• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model predictive inverse method for recovering boundary conditions of two-dimensional ablation?

    2021-03-19 03:19:38GuangJunWang王廣軍ZeHongChen陳澤弘GuangXiangZhang章廣祥andHongChen陳紅
    Chinese Physics B 2021年3期
    關(guān)鍵詞:陳紅

    Guang-Jun Wang(王廣軍), Ze-Hong Chen(陳澤弘), Guang-Xiang Zhang(章廣祥), and Hong Chen(陳紅),?

    1School of Energy and Power Engineering,Chongqing University,Chongqing 400044,China

    2Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education,Chongqing University,Chongqing 400044,China

    Keywords: ablation,heat transfer,model predictive inverse method(MPIM),boundary reconstruction

    1. Introduction

    Measurement of time- and space-dependent heat flux is widely carried out in numerous engineering applications,such as aerospace industry,[1-4]metallurgy industry,[5,6]combustion diagnosis,[7,8]and biomedical engineering.[9,10]Direct measurement of transient heat flux is often difficult in many industry fields,such as the heat flux on thermal protection shield surface of the re-entry vehicle,and the cooling heat flux on the casting surface that determines the casting quality of continuous casting process. For these circumstances, with the idea of inverse analysis,the time-and space-dependent heat flux is able to be indirectly obtained by solving inverse heat transfer problems(IHTPs).

    The core of the above indirect measurement is to solve an inverse problem which is commonly ill-posed.[11-15]Thus, various optimization methods with anti-ill-posedness are developed. Heuristic algorithms[7,16-19]and gradient algorithms,[20-22]as the typical inverse methods, are widely used to solve the inverse problems. For the IHTPs,Vakili and Gadala[23]used particle swarm optimization(PSO)algorithm to estimate the boundary conditions with different dimensions.Sun et al.[24]introduced sequential quadratic programming(SQP) algorithm to retrieve the transient heat flux of participating media. Tapaswini et al.[25]used a variational iteration method(VIM)to reconstruct the boundary heat flux. Sun et al.[26]employed the decentralized fuzzy inference method(DFIM)to estimate the time-and space-dependent heat flux of two-dimensional(2D)participating medium.

    The above researches all focused on estimating the transient heat flux of the systems with fixed boundary. For the IHTPs with the ablation of the thermal protection shield of reentry vehicle, the transient heat flux on the ablated surface is more difficult to reconstruct. The reason is that the boundary of the system will move due to the phase change on the ablation material surface. Several researches have been achieved in the ablation inverse problems. de Oliveira et al.[27]used the conjugate gradient method (CGM) to recover the functional form of the heat flux on the ablated surface of one-dimensional(1D)slab. Molavi et al.[28]developed one CGM with the first order Tikhonov regularization to estimate the surface recession and the time-varying net heat flux on the ablated surface of 1D slab. In the above researches,the conjugate gradient algorithms were used to simultaneously estimate the unknown heat flux on the whole-time domain with the temperature measurements. Therefore, the estimation result could not be obtained in real time. In order to estimate the heat flux online,Mohammadiun et al.[29]and Farzan et al.[30]used the sequential function specification method (SFSM) to sequentially reconstruct the surface heat flux of 1D ablation in time domain.Although the SFSM is able to solve the inverse problem in real time, the accuracy of the solution obtained by the SFSM significantly depends on the number of future time steps. In addition,it is necessary that the specific function of unknown parameter over a period of future time should be assumed in advance.[14]

    Most of previous studies described the ablation process as 1D problem. However, the surface heat flux of the ablation material has obvious unevenness in space, and the ablation velocity obviously presents spatial difference.[31]Therefore, the ablation process is multi-dimensional, in which the surface heat flux is time-and space-dependent and the temperature field is more complex. Considering the characteristics,for the ablation process, multi-dimensional ablation inverse method should be established. Moreover, developing a more efficient method is an urgent requirement for addressing the sort of IHTP.

    Based on the dynamic matrix control (DMC), an inverse method for the unsteady heat conduction problem was established.[32-34]This inverse method can effectively reduce the sensitivity of the estimation result to the temperature measurement errors and the dependence of the accuracy on the number of future time steps.

    In this paper,a model predictive inverse method(MPIM)is presented to estimate the time- and space-dependent heat flux and the ablation velocity on the ablated boundary of a 2D ablation process. In Section 2, a heat transfer model of the 2D ablation process is described and one numerical simulation technique for the ablation process is introduced. In Section 3, the inverse problem of the 2D ablation process is established and the corresponding MPIM is introduced in detail. In Section 4, the transient heat flux distribution on the ablated boundary is estimated. In addition,the effects of temperature measurement errors,the number of future time steps and arrangement of measurement points on the reconstruction results are studied in this section. In Section 5,the main conclusions are drawn.

    2. Ablation model and numerical method

    2.1. Ablation model

    For a 2D ablation system shown in Fig.1, the ablation material is heated by the time-and space-dependent heat flux on a boundary.In the figure,q(x,t)is the total heat flux,which brings about the complex thermal action on the heated boundary. The thermal action contains the conduction heat,radiative heat transfer, the heat fluxes generated by complex physical and chemical processes, etc.[35,36]Complete ablation process goes through a heat conduction stage and an ablation stage.At the beginning,the temperature of the heated boundary does not reach the phase transition temperature TABof the ablation material,so that the total heat flux q(x,t)exerted on the boundary only enters into the interior of the material through heat conduction. As the heating continues, temperatures of some locations on the heated boundary reach TAB,which causes the boundary recession.During the ablation stage,part of q(x,t)is converted into the heat flux of material vaporization qdthat is dissipated into the environment and the remaining heat flux qcenters into the interior of the material through heat conduction.

    For studying the ablation heat transfer process, the following simplifications are considered, as suggested in Ref. [37]: (i) during the ablation stage, the ablation material gasifies directly without going through the liquefaction process; (ii) the heat absorbed by the complex physicochemical reactions on the ablated boundary is equivalent to the latent heat HABin the ablation stage;(iii)the temperature of the ablated boundary maintains the phase transition temperature TABof the material in the ablation stage.

    Fig.1. 2D ablation heat transfer system.

    The transient temperature field T(x,y,t) of the ablation material is described by the following equation:

    with the initial condition

    and boundary conditions

    Energy balance equation of the ablated boundary is where a,λ,and ρ are respectively the thermal diffusivity,the thermal conductivity,and the density of the ablation material;T0(x,y)is the initial temperature field; Lxand Ly0are respectively the width and the initial thickness of the material;v(x,t)is the ablation velocity; TABand HABare the phase transition temperature and the latent heat of vaporization of the ablation material,respectively.

    2.2. Numerical method of ablation heat transfer

    In the numerical simulation process,the heat transfer region is discretized by the quadrilateral mesh.The discrete heat transfer region at the initial moment is shown in Fig.2. The solution domain and mesh division need to be adjusted continuously because the ablated boundary Γ1constantly moves in the ablation process.

    Fig.2. Initial mesh of material.

    For the mesh division of the solution domain, the temperature governing equations are divided by the finite element method.In the whole solution domain,the discrete form of the above governing equations is composed of the discrete equations of all finite elements.For each element e,the matrix form of the discrete equation is as follows:

    where {Te} is the temperature vector of element; [Ke] is the thermal conductivity matrix of element; [Ce] is the specific heat matrix of element; {Pe} is the heat flux vector of the element. The above compositions of the e-th discrete equation will vary with the geometry of element.

    In this paper, the locations of the mesh nodes are online adjusted by the spring analogy method (SAM)[38,39]which can ensure that the topology (number of cells and number of nodes)of the mesh division does not change.

    According to the equivalent spring system shown in Fig.3, the static balance is described by the following governing equation:

    Fig.3. Spring analogy of variable mesh.

    (i) When the i-th node is on the boundary Γ4, the node position is fixed by

    (iv)The instantaneous position vectors of the internal grid nodes after deformation are iteratively calculated by the following equation:

    with(i=1,2,...,G).In Eqs.(12)and(13), p(p=0,1,2,...)is the number of iterations; I is the number of the nodes on the boundary Γ2and Γ3;G is the number of the internal mesh nodes.

    Fig.4. Algorithm flowchart of ablation process simulation.

    The numerical simulation of the ablation process is realized by solving the algebraic equations of the heat transfer(i.e.Eq. (8)) and the node position equations (i.e. Eqs. (10)-(13))simultaneously. The above algebraic equations are nonlinear due to the coupling relationship between the heat transfer process and the variable solution domain. When simulating the ablation process,in order to conveniently obtain the solution,the adjustment of the solution domain lags behind the heat transfer process. Setting the number of simulation time steps to be P, the flowchart for numerical simulation procedure of the ablation process is drawn in Fig.4.

    2.3. Validation

    In order to validate the model and the numerical method,a numerical experiment is carried out. According to Ref.[36],for the system with the width Lx=50 mm and the initial thickness Ly0= 5 mm, thermophysical properties are described by the thermal conductivity λ = 0.2 W/(m·K), the density ρ=2000 kg/m3,the specific heat capacity cp=1000 J/(kg·K),the ablation temperature TAB= 800 K, and the latent heat HAB=2 MJ/kg. Besides, the initial temperature distribution and the total heat flux are respectively T0(x,y)=300 K and q(x,t)=2 MW/m2. The ablation velocity of the simulation is compared with the value of Ref.[36]as shown in Fig.5.

    It can be seen that although at the beginning the difference between the two sets of data is larger,with time going by,the simulation result is gradually close to the value of Ref. [36].It is worth noting that the difference at the beginning is due to the switch from conduction simulation to ablation simulation.On a whole,the simulation result is similar to the result in the literature. Therefore,the model and the numerical method are both effective.

    Fig.5. Comparison of ablation velocity between simulation and value of Ref.[36].

    3. MPIM for estimating ablated boundary heat flux

    In the present study, the two-dimensional ablation inverse problem is solved based on the model predictive control theory.[40]

    3.1. Objective function

    The estimation of the transient heat flux distribution on the ablated boundary can be summarized as a predictive control problem, for which the objective function is established as Eq.(14)to optimize the unknown heat flux matrix Q. For Eq. (14), the first term on the right-hand side describes the relationship between the unknown heat flux matrix and the known measured temperatures,i.e.,the formulation of the 2D ablation inverse problem. Furthermore, considering the illposeness of the 2D ablation inverse problem,the second term is added to improve the stability of the estimation solution.

    In Eq.(14):

    Y =[Yk, Yk+1, ..., Yk+R?1]T

    3.2. Predictive model

    In Eq.(15),

    The matrix equation corresponding to Eq. (15) is shown as the following equation:

    where

    3.3. Rolling optimization of boundary heat flux and ablated boundary reconstruction

    According to Eqs. (14)and(18), the heat flux of the ablated boundary is online estimated by rolling optimization.Then, the estimation value of the heat flux on the ablated boundary is utilized to reconstruct the ablated boundary.

    After substituting Eq. (18) into Eq. (14) and ordering dJ(Q)/dQ=0, the optimal heat flux matrix Q in the time domain[tk,tk+R?1]can be obtained to be

    where

    According to the estimation result of qk, the ablation model Eqs.(1)-(6)and energy balance equation of the ablated boundary are used to obtain the ablation velocity v(x,tk). And, the ablated boundary shape can be reconstructed based on v(x,tk).

    4. Numerical experiments and discussion

    4.1. Conditions of numerical experiments

    Reference[42]shows that the width and the initial thickness of the ablation material are Lx=4 cm and Ly0=2 cm,respectively. The thermal conductivity of the material is taken as λ = 5 W/(m·K), density ρ = 1000 kg/m3, heat capacity cp=1200 J/(kg·K),phase transition temperature TAB=833 K,and latent heat of vaporization HAB=2.326×106J/kg.

    Taking M = N = 9, the M temperature measurement points are evenly arranged along the x direction inside the material(y=1.0 cm)and the N estimation points are uniformly set to be on the boundary Γ1.

    The transient heat flux distribution loaded to the ablated boundary is assumed as follows:

    where ω is the random number obeying the standard normal distribution in the interval [?2.576, 2.576], and σ denotes the standard deviation of the temperature measurement errors.

    4.2. Grid independence verification

    The time step size is to take Δt =1 s. Different mesh divisions with uniform rectangular unit are chosen to discretize the initial heat transfer domain. When t=75 s,the simulation results of the temperature distribution with different mesh divisions at y=1.0 cm are shown in Fig.6. When the numbers of units are respectively chosen to be 40×40, 60×60, and 80×80,the temperature distributions are similar. Thus,in the subsequent numerical experiment the number of units is taken to be 40×40.

    Fig.6. Temperature distribution at y=1.0 cm with different mesh divisions at t=75 s.

    The number of uniform rectangular units is taken to be 40×40. The time step sizes are respectively chosen to be Δt =0.5 s, 1.0 s, 2.0 s, and 5.0 s to simulate the temperature evolution with time. The simulation results of time-evolution of temperature with different time step sizes at a measurement point(x=4.0 cm,y=1.0 cm)are shown in Fig.7. According to Fig.7,the time step size is taken to be Δt=1.0 s.

    Fig.7. Temperature evolution with time at measurement point(x=4.0 cm,y=1.0 cm)with different time step sizes.

    4.3. Estimation and reconstruction results

    The number of future time steps is R=8,the standard deviation of temperature measurement errors is σ =0.0 K.Figures 8(a) and 8(b) respectively show the exact heat flux and the estimation result obtained by the MPIM.

    Fig.9. (a)The exact value and(b)the reconstruction value of v(x,t).

    The exact ablation velocity v(x,t)and the reconstruction result of the ablation velocity v(x,t)are shown in Fig.9.

    As shown in Figs. 10 and 11, the estimation results of the boundary heat flux and the reconstruction results of the ablation velocity at x=0 cm and x=4.0 cm are respectively compared with the exact values at the corresponding locations.

    Fig.10. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=0 cm.

    Fig.11. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=4.0 cm.

    Figure 12 shows the reconstruction results of the ablated boundary shape and the temperature field of the material at different moments.

    Fig.12.Reconstruction results of transient ablated boundary shape and temperature field.

    4.4. Effect of measurement errors

    Fig.13. Estimation results of boundary heat flux q(x,t)with σ =0.1 K(a)and σ =1.0 K(b).

    Fig.14. Reconstruction results of ablation velocity v(x,t) with σ =0.1 K(a)and σ =1.0 K(b).

    The number of future time steps is R = 8. The standard deviation of temperature measurement errors is respectively chosen to be σ =0 K, σ =0.1 K, and σ =1.0 K to investigate the effect of the measurement errors on the result.The estimation results of the boundary heat flux q(x,t) and the reconstruction results of the ablation velocity v(x,t) are shown in Figs.13 and 14,respectively. In addition,the results at x=0 cm and x=4.0 cm are shown in Figs.15 and 16 respectively. The reconstruction results of the ablated boundary shape and the temperature field of the material are shown in Fig.17.

    Fig.15. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=0 cm with different values of σ.

    Fig.16. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=4.0 cm with different values of σ.

    Fig.17.Reconstruction results of transient ablated boundary shape and temperature field at t=75 s with σ =0.1 K(a)and σ =1.0 K(b).

    When the standard deviation of the temperature measurement errors σ is taken to be different values, the relative average errors of the results are shown in Table 1. The relative average error is defined by the following equation:

    Comparisons between simulation and experiment results in Figs.8-12 and Figs.13-17 indicate that although there exist different temperature measurement errors, the established inverse method can be used to obtain the acceptable estimation results of boundary heat flux and ablation velocity.

    Table 1. Relative average errors of estimation results with different values of σ.

    4.5. Effect of the number of future time steps

    The standard deviation of temperature measurement errors is σ =0.1 K.The number of future time steps is chosen separately to be R=5, R=8, and R=12 to investigate the effect of the number of future time steps on the results. The estimation results of the boundary heat flux q(x,t)and the reconstruction results of the boundary ablation velocity v(x,t)are shown in Figs.18 and 19,respectively.

    Fig.18. Estimation results of boundary heat flux q(x,t)with R=5(a)and R=12(b).

    Fig.19.Reconstruction results of ablation velocity v(x,t)with R=5(a)and R=12(b).

    Fig.20. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=0 cm with different values of R.

    Fig.21. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=4.0 cm with different values of R.

    In addition, the results at x=0 cm and x=4.0 cm are shown in Figs.20 and 21 respectively. The reconstruction results of the ablated boundary shape and the temperature field of the material are shown in Fig.22.

    Fig.22.Reconstruction results of transient ablated boundary shape and temperature field at t=75 s with R=5(a)and R=12(b).

    When the number of the future time steps R is taken to be different values, the relative average errors of the results are shown in Table 2.

    Table 2. Relative average errors of results with different values of R.

    The simulation experiment results given above(Figs.18-22)illustrate that the inverse method established in this paper has little sensitivity to the number of the future time steps in the scope of above experiments.

    4.6. Effect of location of measurement points

    The standard deviation of the temperature measurement errors,the number of the future time steps and the number of the measurement points are, respectively, σ =0.1 K, R=8,and M=9. The locations of the measurement points are chosen,respectively,as y=0.6 cm,y=0.8 cm,y=1.0 cm,and y=1.2 cm to investigate the effect of the location of the measurement points on the result. The relative average errors of the results with different locations of the measurement points are shown in Table 3.

    Table 3. Relative average errors of results with different locations of measurement points.

    It can be known from Table 3 that the closer to the bottom of the ablation material(the farther away from the boundary heat flux) the measurement points, the worse the results of the boundary heat flux estimation and the ablation velocity reconstruction will be. However, the shorter the distance between the measurement points and the boundary heat flux,the less the effect of the location of the measurement points on the results will be.

    4.7. Effect of the number of measurement points

    The standard deviation of the temperature measurement errors and the number of the future time steps are,respectively,σ =0.1 K and R=8. The location of the measurement points is at y=1.0 cm. The number of the measurement points is respectively chosen to be M=4,M=6,M=9,and M=12 to investigate the effect of the number of the measurement points on the results. The relative average errors of the results with the different numbers of the measurement points are shown in Table 4.

    Table 4. Relative average errors of results with different values of M.

    According to Table 4, by increasing the number of measurement points,the accuracies of the boundary heat flux estimation results and the ablation velocity reconstruction results are improved. But,the larger the number of the measurement points,the less the improvement extent of the results will be.

    5. Conclusions

    In this paper, a 2D ablation inverse problem is investigated,and a model predictive inverse method(MPIM)is presented to estimate the unknown heat flux on the ablated boundary of the 2D ablation process. The movement law of the ablated boundary is reconstructed according to the estimation result of the time and space-dependent heat flux.

    The MPIM establishes the time-varying predictive model of the temperatures at the measurement points inside the ablation material based on the influence relationship matrix. This method can online estimate the time- and space-dependent heat flux on the ablated boundary by the rolling optimization combining with the predictive model.According to the numerical results,for the presented inverse method,the choice of the number of the future time steps has a marginal effect on the reconstruction results of the boundary conditions,and the acceptable results can be obtained even though the measurement errors of the temperature exist. In addition, the locations and the number of the measurement points can influence the reconstruction results. Appropriately reducing the distance between the measurement points and the boundary heat flux,as well as arranging enough measurement points,can be beneficial to the method presented in this paper.

    猜你喜歡
    陳紅
    面包樹
    躬耕(2024年2期)2024-03-07 08:32:55
    三八節(jié)感懷
    晚晴(2022年3期)2022-06-01 13:48:42
    更正
    詩與遠(yuǎn)方
    平原的草
    陳紅作品
    作品賞析(3)
    作品賞析(11)
    Measurement of particle size based on digital imaging technique*
    勇敢地坐在上司身邊
    時代金融(2012年13期)2012-04-29 00:44:03
    欧美日韩福利视频一区二区| 国内精品久久久久久久电影| 国产成人aa在线观看| 午夜激情福利司机影院| 日本撒尿小便嘘嘘汇集6| 尤物成人国产欧美一区二区三区| 在线国产一区二区在线| 熟妇人妻久久中文字幕3abv| 国产精品亚洲一级av第二区| 美女大奶头视频| 哪里可以看免费的av片| 一夜夜www| 国产亚洲av嫩草精品影院| 国产成人欧美在线观看| 真实男女啪啪啪动态图| 激情在线观看视频在线高清| 国内精品美女久久久久久| 3wmmmm亚洲av在线观看| 久久精品国产亚洲av香蕉五月| 久久久久久久午夜电影| 十八禁人妻一区二区| 欧美丝袜亚洲另类 | 嫁个100分男人电影在线观看| 无人区码免费观看不卡| 欧美大码av| 特级一级黄色大片| 国产精品98久久久久久宅男小说| 婷婷精品国产亚洲av在线| 深夜精品福利| 岛国在线免费视频观看| 亚洲人成伊人成综合网2020| 怎么达到女性高潮| 国产老妇女一区| 国产真人三级小视频在线观看| 亚洲av美国av| 99久久无色码亚洲精品果冻| 欧美中文日本在线观看视频| 人人妻人人看人人澡| 国产一区二区三区视频了| 日韩欧美一区二区三区在线观看| 观看美女的网站| 亚洲五月婷婷丁香| 精品99又大又爽又粗少妇毛片 | 国内精品久久久久久久电影| 日本一本二区三区精品| 免费无遮挡裸体视频| 精品人妻1区二区| 波多野结衣高清作品| 亚洲精华国产精华精| 久久草成人影院| 国产欧美日韩精品一区二区| 亚洲国产高清在线一区二区三| eeuss影院久久| 天天添夜夜摸| 操出白浆在线播放| 国产在视频线在精品| 又黄又爽又免费观看的视频| 亚洲精品一区av在线观看| 亚洲熟妇中文字幕五十中出| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9| 欧美最黄视频在线播放免费| 日韩中文字幕欧美一区二区| 在线视频色国产色| 国产真人三级小视频在线观看| 搡女人真爽免费视频火全软件 | 午夜精品在线福利| 制服人妻中文乱码| 老熟妇乱子伦视频在线观看| 亚洲精品在线观看二区| 国产一区二区在线av高清观看| 国产成人影院久久av| 日本三级黄在线观看| x7x7x7水蜜桃| 精品国内亚洲2022精品成人| 国产精品1区2区在线观看.| 亚洲真实伦在线观看| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 成人18禁在线播放| 欧美乱色亚洲激情| 日本五十路高清| 久久久久久久午夜电影| 在线观看免费午夜福利视频| 精品国内亚洲2022精品成人| av在线蜜桃| 88av欧美| 日韩欧美精品免费久久 | 成人欧美大片| 身体一侧抽搐| 美女黄网站色视频| 中国美女看黄片| 欧美中文综合在线视频| 久久久久免费精品人妻一区二区| 一区二区三区高清视频在线| 亚洲国产欧洲综合997久久,| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久久国产精品人妻aⅴ院| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 老汉色∧v一级毛片| 99热只有精品国产| 国模一区二区三区四区视频| 欧美国产日韩亚洲一区| 婷婷亚洲欧美| 国产一区在线观看成人免费| 偷拍熟女少妇极品色| 狂野欧美白嫩少妇大欣赏| 日日夜夜操网爽| 亚洲 国产 在线| 欧美性猛交黑人性爽| 热99re8久久精品国产| 国产av麻豆久久久久久久| 99久久久亚洲精品蜜臀av| 亚洲av免费在线观看| 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 国产欧美日韩精品亚洲av| 欧美成人一区二区免费高清观看| 欧洲精品卡2卡3卡4卡5卡区| 国产毛片a区久久久久| 国产不卡一卡二| 啪啪无遮挡十八禁网站| 亚洲男人的天堂狠狠| 老熟妇乱子伦视频在线观看| 草草在线视频免费看| 国产精品久久久久久人妻精品电影| 欧美一级毛片孕妇| 欧美激情久久久久久爽电影| avwww免费| 一个人观看的视频www高清免费观看| 校园春色视频在线观看| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播| 国产精品1区2区在线观看.| 他把我摸到了高潮在线观看| 给我免费播放毛片高清在线观看| 国产 一区 欧美 日韩| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 给我免费播放毛片高清在线观看| 看免费av毛片| 国产三级中文精品| 嫩草影院精品99| 两人在一起打扑克的视频| 又黄又粗又硬又大视频| 中文字幕人成人乱码亚洲影| 国产精品久久视频播放| 国产综合懂色| 亚洲电影在线观看av| www.999成人在线观看| 成人av在线播放网站| 亚洲av中文字字幕乱码综合| 波多野结衣高清无吗| 黄色视频,在线免费观看| www国产在线视频色| 国产精品三级大全| 嫁个100分男人电影在线观看| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 有码 亚洲区| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 一a级毛片在线观看| 日韩欧美精品免费久久 | 亚洲男人的天堂狠狠| 成人高潮视频无遮挡免费网站| 全区人妻精品视频| 97人妻精品一区二区三区麻豆| 叶爱在线成人免费视频播放| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 亚洲 欧美 日韩 在线 免费| 免费电影在线观看免费观看| 在线免费观看的www视频| 色精品久久人妻99蜜桃| 亚洲国产精品久久男人天堂| 亚洲人成网站在线播放欧美日韩| 色吧在线观看| 亚洲国产色片| 在线播放无遮挡| av国产免费在线观看| 一边摸一边抽搐一进一小说| 国产色爽女视频免费观看| 久久久久久人人人人人| 欧美性感艳星| 熟女少妇亚洲综合色aaa.| 国产探花在线观看一区二区| 精品国产亚洲在线| 成年女人永久免费观看视频| 欧美3d第一页| 国语自产精品视频在线第100页| 国产精品av视频在线免费观看| 欧美黑人巨大hd| 国产在线精品亚洲第一网站| ponron亚洲| 制服丝袜大香蕉在线| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| 国产精品一及| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 亚洲片人在线观看| 国产精华一区二区三区| 一级毛片女人18水好多| 国产精品影院久久| 亚洲国产精品成人综合色| 国产又黄又爽又无遮挡在线| 在线观看免费视频日本深夜| 欧美黑人欧美精品刺激| a在线观看视频网站| 丁香六月欧美| 亚洲乱码一区二区免费版| 天天躁日日操中文字幕| 免费在线观看日本一区| 国产午夜精品久久久久久一区二区三区 | 欧美日韩瑟瑟在线播放| 搡女人真爽免费视频火全软件 | 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 久久亚洲精品不卡| 亚洲国产色片| 757午夜福利合集在线观看| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 国产毛片a区久久久久| 五月玫瑰六月丁香| 真人一进一出gif抽搐免费| 丁香六月欧美| 婷婷精品国产亚洲av在线| 偷拍熟女少妇极品色| 亚洲男人的天堂狠狠| 成年女人看的毛片在线观看| 露出奶头的视频| 国产精品 欧美亚洲| 国产一区二区三区视频了| 免费大片18禁| 在线播放国产精品三级| 97碰自拍视频| 欧美激情在线99| 日本三级黄在线观看| 日韩人妻高清精品专区| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 国产成人系列免费观看| 日韩高清综合在线| 中文字幕av在线有码专区| 婷婷六月久久综合丁香| 熟女人妻精品中文字幕| 岛国在线观看网站| 亚洲18禁久久av| 成年免费大片在线观看| 在线天堂最新版资源| 最近视频中文字幕2019在线8| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 国产精品久久久久久久电影 | 亚洲在线自拍视频| 大型黄色视频在线免费观看| 91久久精品国产一区二区成人 | 国产精品影院久久| 99久久无色码亚洲精品果冻| 窝窝影院91人妻| av国产免费在线观看| 欧美色视频一区免费| 日本熟妇午夜| 亚洲18禁久久av| www国产在线视频色| 国产一区二区三区视频了| 国产黄色小视频在线观看| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 免费电影在线观看免费观看| 免费在线观看成人毛片| 国产乱人伦免费视频| 国产精品日韩av在线免费观看| 色视频www国产| 亚洲成人免费电影在线观看| 国产精品精品国产色婷婷| 久久人妻av系列| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看| 免费在线观看日本一区| av欧美777| 精品一区二区三区视频在线 | 色精品久久人妻99蜜桃| 亚洲国产欧美网| 亚洲激情在线av| 欧美3d第一页| 免费在线观看影片大全网站| 99久久无色码亚洲精品果冻| 免费av观看视频| 亚洲激情在线av| 欧美中文日本在线观看视频| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 亚洲国产日韩欧美精品在线观看 | 久久国产精品人妻蜜桃| 久久国产乱子伦精品免费另类| 青草久久国产| 99国产精品一区二区三区| АⅤ资源中文在线天堂| 国产精品 欧美亚洲| 国产男靠女视频免费网站| 男人的好看免费观看在线视频| 一本综合久久免费| 99精品欧美一区二区三区四区| 97超级碰碰碰精品色视频在线观看| h日本视频在线播放| 长腿黑丝高跟| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 亚洲国产欧美人成| 尤物成人国产欧美一区二区三区| 欧美日本亚洲视频在线播放| 欧美成狂野欧美在线观看| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 国内久久婷婷六月综合欲色啪| 久久欧美精品欧美久久欧美| 午夜免费激情av| 欧美日韩瑟瑟在线播放| 国产一区二区三区在线臀色熟女| 两个人看的免费小视频| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 国产亚洲欧美在线一区二区| 国产高清videossex| 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看| a级毛片a级免费在线| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 精品国产亚洲在线| 亚洲黑人精品在线| 色综合婷婷激情| 亚洲,欧美精品.| 欧美极品一区二区三区四区| 亚洲精品一区av在线观看| 成人av在线播放网站| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 亚洲成av人片在线播放无| 在线免费观看的www视频| 内地一区二区视频在线| 国产男靠女视频免费网站| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| av视频在线观看入口| 91九色精品人成在线观看| 亚洲内射少妇av| xxx96com| 国产一区二区在线av高清观看| 99久久成人亚洲精品观看| 人人妻人人澡欧美一区二区| 午夜精品久久久久久毛片777| 婷婷亚洲欧美| 制服丝袜大香蕉在线| 中文字幕av在线有码专区| 亚洲av成人av| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 精品熟女少妇八av免费久了| 国产一级毛片七仙女欲春2| 国模一区二区三区四区视频| 在线十欧美十亚洲十日本专区| 亚洲精品粉嫩美女一区| 亚洲av成人精品一区久久| 国产免费av片在线观看野外av| 又爽又黄无遮挡网站| 成人av一区二区三区在线看| 免费看十八禁软件| 丁香六月欧美| 国产一区在线观看成人免费| 成人性生交大片免费视频hd| 一个人看的www免费观看视频| 哪里可以看免费的av片| 欧美中文综合在线视频| 在线观看av片永久免费下载| 老鸭窝网址在线观看| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9 | 亚洲欧美日韩高清在线视频| 国产蜜桃级精品一区二区三区| 中出人妻视频一区二区| 精品人妻偷拍中文字幕| 国产亚洲av嫩草精品影院| 国产精品亚洲一级av第二区| 久久亚洲真实| 波多野结衣巨乳人妻| 深夜精品福利| 亚洲人成网站在线播| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 国产精华一区二区三区| 在线天堂最新版资源| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 久久精品综合一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 午夜福利欧美成人| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 精品欧美国产一区二区三| 动漫黄色视频在线观看| 18美女黄网站色大片免费观看| 欧美日韩瑟瑟在线播放| 18禁美女被吸乳视频| 国产熟女xx| 舔av片在线| 日韩欧美在线乱码| 久久久久久大精品| 中文字幕久久专区| 久久中文看片网| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 成熟少妇高潮喷水视频| 亚洲成人中文字幕在线播放| 在线观看日韩欧美| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 国产真实乱freesex| 老汉色∧v一级毛片| 久久九九热精品免费| 国产精品久久久久久久电影 | 午夜两性在线视频| 欧美黑人巨大hd| 手机成人av网站| 成人午夜高清在线视频| 欧美日韩瑟瑟在线播放| 制服丝袜大香蕉在线| 国产伦一二天堂av在线观看| 国产亚洲欧美在线一区二区| 丁香六月欧美| 变态另类丝袜制服| 日韩大尺度精品在线看网址| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 国产精品一及| 最新美女视频免费是黄的| 国产91精品成人一区二区三区| 精品久久久久久成人av| 3wmmmm亚洲av在线观看| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 国产美女午夜福利| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 欧美最黄视频在线播放免费| 欧美bdsm另类| 国产成人欧美在线观看| 亚洲国产精品sss在线观看| 性欧美人与动物交配| 亚洲自拍偷在线| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 日本黄色片子视频| 亚洲成人精品中文字幕电影| 欧美3d第一页| 亚洲精品日韩av片在线观看 | av天堂中文字幕网| 免费搜索国产男女视频| 99久久九九国产精品国产免费| 丝袜美腿在线中文| 国产综合懂色| 国产精品久久久久久精品电影| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 色视频www国产| 午夜福利18| 欧美一级毛片孕妇| 久久精品国产自在天天线| 欧美日韩亚洲国产一区二区在线观看| 亚洲乱码一区二区免费版| 国产精品亚洲av一区麻豆| 国产午夜精品久久久久久一区二区三区 | 国产一区二区亚洲精品在线观看| 99精品在免费线老司机午夜| 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 亚洲av日韩精品久久久久久密| 麻豆一二三区av精品| or卡值多少钱| 久久精品亚洲精品国产色婷小说| 观看美女的网站| 国产毛片a区久久久久| 母亲3免费完整高清在线观看| 一个人看的www免费观看视频| 中国美女看黄片| 日韩中文字幕欧美一区二区| 男人和女人高潮做爰伦理| 亚洲一区二区三区色噜噜| 久99久视频精品免费| 97碰自拍视频| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 蜜桃久久精品国产亚洲av| 欧美黄色片欧美黄色片| 国产精品电影一区二区三区| 精品久久久久久久毛片微露脸| 欧美乱码精品一区二区三区| 国内毛片毛片毛片毛片毛片| 欧美不卡视频在线免费观看| 桃红色精品国产亚洲av| ponron亚洲| 成人鲁丝片一二三区免费| 欧美bdsm另类| 国产高清三级在线| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品av在线| 久久6这里有精品| 久久国产精品影院| 国产亚洲av嫩草精品影院| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| 免费看a级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 草草在线视频免费看| 久久久久久久亚洲中文字幕 | 男女视频在线观看网站免费| 久久精品91蜜桃| 女警被强在线播放| 国产成人系列免费观看| 国产高清videossex| 少妇的逼好多水| 国产午夜精品论理片| 欧美黑人巨大hd| 国产一区二区三区视频了| 无人区码免费观看不卡| 18禁黄网站禁片免费观看直播| 内地一区二区视频在线| 天堂动漫精品| 在线播放无遮挡| 欧美黑人巨大hd| 99久久久亚洲精品蜜臀av| 欧美黄色淫秽网站| 久久久成人免费电影| 国产激情欧美一区二区| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 精品熟女少妇八av免费久了| 在线视频色国产色| 国产精品永久免费网站| 九色成人免费人妻av| 久久久久免费精品人妻一区二区| 欧美在线一区亚洲| 日本黄大片高清| 日本黄色片子视频| 久久久成人免费电影| 免费一级毛片在线播放高清视频| 亚洲av电影在线进入| 手机成人av网站| 99在线视频只有这里精品首页| 精品人妻1区二区| 欧美国产日韩亚洲一区| 变态另类丝袜制服| 一本综合久久免费| 成人无遮挡网站| 老熟妇仑乱视频hdxx| 蜜桃亚洲精品一区二区三区| 丰满的人妻完整版| 成人一区二区视频在线观看| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 日韩欧美精品免费久久 | 搡老岳熟女国产| 一本精品99久久精品77| 露出奶头的视频| 婷婷精品国产亚洲av| 麻豆成人午夜福利视频| 亚洲美女黄片视频| 久久伊人香网站| 琪琪午夜伦伦电影理论片6080| 欧美日韩瑟瑟在线播放| 男人和女人高潮做爰伦理| 精品久久久久久,| 国产在视频线在精品| 国产精品爽爽va在线观看网站| www日本在线高清视频| 黄片大片在线免费观看| 亚洲精品一区av在线观看| 日韩欧美在线二视频| 99在线人妻在线中文字幕| 国产精品亚洲美女久久久| 18美女黄网站色大片免费观看| 亚洲成人久久性| 两人在一起打扑克的视频| 少妇丰满av| 国产精品野战在线观看| 欧美成人性av电影在线观看| 成年女人看的毛片在线观看| 欧美3d第一页| 男女床上黄色一级片免费看|