary carbide Ti3NiAl2C ceramics.According to the Bader charge calculation,we can see that the charge gained by the C atom decreases with the increasing pressure,but the change is not obvious,and the charge transfer is relatively stable. The charge gained by Ni atoms obviously increases with the increasing pressure. Similarly,we can also clearly know that the charge loss of Ti atom decreases with the increase of pressure, but the charge loss is not obvious,and the charge transfer is also relatively stable. However,the charge loss of Al atom obviously increases with the pressure.These results show that pressure has a greater effect on the charge transfer of Ni and Al atoms in cubic Ti3NiAl2C compounds,but it has a smaller effect on the charge transfer of C and Ti atoms. How much is the charge transfer? According to Marcus’s charge transfer theory,it may be caused by orbital interaction.

    3.3. Mechanical properties

    Firstly, we fitted the elastic constants of quaternary carbide Ti3NiAl2C ceramics at different pressures, and then exported the mechanical parameters such as Poisson’s ratio,Cauchy pressure, elastic modulus, and anisotropic factors based on the Eqs.(3)-(10),as shown in Table 2.

    The elastic constant C11is often used to characterize the stiffness of compounds. It can be seen from Table 2 that the C11increases with the pressure,indicating that the stiffness of quaternary carbide Ti3NiAl2C ceramics can be enhanced by pressurization.C12is generally used to characterize resistance to lateral deformation. Similarly, it can also be seen that the C12increases with the pressure,indicating that pressurization can also increase resistance to lateral deformation. The reason is that pressure makes the bond length shorter,the interaction between atoms is strengthened, and the bond energy also increases,leading to an improvement of the mechanical properties of quaternary carbide Ti3NiAl2C ceramics. At the same time,as shown in Table 2,we can also see that the elastic constants of quaternary carbide Ti3NiAl2C ceramics at 50-60 GPa are equivalent to that of pure tungsten(Tungsten is considered the most promising first wall material).[56-66]

    In addition,the relations(C11?C12)>0,C11>0,C44>0, (C11+2C12)>0[67]serves as the criterion for determining the mechanical stability of cubic systems. We can deduce that the elastic constants of quaternary carbide Ti3NiAl2C ceramics at different pressures obviously meet the stability criteria. It indicates that these structures are mechanically stable.Meanwhile,the phonon dispersion of cubic Ti3NiAl2C ceramics(the primitive cell with 28 atoms)at zero pressure is calculated based on density functional perturbation theory(DFPT),as shown in Fig.6. It is obvious that cubic Ti3NiAl2C ceramics is dynamically stable.

    Bulk modulus is generally used to evaluate the material’s resistance to deformation under external forces.[68,69]We can see from Table 2 that the bulk modulus of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure,indicating that pressurization can improve the ability to resist deformation. At the same time, it is found that the bulk modulus (163.3 GPa) at zero pressure is higher than Ti2AlC(135.8 GPa)[62]and Ti3AlC2(156.2 GPa)[62]ceramics but lower than Ti3SiC2(185.3 GPa)[63]ceramics, which means that cubic Ti3NiAl2C ceramics has certain advanced properties. Shear modulus is generally used to characterize the material’s resistance to shear deformation.[68,69]We can also see from Table 2 that the shear modulus increases with the pressure, indicating that pressurization can improve the ability of quaternary carbide Ti3NiAl2C ceramics to resist shear deformation. Young’s modulus corresponds to that of C11, which also characterizes the stiffness of materials. Similarly,we can also see from Table 2 that Young’s modulus increases with the pressure,which is equivalent to the conclusion of C11.

    Fig.6. The phonon dispersion curves of cubic Ti3NiAl2C ceramics at zero pressure is calculated based on DFPT.

    According to the Pugh theory,[69]the (B/G) ratio can characterize the ductile and brittle behavior of solid materials. 1.75 is usually used to determine whether a material is ductile or brittle. We can see from Table 2 that the B/G value increases with the increase of pressure, indicating that pressurization can improve the ductility of quaternary carbide Ti3NiAl2C ceramics. At the same time, we can also see that the B/G values are all lower than 1.75 when the pressure is below 40 GPa, indicating that quaternary carbide Ti3NiAl2C ceramics has a brittle phase. However, the brittle phase of the cubic Ti3NiAl2C compound changes from brittle to ductile when the pressure reaches 40 GPa. This excellent performance is not available in Mn+1AXnphases, such as Ti2AlC,[70]Ti3AlC2,[70,71]and Ti3SiC2[71]compounds at different pressures, which fully reflects the advanced nature of quaternary carbide Ti3NiAl2C ceramics. Poisson’s ratio is generally used to evaluate the plasticity of solid materials.The quality of plasticity is proportional to Poisson’s ratio.[72]Obviously, pressurization can improve the plasticity of quaternary carbide Ti3NiAl2C ceramics.

    According to the characteristic parameter of Cauchy pressure, it can be determined whether the material has metallic or covalent bond behavior. The positive/negative values of Cauchy pressure indicate that the material has metallic/covalent bond behavior, respectively, as well as ductility/brittleness.[28,73]As shown in Table 2,we can see that Cauchy pressure increases with the pressure, indicating that pressurization can improve the metallic bond behavior of quaternary carbide Ti3NiAl2C ceramics.At the same time,we can also see that quaternary carbide Ti3NiAl2C ceramics changes from covalent bond to metallic bond at pressure to 20 GPa.Eventually,metallic bonds dominate in the quaternary carbide Ti3NiAl2C ceramics.

    The material’s anisotropy is quantitatively characterized by the anisotropy factor (A). The values of A generally have three types: A >1,A <1,and A=1. A >1 or A <1 indicates that the material has anisotropy, and the greater the deviation from 1, the more severe the anisotropy, and A=1 indicates that the material is isotropic. We can see from Table 2 that the A values increase with the pressure, which indicates that pressurization may aggravate the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics.

    3.4. Electronic properties

    To further understand the bonding characteristics of quaternary carbide Ti3NiAl2C ceramics at different pressures and investigate the mechanical properties and structural stability mechanisms,the total density of states(TDOS)of quaternary carbide Ti3NiAl2C ceramics at different pressures (0 GPa,50 GPa, 80 GPa, 110 GPa) is plotted in Fig.7. We can see from Fig.7(a) that the TDOS at the Fermi level has no gap,indicating that quaternary carbide Ti3NiAl2C ceramics at different pressures exhibits metallic characteristics. We can also see from Fig.7(a)that the shape of the TDOS curve changed slightly,which indicates that the structures of quaternary carbide Ti3NiAl2C ceramics at different pressures did not change drastically,nor did the structural phase change.

    However,as the pressure increases,the TDOS of quaternary carbide Ti3NiAl2C ceramics shows a downward trend,which indicates a decreased inter-atomic hybridization energy and weaker inter-atomic hybridization. At the same time, we found that the distance between the valence band and conduction band of the TDOS widens with the pressure, indicating that the delocalization of quaternary carbide Ti3NiAl2C ceramics is enhanced.

    In general, the TDOS value at the Fermi level (Df) can indirectly reflect the hardness of the intermetallic,because the hardness is inversely proportional to Df.[74,75]As shown in Fig.7(b), The Dfvalue of quaternary carbide Ti3NiAl2C ceramics at the Fermi level decreases with the increasing pressure,which indicates that the hardness increases with the pressure. It is consistent with the trend of elastic constants in Table 2.

    Fig.7. The total density of states of quaternary carbide Ti3NiAl2C ceramics at different pressures(0 GPa,50 GPa,80 GPa,110 GPa).The energy is with respect to the Fermi level.

    Table 3. Mass density (ρ, in g·cm?3), Debye temperatures (ΘD, in K), average wave velocity (vm), longitudinal sound velocity (vl), shear sound velocity(vs),melting point(Tm,in K),and hardness(H,in GPa)of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    3.5. Debye temperature,melting point,and hardness

    Debye temperature(ΘD)comes from the atomic thermal vibration theory of solids, which corresponds to the highest frequency of lattice vibration.ΘDis often used to describe the interatomic bond strength of solid materials.[35,76,77]It is related to many physical quantities of solids, such as hardness,melting point, elasticity, and specific heat. In general, high Debye temperature indicates that solids have high modulus,high melting points and high hardness,and vice versa.

    As shown in Table 3, we can see that the ΘDvalues increase with the increase of pressure,indicating that pressurization can enhance the Debye temperature of quaternary carbide Ti3NiAl2C ceramics. It also indicates that pressurization can increase the strength of the interatomic bonding force.

    Melting point (Tm) and hardness (H) are also two critical characteristic parameters of solids. At the same time,H is usually used as an important index to evaluate the wear properties of solids.[78]Herein, it is necessary to investigate the two parameters. Based on the elastic constant C11,shear modulus G,and bulk modulus B,the melting point[79]and Vickers hardness[80]formulas are as follows:

    As shown in Table 3, the melting point and hardness increase with the increase of pressure,indicating that pressurization can enhance the melting point and hardness of quaternary carbide Ti3NiAl2C ceramics. In addition, the elastic strain failure(H/E)[19]and the plastic strain failure(H3/E2)[19]are usually used to evaluate the wear and resistance to plastic deformation of solids, respectively. It can be seen from Table 3 that the H/E and H3/E2values decrease with the increasing pressure,which indicates that the wear and resistance to plastic deformation of quaternary carbide Ti3NiAl2C ceramics may be weakened under pressure.

    4. Summary and conclusion

    In this paper,we investigate the structural,electronic,mechanical properties,and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure according to the first-principles method.The quaternary carbide Ti3NiAl2C ceramics still has a cubic structure under pressure(0-110 GPa).At zero pressure,there are only three kinds of covalent bonds in Ti3NiAl2C:Ti-Al,Ni-Al,and Ti-C.However,at the pressures of 20 GPa, 30 GPa, 40 GPa, 60 GPa, and 70 GPa, new Ti-Ni, Ti-Ti, Al-Al, Ti-Al, and Ti-Ti bonds are formed, respectively. The results show that pressurization may result in the bond diversity of quaternary carbide Ti3NiAl2C ceramics. When the pressure reaches 20 GPa, the covalent bonds turn into metallic bonds. The volume of quaternary carbide Ti3NiAl2C ceramics can be reduced to 72% of the original volume. The effect of pressure on the charge transfer of Ni and Al atoms in quaternary carbide Ti3NiAl2C ceramics is greater than that of C and Ti atoms. The mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics can be improved by pressure treatment. At 50-60 GPa, its mechanical strength is comparable to that of pure tungsten, and the material changes from brittleness to ductility. However,the anisotropy of quaternary carbide Ti3NiAl2C ceramics becomes more serious with the increasing pressure. In addition,pressurization can also improve the Debye temperature,melting point, and hardness of quaternary carbide Ti3NiAl2C ceramics,but the wear resistance is decreased.

    猜你喜歡
    文波
    一群“蟑螂”
    蛙聲
    揚子江(2022年3期)2022-05-07 01:00:01
    武術(shù)研究是什么
    GROUND STATES FOR FRACTIONAL SCHR¨ODINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL GROWTH?
    世界上榮譽的桂冠都是用荊棘編制而成
    中國商人(2019年11期)2019-12-10 05:58:15
    基于組合特征的航母目標識別方法
    Numerical analysis of shell-side flow-induced vibration of elastic tube bundle in heat exchanger *
    Numerical investigation of flow and heat transfer performances of horizontal spiral-coil pipes*
    陳文波作品
    中國篆刻(2016年3期)2016-09-26 12:19:32
    歡歡的游樂場
    欧美性感艳星| .国产精品久久| 你懂的网址亚洲精品在线观看| 亚洲自拍偷在线| 亚洲18禁久久av| 国产一区亚洲一区在线观看| 午夜福利成人在线免费观看| 成人av在线播放网站| 久久精品综合一区二区三区| 日韩强制内射视频| 一级片'在线观看视频| 中国国产av一级| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 日本熟妇午夜| 久久久久精品久久久久真实原创| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 少妇的逼水好多| 欧美三级亚洲精品| 亚洲国产欧美在线一区| 能在线免费观看的黄片| 免费人成在线观看视频色| 国产午夜福利久久久久久| 色吧在线观看| 国产精品熟女久久久久浪| 又爽又黄a免费视频| 久久久久久久久久久免费av| 婷婷六月久久综合丁香| 亚洲综合精品二区| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 2018国产大陆天天弄谢| 午夜激情欧美在线| 亚洲,欧美,日韩| 免费看a级黄色片| 色综合站精品国产| 欧美3d第一页| 久久鲁丝午夜福利片| 亚洲熟女精品中文字幕| 亚洲国产精品成人综合色| 亚洲精品中文字幕在线视频 | 全区人妻精品视频| 国产成人91sexporn| 国产黄片视频在线免费观看| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99 | 国产视频内射| 少妇熟女aⅴ在线视频| 日本色播在线视频| 观看美女的网站| 国产精品一二三区在线看| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 久久97久久精品| 国产v大片淫在线免费观看| 日本熟妇午夜| 我的女老师完整版在线观看| 国产精品一区www在线观看| 亚洲三级黄色毛片| 蜜臀久久99精品久久宅男| 嫩草影院精品99| 国产美女午夜福利| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| 久久韩国三级中文字幕| 丝袜喷水一区| 日韩av不卡免费在线播放| 97在线视频观看| 亚洲精品第二区| 欧美高清成人免费视频www| 免费看a级黄色片| 精品亚洲乱码少妇综合久久| 精品久久久久久久人妻蜜臀av| 日韩国内少妇激情av| 国产免费一级a男人的天堂| 亚洲成人精品中文字幕电影| 国产精品国产三级国产av玫瑰| 听说在线观看完整版免费高清| 亚洲欧美清纯卡通| 亚洲国产成人一精品久久久| av专区在线播放| 国产精品1区2区在线观看.| 精品人妻偷拍中文字幕| 精品久久久久久电影网| 搡老乐熟女国产| 久久久久九九精品影院| 国产一级毛片在线| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 久久久久网色| 尾随美女入室| 久久精品夜夜夜夜夜久久蜜豆| av卡一久久| 日日啪夜夜爽| 国产乱人视频| 欧美性感艳星| 精品99又大又爽又粗少妇毛片| 看十八女毛片水多多多| 午夜激情久久久久久久| 色视频www国产| 搞女人的毛片| 亚洲国产av新网站| 成人性生交大片免费视频hd| 免费看光身美女| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 久久99蜜桃精品久久| 一夜夜www| 丝瓜视频免费看黄片| 国产av码专区亚洲av| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 少妇的逼水好多| 国产成人freesex在线| 欧美丝袜亚洲另类| 久久精品久久久久久久性| 蜜桃久久精品国产亚洲av| 精品亚洲乱码少妇综合久久| 97超碰精品成人国产| 日韩成人伦理影院| 国产精品.久久久| 亚洲av国产av综合av卡| 久久久久久久久大av| 亚洲熟妇中文字幕五十中出| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 国产色婷婷99| 亚洲av二区三区四区| 国产男女超爽视频在线观看| 欧美 日韩 精品 国产| 国产视频内射| 十八禁国产超污无遮挡网站| 伦理电影大哥的女人| 午夜福利在线观看免费完整高清在| 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 精品欧美国产一区二区三| 女人被狂操c到高潮| 免费观看精品视频网站| 你懂的网址亚洲精品在线观看| 神马国产精品三级电影在线观看| 男女国产视频网站| 亚洲综合精品二区| 建设人人有责人人尽责人人享有的 | 狂野欧美激情性xxxx在线观看| 一区二区三区乱码不卡18| 高清在线视频一区二区三区| 免费人成在线观看视频色| 十八禁网站网址无遮挡 | 我的女老师完整版在线观看| 一本久久精品| 久久久久精品性色| 内地一区二区视频在线| 国产毛片a区久久久久| 日本黄大片高清| av免费观看日本| 一级a做视频免费观看| 麻豆国产97在线/欧美| 欧美日韩国产mv在线观看视频 | xxx大片免费视频| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| av在线老鸭窝| 国产成人freesex在线| 夜夜看夜夜爽夜夜摸| 成人国产麻豆网| 亚洲欧洲日产国产| 亚洲欧美清纯卡通| 免费黄网站久久成人精品| 国产又色又爽无遮挡免| 三级男女做爰猛烈吃奶摸视频| 婷婷色综合大香蕉| 亚洲熟妇中文字幕五十中出| 最后的刺客免费高清国语| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 男的添女的下面高潮视频| 亚洲av男天堂| 美女内射精品一级片tv| 成年免费大片在线观看| kizo精华| 国产精品一区二区性色av| 国产av在哪里看| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 国产成人a区在线观看| 国产探花极品一区二区| 久久精品人妻少妇| 亚洲综合色惰| 日韩成人av中文字幕在线观看| 精品人妻熟女av久视频| av黄色大香蕉| 我的老师免费观看完整版| 日日撸夜夜添| 搡老乐熟女国产| 亚洲人与动物交配视频| 午夜精品一区二区三区免费看| av福利片在线观看| 精品久久久久久久久亚洲| 免费看美女性在线毛片视频| 久久精品夜色国产| 黄色欧美视频在线观看| 色网站视频免费| 我的女老师完整版在线观看| 最近手机中文字幕大全| 极品教师在线视频| 国产欧美日韩精品一区二区| av福利片在线观看| 亚洲av国产av综合av卡| 国产成人福利小说| 国产精品嫩草影院av在线观看| 精品久久久噜噜| 日韩人妻高清精品专区| 有码 亚洲区| 国产亚洲av嫩草精品影院| av黄色大香蕉| 少妇熟女aⅴ在线视频| 亚洲精品亚洲一区二区| 亚洲精品色激情综合| 天美传媒精品一区二区| 亚洲精品成人av观看孕妇| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 亚洲熟女精品中文字幕| 久久久精品94久久精品| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 久久精品国产亚洲av涩爱| 亚洲成人精品中文字幕电影| 超碰av人人做人人爽久久| 男人爽女人下面视频在线观看| 亚洲天堂国产精品一区在线| av.在线天堂| 亚洲欧洲国产日韩| 最近手机中文字幕大全| 国产在线一区二区三区精| 国产精品.久久久| 国产欧美另类精品又又久久亚洲欧美| 国精品久久久久久国模美| 成人亚洲精品av一区二区| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 久久韩国三级中文字幕| 真实男女啪啪啪动态图| 99久久九九国产精品国产免费| 又大又黄又爽视频免费| 免费大片18禁| 麻豆av噜噜一区二区三区| 欧美潮喷喷水| 亚洲色图av天堂| 日韩不卡一区二区三区视频在线| 日韩成人av中文字幕在线观看| 国产片特级美女逼逼视频| 色尼玛亚洲综合影院| 看十八女毛片水多多多| 欧美日韩精品成人综合77777| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 男人舔女人下体高潮全视频| 天美传媒精品一区二区| 三级国产精品片| 成人欧美大片| 永久免费av网站大全| 国产精品久久久久久精品电影| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 国产成人精品久久久久久| 午夜激情久久久久久久| 午夜激情福利司机影院| 精品久久久久久久人妻蜜臀av| 两个人的视频大全免费| av又黄又爽大尺度在线免费看| 久久午夜福利片| 国产乱人偷精品视频| 成年女人看的毛片在线观看| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 肉色欧美久久久久久久蜜桃 | 人人妻人人澡欧美一区二区| 亚洲最大成人av| 色视频www国产| 九草在线视频观看| av免费观看日本| 欧美性猛交╳xxx乱大交人| 好男人在线观看高清免费视频| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 成人特级av手机在线观看| 国产淫片久久久久久久久| 国产欧美日韩精品一区二区| 久久精品人妻少妇| 中国国产av一级| 国产中年淑女户外野战色| 特级一级黄色大片| 亚洲av免费在线观看| 国产麻豆成人av免费视频| 久久久精品免费免费高清| 亚洲乱码一区二区免费版| 欧美激情在线99| 国产欧美日韩精品一区二区| 国产高潮美女av| 少妇的逼好多水| 国产精品国产三级国产专区5o| a级一级毛片免费在线观看| 亚洲精品视频女| 亚洲av一区综合| 中文字幕制服av| 国产老妇女一区| 床上黄色一级片| 天堂俺去俺来也www色官网 | 91久久精品国产一区二区成人| 亚洲,欧美,日韩| 亚洲av电影不卡..在线观看| 女人久久www免费人成看片| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 十八禁网站网址无遮挡 | 精品欧美国产一区二区三| 欧美+日韩+精品| 亚洲av.av天堂| 国产中年淑女户外野战色| 色综合色国产| 美女国产视频在线观看| 在现免费观看毛片| 久久久久久久久久成人| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 高清午夜精品一区二区三区| 亚洲国产欧美人成| 99热这里只有精品一区| 欧美日韩国产mv在线观看视频 | 99视频精品全部免费 在线| 国产精品日韩av在线免费观看| 欧美97在线视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲天堂国产精品一区在线| 亚洲精品乱久久久久久| 午夜精品一区二区三区免费看| 美女黄网站色视频| 成人美女网站在线观看视频| 又粗又硬又长又爽又黄的视频| 国产大屁股一区二区在线视频| 国产精品久久久久久精品电影| 欧美成人午夜免费资源| 精品一区二区免费观看| 最近最新中文字幕大全电影3| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 久久精品国产自在天天线| 久久久久久久大尺度免费视频| 精品人妻视频免费看| 日本黄色片子视频| 亚洲精品成人久久久久久| 国产精品久久久久久久久免| 日韩精品有码人妻一区| av黄色大香蕉| 777米奇影视久久| 日韩视频在线欧美| 国产一区二区亚洲精品在线观看| 午夜免费男女啪啪视频观看| 偷拍熟女少妇极品色| 国产午夜精品论理片| 欧美性感艳星| 免费大片黄手机在线观看| 日本爱情动作片www.在线观看| 日韩国内少妇激情av| 69人妻影院| 九草在线视频观看| 国模一区二区三区四区视频| 国产午夜福利久久久久久| 亚洲最大成人手机在线| 国内少妇人妻偷人精品xxx网站| 午夜爱爱视频在线播放| 日韩av在线免费看完整版不卡| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 亚洲精品成人av观看孕妇| 国产av在哪里看| 国产69精品久久久久777片| 国产精品无大码| 极品教师在线视频| 久久久成人免费电影| 精品人妻一区二区三区麻豆| 亚洲av福利一区| 青春草视频在线免费观看| 有码 亚洲区| 小蜜桃在线观看免费完整版高清| 久久综合国产亚洲精品| 国产毛片a区久久久久| 国产精品久久久久久av不卡| 在线天堂最新版资源| 亚洲四区av| 1000部很黄的大片| 亚洲精品第二区| 国产精品福利在线免费观看| 欧美日韩亚洲高清精品| 亚洲综合色惰| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| 中文字幕av在线有码专区| 嫩草影院精品99| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 国产亚洲精品久久久com| 边亲边吃奶的免费视频| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 精品久久久久久成人av| 免费不卡的大黄色大毛片视频在线观看 | 男女边摸边吃奶| 青春草国产在线视频| 久久国产乱子免费精品| 日日啪夜夜爽| 九色成人免费人妻av| kizo精华| 日韩av在线大香蕉| 亚洲第一区二区三区不卡| 午夜爱爱视频在线播放| 亚洲欧美日韩无卡精品| 别揉我奶头 嗯啊视频| 久久久久久久久久黄片| 看黄色毛片网站| 在线观看美女被高潮喷水网站| 国产成人精品福利久久| 禁无遮挡网站| 男女边摸边吃奶| 亚洲精品中文字幕在线视频 | 久热久热在线精品观看| 99热网站在线观看| 美女被艹到高潮喷水动态| 亚洲最大成人av| 亚洲欧美日韩东京热| videossex国产| 两个人的视频大全免费| 亚洲一区高清亚洲精品| www.色视频.com| 成人综合一区亚洲| 久久综合国产亚洲精品| 老司机影院毛片| 精品欧美国产一区二区三| 亚洲av国产av综合av卡| 国产91av在线免费观看| 国产一区亚洲一区在线观看| kizo精华| 性插视频无遮挡在线免费观看| 欧美三级亚洲精品| 久久精品国产亚洲网站| 搡女人真爽免费视频火全软件| 国产一区有黄有色的免费视频 | 女人十人毛片免费观看3o分钟| 一个人看的www免费观看视频| 大香蕉97超碰在线| 日韩精品青青久久久久久| 91精品国产九色| 国产成人免费观看mmmm| 亚洲人成网站在线观看播放| 18禁在线播放成人免费| 色网站视频免费| 人妻少妇偷人精品九色| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 国产精品爽爽va在线观看网站| 黄色配什么色好看| 好男人在线观看高清免费视频| 国产亚洲5aaaaa淫片| 久久久久久久国产电影| 亚洲av成人av| 国产探花极品一区二区| 禁无遮挡网站| 亚洲精品,欧美精品| 高清毛片免费看| 国产亚洲91精品色在线| 99re6热这里在线精品视频| videossex国产| 22中文网久久字幕| 欧美 日韩 精品 国产| 99久久中文字幕三级久久日本| 国产在线男女| 日日摸夜夜添夜夜爱| 免费观看在线日韩| 美女高潮的动态| 美女国产视频在线观看| 国产又色又爽无遮挡免| 大片免费播放器 马上看| 国产高潮美女av| 91精品国产九色| 97超视频在线观看视频| 国产精品不卡视频一区二区| 午夜福利在线观看吧| 免费观看av网站的网址| 日韩欧美精品免费久久| 成年版毛片免费区| 日日干狠狠操夜夜爽| 内射极品少妇av片p| 久久久精品欧美日韩精品| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 国产成人精品一,二区| 亚洲18禁久久av| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 中文在线观看免费www的网站| 一级毛片 在线播放| 中文在线观看免费www的网站| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 国产精品久久久久久精品电影| 乱码一卡2卡4卡精品| 国产成人91sexporn| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 国产成人a区在线观看| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久 | 免费大片黄手机在线观看| 在线观看美女被高潮喷水网站| 搞女人的毛片| 一二三四中文在线观看免费高清| 成人亚洲精品一区在线观看 | 熟女电影av网| 男人和女人高潮做爰伦理| 亚洲第一区二区三区不卡| 老司机影院成人| 国产女主播在线喷水免费视频网站 | 亚洲丝袜综合中文字幕| 中国国产av一级| 99视频精品全部免费 在线| 人妻系列 视频| 色吧在线观看| 搞女人的毛片| 国产淫片久久久久久久久| 欧美bdsm另类| 亚洲av中文字字幕乱码综合| 久久午夜福利片| 汤姆久久久久久久影院中文字幕 | av免费观看日本| 中文字幕久久专区| 久久久精品欧美日韩精品| 亚洲最大成人中文| 久久午夜福利片| av福利片在线观看| 在线观看一区二区三区| 国产久久久一区二区三区| 美女黄网站色视频| 亚洲美女搞黄在线观看| 国产亚洲91精品色在线| 色5月婷婷丁香| 少妇猛男粗大的猛烈进出视频 | 精品熟女少妇av免费看| 少妇熟女欧美另类| 欧美bdsm另类| 老女人水多毛片| 亚州av有码| 日韩欧美一区视频在线观看 | 欧美一级a爱片免费观看看| 国产精品精品国产色婷婷| 久久久久国产网址| 六月丁香七月| 日本黄大片高清| 国产精品国产三级国产专区5o| 热99在线观看视频| 久久久久久久亚洲中文字幕| 久久综合国产亚洲精品| 黄色日韩在线| 亚洲精品日本国产第一区| 蜜臀久久99精品久久宅男| 99热这里只有精品一区| 2018国产大陆天天弄谢| 日韩国内少妇激情av| 日本一二三区视频观看| 只有这里有精品99| 亚洲精品乱码久久久v下载方式| 久久久久久久久久黄片| 国产伦精品一区二区三区四那| 日日干狠狠操夜夜爽| 亚洲丝袜综合中文字幕| 91在线精品国自产拍蜜月| 一级毛片黄色毛片免费观看视频| 水蜜桃什么品种好| 国产不卡一卡二| 国产色爽女视频免费观看| 最近视频中文字幕2019在线8| 国产探花极品一区二区| 国产在视频线精品| 亚洲精品视频女| 国产精品蜜桃在线观看| 亚州av有码| 免费av观看视频| 一二三四中文在线观看免费高清| 亚洲第一区二区三区不卡| 亚洲成人久久爱视频| eeuss影院久久| 啦啦啦韩国在线观看视频| 在线观看美女被高潮喷水网站| 人人妻人人澡人人爽人人夜夜 | 日日摸夜夜添夜夜添av毛片| 色播亚洲综合网| 精品人妻偷拍中文字幕| 精品99又大又爽又粗少妇毛片| 777米奇影视久久| 伊人久久精品亚洲午夜| 一本一本综合久久| 国产 一区精品| 亚洲人成网站高清观看|