• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms?

    2021-03-19 03:21:32ChengWeiWu吳成偉ChangqingXiang向長(zhǎng)青HengyuYang楊恒玉WuXingZhou周五星GuofengXie謝國(guó)鋒BaoliOu歐寶立andDanWu伍丹
    Chinese Physics B 2021年3期
    關(guān)鍵詞:歐寶長(zhǎng)青五星

    Cheng-Wei Wu(吳成偉), Changqing Xiang(向長(zhǎng)青), Hengyu Yang(楊恒玉), Wu-Xing Zhou(周五星),?,Guofeng Xie(謝國(guó)鋒), Baoli Ou(歐寶立), and Dan Wu(伍丹)

    1School of Materials Science and Engineering&Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion,Hunan University of Science and Technology,Xiangtan 411201,China

    2College of Information Science and Engineering,Jishou University,Jishou 416000,China

    3School of Physics and Electronic Science,Changsha University of Science and Technology,Changsha 410114,China

    Keywords: density functional theory,thermoelectric effects,transport properties,electronic structure

    1. Introduction

    Thermoelectric(TE)materials can directly convert waste heat into electricity and vice versa, which provide an effective way for the solution of the global energy crisis without producing new contaminants.[1-3]TE materials have attracted intense research efforts due to the huge demand for energy harvesting and power generation. The TE efficiency of the material is measured by the dimensionless figure of merit,ZT =Sσ2T/(κe+κp), where T is the temperature, S is the Seebeck coefficient,σ is the electrical conductivity,κeis the electronic thermal conductivity,and κpis the phonon thermal conductivity.[4-7]

    According to the formula, high Seebeck coefficient S,high electrical conductivity σ, low phonon thermal conductivity κpcan obtain high ZT.[8]However, these physical parameters S, σ, and κeare dependent on each other, e.g., the Wiedemann-Franz law indicates σ ∝κe, which causes the TE efficiency to be relatively low. Although the theoretical studies have showed that low-dimensional nanoscale systems can contribute to boosting the TE performance originated from the enhancement of phonon scattering and quantum confinement effect, the ZT of most perfect structures is still low because of their high thermal conductivity, such as graphene(2876 W/m·K),[9]borophene(κzig=72 W/m·K,κarm= 145 W/m·K),[10]MoS2(κzig= 54 W/m·K, κarm=33 W/m·K),[11]etc. Therefore, it is necessary to find appropriate means to reduce phonon transport to improve the TE performance. What is more, the TE parameter κpis the relatively independent quantity that can be changed by some method.[12-18]

    In recent years,the thermal transport of low-dimensional nanomaterials has become a research hotspot. Theoretically,by manipulating the phonons or elastic waves that propagate and scatter, the beneficial thermal transport properties can be obtained. Research shows that surface functionalization is one of the feasible and effective manipulation methods.[19,20]This method has been used to regulate the thermal transfer of nanostructured materials composed of group-IV and group-V nonmetallic elements. For example, Wang et al.[21]reduced the thermal conductivity of graphene by depositing gold nanoparticles on its surface by physical deposition. The decrease of the thermal conductivity is mainly attributed to the suppression of ZA phonon modes. Liu et al.[22]improved the thermal conductivity of silene system by full hydrogenation.Although full hydrogenation increases the buckling degree of the silene system, the elimination of asymmetric π-bond is considered to be the main reason for the decrease of phonon scattering rate and the increase of thermal conductivity of hydrogenated silene. Sun et al.[23]studied the effect of oxygencontaining functional groups on the thermal conductivity of reduced graphene oxide by molecular dynamics simulation.Overall, these results are all attributable to the effect of sp3hybridization introduced by surface functionalization on the material.

    Moreover, surface functionalization not only can change the heat transport, but also can change the electron transport properties. For example,Xu et al.[24]reported that monolayer C4N functionalization with adsorbing Li, Na, Be, Mg, Ti, V,Cr,and Mn atoms,resulting in the transformation of C4N from semi-metal to semiconductor. By the first principles calculation, Nguyen et al.[25]found that the bandgap can be opened when the concentration of halogen atoms adsorbed on both sides of silicon is greater than 0.25. Therefore, surface functionalization is an effective way to improve the performance of two-dimensional(2D)materials in a specific field. Particularly, halogen atoms have strong electronegativity, which can bind free electrons on the surface of 2D materials and play a role of surface passivation.In order to open the bandgap of 2D materials with metal or semi-metallic properties,halogen is a good adsorption candidate.[26]

    Si2BN,which was reported by Andriotis et al. in 2016,is also a kind of graphene-like monolayer structure.[27]It has attracted the interest of researchers in hydrogen storage,battery,and other fields,[28-31]but there have been no reports of any research on TE properties. Because the crystalline structure of Si2BN is more complex than graphene, we predict that it has lower phonon thermal conductivity,which is beneficial to the improvement of TE properties. Nevertheless, the electronic energy band of Si2BN shows its routing metal property, this is negative for TE properties. In theory, by adsorbing halogen atoms on Si2BN,the hybrid type changes from sp2to sp3,resulting in bandgap opening.[32]Moreover,it also breaks the plane structure of Si2BN, the lattice thermal conductivity is further reduced by increasing phonon scattering.

    In this work, we research the thermoelectric transport properties of Si2BN adsorbing halogen atoms (Si2BN-4X,X = F, Cl, Br, and I) by using the first principles calculation and Boltzmann transport theory. By adsorbing halogen atoms, the band gap of Si2BN is opened, which leads to the increase of the Seebeck coefficient. In particular, Si2BN-4I has the largest Seebeck coefficient because of the band degeneracy. In addition, the absorption of halogen atoms increases the phonon scattering,and the lattice thermal conductivity decreases significantly, which leads to a significant increase in the thermoelectric properties.

    2. Methodology

    First-principles calculations are performed based on density functional theory (DFT) using the Vienna ab-initio simulation package (VASP).[33,34]We choose the generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof(PBE)parametrization for the exchange-correlation functional.[35]The crystal structure is relaxed with total energy convergence criterion of 10?6eV,the force convergence criterion is 10?4eV/?A, and adopts plane-wave basis with kinetic energy cutoff of 500 eV. The 11×11×1 Γ-center k-mesh is used, and the normal vacuum distance is large than 15 ?A to prevent any physical interactions between the consecutive layers. VASP is used to obtain the second-order interatomic force constant by the finite displacement method with 3×3×1 supercell and 1×1×1 k-mesh, and then the dynamic matrix is constructed by the Phonopy program,and the dynamic matrix is diagonalized to obtain the phonon spectrum.[36]

    Based on Boltzmann transport theory, we use VASP combined with BoltzTraP program to calculate the electronic transport properties of materials.[37]The TE transport parameters are calculated using the relaxation time approximation method, where the relaxation time constant τ is 10?14s.This constant has been widely used in the calculation of electron transport properties and reliable results have been obtained.[38,39]Moreover,the TE transport coefficient is converged by using the k-mesh of 20×20×1 in the Brillouin zone(BZ).[40,41]

    We calculate the phonon thermal conductivity based on linearized phonon Boltzmann transport equation (PBTE)within relaxation time approximation.[42,43,45]Along the specified direction, the thermal conductivity of monolayer Si2BN and its halide in each branch λ can be described as

    where S is the area of the sample,vλis the phonon group velocity of λ branch along the specified direction,which is equal to dω/dq, ω is the phonon frequency for branch λ at wave vector q, τλis the phonon relaxation time of λ branch, and cphis the volumetric specific heat of each mode,which can be calculated with the following formula:

    where γλ, M, ωD,λare the Gr¨uneisen parameter, the mass of unit cell, and the Debye frequency of branch λ, respectively.V is the unit cell volume and V0is the completely relaxed unit cell volume. dωλ(V)/dV is the first derivative of the phonon frequency of branch λ with the volume.[49]

    3. Results and discussion

    Two optimized structures, named Si2BN and Si2BN-4X,are shown in Figs. 1(a) and 1(b), respectively. In top view of Fig.1(a), the lattice constants of Si2BN are a=6.35 ?A,b=6.45 ?A and the bond length between atoms are lSi-Si=2.24 ?A, lSi-N=1.76 ?A, lSi-B=1.95 ?A, and lB-N=1.46 ?A,which are in good agreement with the previously reported ones.[50]In side view of Fig.1(a), the Si2BN shows a plane structure, while the Si2BN-4X (X =F, Cl, Br, I) shows the buckling structure when the surface of Si2BN adsorbs halogen elements, as shown in the side view of Fig.1(b), which is due to the change of the hybrid type of Si-Si atoms. The previous work pointed out that the buckling structure is more beneficial to increase phonon scattering and decrease phonon thermal conductivity.[51]

    Fig.1. Top and side views of the geometric structure of (a) Si2BN and(b)Si2BN-4X (X =F,Cl,Br,I).

    In Fig.2(a), the electronic band structure of Si2BN presents a metal characteristic and the result matches that of Singh et al.[29]well. However, the materials with insulator or metal property are not good TE materials even though they have a large conductivity or Seebeck coefficient than semiconductor materials.

    Therefore, a suitable method to open the bandgap for Si2BN should be applied. When the halogen atoms are adsorbed on the four Si atoms of surface of Si2BN (named Si2BN-4X, X =F, Cl, Br, I), as shown in Fig.3, the electronic structure property of Si2BN transforms from metal to indirect bandgap semiconductor. In addition,the bandgap increases from 1.32 eV of Si2BN-4F to 1.88 eV of Si2BN-4I with the increase of atomic mass of adsorbed halogen, which is presented in Figs. 3(a)-3(d). It is worth mentioning that the electron band structure shows that Si2BN-4X has flat conduction band minimum (CBM) and valence band maximum(VBM),indicating that it has high effective carrier mass, low carrier mobility, and low conductivity, which leads to high S eventually.[52]In addition, the degeneracy of the electronic band structure of Si2BN-4I at the M point in BZ means a large S,which is beneficial to the improvement of ZT.[53-55]

    Fig.2. (a)The electronic band structure and(b)DOS of Si2BN.

    Fig.3. The electronic band structure of (a) Si2BN-4F, (b) Si2BN-4Cl,(c)Si2BN-4Br,(d)Si2BN-4I.

    In order to prove the dynamic stability of Si2BN and Si2BN-4X, we use the finite displacement method to calculate the phonon spectrum. In Fig.4,the results show that there are no imaginary frequencies in the whole BZ,indicating the dynamical stability of Si2BN and Si2BN-4X. In the phonon spectrums of Si2BN and Si2BN-4X,there are multiple phonon gaps in the frequency range from 15 THz to 40 THz. Besides,there are typical strong hybrid features between low-frequency optical branches and acoustic branches in Si2BN and Si2BN-4X. These characteristics indicate that the phonon thermal conductivity of Si2BN and Si2BN-4X will be relatively low.Importantly, as shown in Figs. 4(b)-4(e), there are more and more low-frequency flat optical branches from the Si2BN-4F to Si2BN-4I structure, which means that the phonon thermal conductivity will decrease with the increase of atomic mass of the absorbed halogen.[56]

    Fig.4. The phonon dispersion spectra of (a) Si2BN, (b) Si2BN-4F,(c)Si2BN-4Cl,(d)Si2BN-4Br,(e)Si2BN-4I.

    On the other hand, in order to prove the thermodynamic stability of halogen atoms adsorbed Si2BN, we calculate the adsorption formation energy of halogen atoms on Si2BN surface as shown in Table 1. According to the definition of adsorption formation energy, the formula for our system can be written as

    where Eb[Si2BN-4X], Eb[Si2BN], Eb[X2] are the bind energy per atom of Si2BN-4X, the bind energy per atom of Si2BN,and the bind energy per atom of X2,respectively. n is the total number of Si2BN-4X,nXis the number of adsorbing halogen atoms. Efis the adsorption formation energy per adsorbing halogen atom of Si2BN-4X.

    The unit adsorption formation energies of the X atom on the Si2BN are all above 1 eV/atom as shown in Table 1. This means that the binding energy of Si2BN-4X is larger,and the energy released by the formation of Si2BN-4X from isolated atoms is greater than that of Si2BN and X2. Therefore, the lower total free energy of Si2BN-4X demonstrates that the adsorption of X2by Si2BN is experimentally feasible.

    Table 1. The adsorption formation energy of halogen atoms adsorbed by Si2BN is calculated. Ef[Si2BN-4X] is the adsorption formation energy per adsorbing halogen of Si2BN-4X,Eb[Si2BN-4X]is the bind energy per atom of Si2BN and Si2BN-4X,and Eb[X2]is the bind energy per atom of X2.

    The Si2BN and Si2BN-4X have 2D hexagonal structures.We can study the TE properties along the armchair and zigzag directions. Firstly,we focus on the armchair direction. In order to systematically study the TE properties of Si2BN and Si2BN-4X along the armchair direction at room temperature,we calculate the Seebeck coefficient S, electrical conductivity σ, electronic thermal conductivity κe, power factor PF,phonon thermal conductivity κp, and ZT based on the average temperature T of 300 K and electron constant relaxation time τ of 10?14s. All the results are plotted in Fig.5. As shown in Figs.5(a)-5(b),the S of Si2BN-4X is larger than that of Si2BN;moreover,S decreases and σ increases with the increase of charge carrier concentration n, which is due to the Pisarenko relation.[57]However,the PF of Si2BN and Si2BN-4X appear a maximum as n increases,and the maximal PF of the former is much lower than that of the latter,indicating that the optimal TE performance of Si2BN-4X can be realized at some carrier concentration.

    As can be seen from Fig.5(d),the electronic thermal conductivity displays similar behavior to the conductivity. In addition, we can see that the phonon thermal conductivity of Si2BN-4X is lower than that of Si2BN in the temperature range from 200 K to 800 K,as illustrated in Fig.5(e).It is worth noting that the phonon thermal conductivity κpof Si2BN-4I is the lowest among all structures. According to the TE formula,we calculate the TE figure of merit as a function of carrier concentration, as shown in Fig.5(f). The ZT values of Si2BN-4X are significantly greater than that of Si2BN, regardless of the change in carrier concentration. Meanwhile,the ZT curve of Si2BN-4X increases firstly and then decreases with the increases of carrier concentration,where the ZT value of Si2BN-4I is the largest compared to others structures. At 300 K,the ZT maximum of Si2BN is only 0.03, while that of Si2BN-4I reaches 0.50,which is about 16 times that of Si2BN.

    Fig.5. (a) The Seebeck coefficient, (b) electrical conductivity, (c) power factor, (d) electronic thermal conductivity, (e) phonon thermal conductivity,and(f)ZT of Si2BN and Si2BN-4X along armchair direction.

    Fig.6. (a) The group velocity and (b) phonon lifetime of Si2BN-4I along armchair direction.

    From the above results, Si2BN-4I is the optimal structure for TE performance,which stems from the lowest thermal conductively after the surface functionalization. The phonon thermal conductivity of Si2BN-4I is only 0.41 W/m·K while that of Si2BN is 3.38 W/m·K at 300 K.In order to explain the decrease of phonon thermal conductivity of Si2BN-4I compared with that of Si2BN in armchair direction, we calculate the group velocity and phonon lifetime along the armchair direction.Figure 6(b)shows that the Si2BN-4I has multiple wide optical-optical gaps in the range from 15 THz to 35 THz.Therefore, the decrease of phonon thermal conductivity of Si2BN-4I compared with Si2BN results from the decrease of the group velocity.[53]

    In order to study the effect of temperature on thermoelectric properties, the TE performance of the armchair direction of Si2BN-4I at the temperatures of 300 K,500 K,and 800 K is calculated and shown in Fig.7. As the temperature increases,the PF of Si2BN-4I increases(in Fig.7(c)),while the phonon thermal conductivity of Si2BN-4I decreases(in Fig.7(e)). As a result,the ZT value of Si2BN-4I increases with the increase of temperature(in Fig.7(f)),and the ZT of Si2BN-4I can reach 0.8 at 800 K.However,compared with Figs.7(c)and 7(f),the optimal ZT carrier concentration (NZT) has a large deviation from the optimal PF carrier concentration (NPF), and the PF corresponding to NZTis relatively low. Obviously,with the increase of temperature,NPFbecomes lower,S corresponding to NPFdecreases very slight, and the increase of electrical conductivity σ is also very small.But with the increase of temperature,the increase of κecorresponding to NPFis much greater than that of κp, and the value of κeis an order of magnitude higher than that of κp. Therefore, κeplays a major role that influences the ZT with the change of temperature, and NZTmoves towards the lower κe. This limits the improvement of ZT to some extent, and the excessive κealso indicates that there is still space for improvement of the TE performance of Si2BN-4I.[58]

    Fig.7. (a) The Seebeck coefficient, (b) electrical conductivity, (c) power factor, (d) electronic thermal conductivity, (e) phonon thermal conductivity,and(f)ZT of Si2BN-4I along armchair direction at 300 K,500 K,and 800 K,respectively.

    Fig.8. The ZT of Si2BN and Si2BN-4X along zigzag direction at 300 K.

    The above calculations of TE properties are based on the armchair direction. In Fig.8(a), we obtain the ZT values of Si2BN and Si2BN-4X at 300 K along the zigzag direction. In the zigzag direction of Si2BN-4I, we draw the same conclusion as in the armchair direction, but the TE performance in the zigzag direction is slightly lower than that in the armchair direction, so we mainly introduce the TE performance in the armchair direction. The similar conclusions can be obtained in the zigzag direction.

    4. Conclusion

    In this work, we study the electron transport, thermal transport, and thermoelectric properties of Si2BN adsorbing halogen atoms(Si2BN-4X,X=F,Cl,Br,and I)using the first principles calculation and Boltzmann transport theory. The adsorption of halogen atoms can significantly regulate the energy band structure and lattice thermal conductivity of Si2BN.The band gap of Si2BN is opened by adsorbing halogen atoms,which leads to the increase of Seebeck coefficient. In particular, Si2BN-4I has the largest Seebeck coefficient because of the band degeneracy. In addition, the absorption of halogen atoms increases the phonon scattering,and the lattice thermal conductivity decreases significantly, which leads to a significant increase of ZT.

    猜你喜歡
    歐寶長(zhǎng)青五星
    La preservación del tejido de seda tradicional
    建德五星
    守護(hù)那抹“五星紅”
    長(zhǎng)青開(kāi)啟中馬圓夢(mèng)之旅
    長(zhǎng)青 邁步環(huán)保公益
    倪凱銘確認(rèn)從歐寶離職
    歐寶2017年業(yè)務(wù)或繼續(xù)虧損
    五星花
    長(zhǎng)青榮耀三十載
    歐寶退出中國(guó)市場(chǎng)
    av福利片在线| 最近最新中文字幕免费大全7| 国产成人精品婷婷| 精华霜和精华液先用哪个| 久久狼人影院| 中文字幕制服av| 特大巨黑吊av在线直播| av不卡在线播放| 午夜免费男女啪啪视频观看| 99热这里只有是精品在线观看| 国产精品久久久久久av不卡| 午夜激情久久久久久久| 搡女人真爽免费视频火全软件| 国产精品熟女久久久久浪| 99热网站在线观看| 纵有疾风起免费观看全集完整版| 国产成人一区二区在线| 久久久久久久大尺度免费视频| 丰满少妇做爰视频| 热re99久久精品国产66热6| 久久毛片免费看一区二区三区| 肉色欧美久久久久久久蜜桃| 久久久久久久久大av| √禁漫天堂资源中文www| 精品一区二区免费观看| 久久久亚洲精品成人影院| 我的老师免费观看完整版| 成人黄色视频免费在线看| 欧美精品国产亚洲| 亚洲精品日本国产第一区| 午夜影院在线不卡| 亚洲av欧美aⅴ国产| xxx大片免费视频| 亚洲va在线va天堂va国产| 国产深夜福利视频在线观看| 全区人妻精品视频| 精品一区二区免费观看| 亚洲四区av| 久久久a久久爽久久v久久| 99精国产麻豆久久婷婷| 大码成人一级视频| 欧美日韩av久久| 在线观看一区二区三区激情| 精品一区二区三卡| 国产成人精品一,二区| 一级黄片播放器| 老司机亚洲免费影院| 日日爽夜夜爽网站| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 大香蕉久久网| 日日撸夜夜添| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 亚洲欧美一区二区三区黑人 | 成人无遮挡网站| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线 | 99久久综合免费| 欧美成人午夜免费资源| 国产精品久久久久久久电影| 亚洲内射少妇av| 中文乱码字字幕精品一区二区三区| 少妇精品久久久久久久| 日本-黄色视频高清免费观看| 日韩大片免费观看网站| 人妻人人澡人人爽人人| 日韩精品免费视频一区二区三区 | 黄色欧美视频在线观看| 这个男人来自地球电影免费观看 | 日本黄色片子视频| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 久久97久久精品| 特大巨黑吊av在线直播| 三级经典国产精品| 极品人妻少妇av视频| 久久午夜福利片| 18禁动态无遮挡网站| 国产在线免费精品| 久久久久视频综合| 国产亚洲精品久久久com| tube8黄色片| 亚洲电影在线观看av| 国产精品国产三级国产av玫瑰| 欧美日韩国产mv在线观看视频| 亚洲国产成人一精品久久久| av福利片在线观看| 亚州av有码| 亚洲av免费高清在线观看| 青春草视频在线免费观看| 亚洲国产精品一区二区三区在线| 街头女战士在线观看网站| 日韩制服骚丝袜av| 最新中文字幕久久久久| 91午夜精品亚洲一区二区三区| 九九在线视频观看精品| 岛国毛片在线播放| 中国美白少妇内射xxxbb| 高清视频免费观看一区二区| 黄色日韩在线| 永久免费av网站大全| 亚洲精品日韩av片在线观看| 青青草视频在线视频观看| 美女视频免费永久观看网站| 免费看光身美女| 国产一区二区在线观看日韩| 一本久久精品| 国产淫语在线视频| 我的老师免费观看完整版| 亚洲欧洲日产国产| 国产91av在线免费观看| 欧美区成人在线视频| 美女国产视频在线观看| 国产综合精华液| 久久精品夜色国产| 岛国毛片在线播放| 亚州av有码| 亚洲欧美清纯卡通| 国产av一区二区精品久久| 蜜臀久久99精品久久宅男| 青青草视频在线视频观看| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲一级一片aⅴ在线观看| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 少妇人妻 视频| 国模一区二区三区四区视频| 久久久精品免费免费高清| 亚洲精品aⅴ在线观看| a级毛片免费高清观看在线播放| a级毛色黄片| 亚洲,欧美,日韩| 99热国产这里只有精品6| 性色avwww在线观看| 国产免费又黄又爽又色| 久久国产乱子免费精品| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 人妻 亚洲 视频| 国产av码专区亚洲av| 欧美最新免费一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品国产精品| 在线观看一区二区三区激情| 人妻一区二区av| 国产av码专区亚洲av| av专区在线播放| 色94色欧美一区二区| 又大又黄又爽视频免费| 国产精品三级大全| 亚洲色图综合在线观看| 曰老女人黄片| 日本色播在线视频| 久久久久视频综合| 久久6这里有精品| 国精品久久久久久国模美| 国产亚洲一区二区精品| 国产av一区二区精品久久| 在线天堂最新版资源| 久久热精品热| 哪个播放器可以免费观看大片| 九色成人免费人妻av| 天天躁夜夜躁狠狠久久av| 久久av网站| 成人毛片a级毛片在线播放| 少妇人妻 视频| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 免费看av在线观看网站| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| av网站免费在线观看视频| 久久99热这里只频精品6学生| 久久久久久久久久久丰满| 国产精品一区二区性色av| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 日韩一区二区视频免费看| 国产午夜精品久久久久久一区二区三区| av在线播放精品| 亚洲国产毛片av蜜桃av| av福利片在线| 秋霞在线观看毛片| 日本黄大片高清| 亚洲国产精品一区三区| 在线观看一区二区三区激情| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 91成人精品电影| 乱人伦中国视频| 一级毛片 在线播放| 国产亚洲欧美精品永久| 91久久精品国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 在线 av 中文字幕| 国产精品蜜桃在线观看| 久久国产精品男人的天堂亚洲 | 国产精品福利在线免费观看| 少妇人妻 视频| 久久精品久久精品一区二区三区| 免费在线观看成人毛片| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 亚洲av福利一区| 午夜老司机福利剧场| 蜜桃在线观看..| 日本wwww免费看| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 男人添女人高潮全过程视频| 3wmmmm亚洲av在线观看| 国产乱来视频区| 成人亚洲欧美一区二区av| 男女国产视频网站| 国产一区有黄有色的免费视频| 国产一区二区三区av在线| 男人和女人高潮做爰伦理| 99re6热这里在线精品视频| 五月玫瑰六月丁香| 又爽又黄a免费视频| 久久久午夜欧美精品| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 我要看黄色一级片免费的| 欧美老熟妇乱子伦牲交| 22中文网久久字幕| 我的女老师完整版在线观看| 国产精品免费大片| 亚洲av免费高清在线观看| 亚洲综合精品二区| 国产精品蜜桃在线观看| 欧美+日韩+精品| 日本与韩国留学比较| 久久影院123| 国产精品一二三区在线看| 99视频精品全部免费 在线| 观看美女的网站| 久久精品熟女亚洲av麻豆精品| 亚洲av成人精品一二三区| 一级黄片播放器| 欧美三级亚洲精品| 丰满少妇做爰视频| 精品酒店卫生间| av一本久久久久| 97在线人人人人妻| 精品国产乱码久久久久久小说| 少妇 在线观看| 全区人妻精品视频| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 欧美一级a爱片免费观看看| 久久久久精品久久久久真实原创| 香蕉精品网在线| av网站免费在线观看视频| 亚洲国产最新在线播放| 人人妻人人澡人人爽人人夜夜| 搡老乐熟女国产| 免费少妇av软件| 少妇人妻 视频| 欧美丝袜亚洲另类| 免费人妻精品一区二区三区视频| 少妇 在线观看| 永久网站在线| 日韩免费高清中文字幕av| 成年人免费黄色播放视频 | 精品亚洲乱码少妇综合久久| 免费播放大片免费观看视频在线观看| 国产无遮挡羞羞视频在线观看| 91久久精品电影网| 日本欧美国产在线视频| 国产熟女欧美一区二区| 日韩欧美精品免费久久| 免费av不卡在线播放| 色视频在线一区二区三区| 国产av一区二区精品久久| 久久久久视频综合| av黄色大香蕉| 亚洲综合色惰| 黑人巨大精品欧美一区二区蜜桃 | 男的添女的下面高潮视频| 成人无遮挡网站| 亚洲国产日韩一区二区| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 国产日韩欧美在线精品| 丰满人妻一区二区三区视频av| 三上悠亚av全集在线观看 | 精品亚洲成国产av| 一级毛片 在线播放| 99热这里只有精品一区| 3wmmmm亚洲av在线观看| 中文字幕亚洲精品专区| 日韩中字成人| 欧美 日韩 精品 国产| 亚洲真实伦在线观看| 日韩 亚洲 欧美在线| 在线看a的网站| 亚洲国产最新在线播放| 国产av精品麻豆| 毛片一级片免费看久久久久| 国产成人精品福利久久| 黄色毛片三级朝国网站 | 一本久久精品| 一级毛片黄色毛片免费观看视频| 最近手机中文字幕大全| 国产av码专区亚洲av| 六月丁香七月| 人人妻人人澡人人爽人人夜夜| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 9色porny在线观看| 99re6热这里在线精品视频| 国产伦精品一区二区三区视频9| 免费观看性生交大片5| 亚洲av综合色区一区| 成年人免费黄色播放视频 | 久久6这里有精品| 91成人精品电影| 久久免费观看电影| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| 黑人高潮一二区| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 亚洲三级黄色毛片| 国产黄色免费在线视频| 人人澡人人妻人| 如何舔出高潮| 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 美女cb高潮喷水在线观看| 人妻一区二区av| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 女人久久www免费人成看片| 九九久久精品国产亚洲av麻豆| 一本大道久久a久久精品| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 国产在线男女| 在线观看国产h片| a级片在线免费高清观看视频| 国产视频首页在线观看| 人人妻人人看人人澡| 一级毛片 在线播放| 麻豆乱淫一区二区| 夜夜爽夜夜爽视频| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 一个人看视频在线观看www免费| 久久久久久伊人网av| 六月丁香七月| 秋霞伦理黄片| 日本av免费视频播放| 人人澡人人妻人| 亚洲人成网站在线播| 蜜臀久久99精品久久宅男| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 一级av片app| 观看av在线不卡| 中文字幕亚洲精品专区| 色婷婷av一区二区三区视频| 国产色爽女视频免费观看| 亚洲国产欧美在线一区| 国产av一区二区精品久久| 日韩强制内射视频| 欧美+日韩+精品| 久久精品久久精品一区二区三区| 久久女婷五月综合色啪小说| 99久久精品国产国产毛片| 亚洲久久久国产精品| 高清av免费在线| 纯流量卡能插随身wifi吗| 老司机影院毛片| 国产欧美另类精品又又久久亚洲欧美| a 毛片基地| 国产探花极品一区二区| 一区二区三区精品91| 99九九在线精品视频 | 日本与韩国留学比较| 毛片一级片免费看久久久久| 成人亚洲精品一区在线观看| 欧美 亚洲 国产 日韩一| 天天操日日干夜夜撸| 国产美女午夜福利| 最新的欧美精品一区二区| 亚洲av综合色区一区| 69精品国产乱码久久久| 日日啪夜夜爽| 亚洲内射少妇av| 国产成人午夜福利电影在线观看| 日本爱情动作片www.在线观看| 性高湖久久久久久久久免费观看| 日韩欧美精品免费久久| 成人毛片a级毛片在线播放| 一级黄片播放器| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 久久久久精品久久久久真实原创| 免费黄网站久久成人精品| 久久99精品国语久久久| 大香蕉97超碰在线| 日韩电影二区| 五月伊人婷婷丁香| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 国产精品欧美亚洲77777| 国产精品伦人一区二区| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 99热这里只有是精品50| 亚洲精品日韩在线中文字幕| av国产久精品久网站免费入址| 97超碰精品成人国产| 桃花免费在线播放| 成人二区视频| 亚洲精品aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 国产毛片在线视频| 久久久久久伊人网av| 如何舔出高潮| 91午夜精品亚洲一区二区三区| 亚洲欧美一区二区三区国产| 精华霜和精华液先用哪个| 丝瓜视频免费看黄片| 国产亚洲欧美精品永久| 亚洲不卡免费看| 五月伊人婷婷丁香| 99热这里只有是精品50| 成人18禁高潮啪啪吃奶动态图 | 黄色日韩在线| 简卡轻食公司| 哪个播放器可以免费观看大片| 久久精品国产鲁丝片午夜精品| 啦啦啦在线观看免费高清www| 一级毛片aaaaaa免费看小| 一级二级三级毛片免费看| 大香蕉久久网| 亚洲精品日本国产第一区| 只有这里有精品99| 久久精品国产鲁丝片午夜精品| 啦啦啦在线观看免费高清www| 亚洲欧美成人精品一区二区| 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 久久99热6这里只有精品| 日本色播在线视频| 国产亚洲一区二区精品| 蜜臀久久99精品久久宅男| a 毛片基地| 男女免费视频国产| 精品久久久精品久久久| 久久久国产精品麻豆| 日本爱情动作片www.在线观看| 精品视频人人做人人爽| xxx大片免费视频| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 天堂中文最新版在线下载| 一级黄片播放器| 视频区图区小说| 成人美女网站在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品无人区| 久久精品国产亚洲网站| 少妇人妻久久综合中文| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6| av.在线天堂| 人妻系列 视频| 亚洲欧美成人综合另类久久久| 日韩电影二区| 久久6这里有精品| 寂寞人妻少妇视频99o| 啦啦啦啦在线视频资源| 日韩大片免费观看网站| 午夜福利,免费看| 久久6这里有精品| 看十八女毛片水多多多| 91精品伊人久久大香线蕉| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 国产精品一区二区三区四区免费观看| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 国产精品久久久久久精品电影小说| 亚洲天堂av无毛| 成人美女网站在线观看视频| 亚洲精品久久午夜乱码| 国产精品一区二区性色av| 免费看日本二区| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久久成人| 一本一本综合久久| 精品久久久久久久久亚洲| 精品久久久噜噜| 久久99热这里只频精品6学生| 欧美xxⅹ黑人| 嘟嘟电影网在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久亚洲国产成人精品v| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级专区第一集| 又爽又黄a免费视频| 搡老乐熟女国产| 精品国产一区二区三区久久久樱花| 狂野欧美白嫩少妇大欣赏| 搡女人真爽免费视频火全软件| 国产av一区二区精品久久| 六月丁香七月| 国产精品国产三级专区第一集| 精品人妻一区二区三区麻豆| 欧美性感艳星| 日本黄大片高清| 18禁动态无遮挡网站| 日本猛色少妇xxxxx猛交久久| 五月开心婷婷网| 51国产日韩欧美| 一区二区av电影网| 在线播放无遮挡| 婷婷色综合www| 日韩一本色道免费dvd| 免费看av在线观看网站| 日韩伦理黄色片| 十八禁高潮呻吟视频 | 免费黄网站久久成人精品| 亚洲怡红院男人天堂| 日日啪夜夜爽| 久久久久视频综合| 99久久精品一区二区三区| 中国国产av一级| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 女人久久www免费人成看片| 最后的刺客免费高清国语| 制服丝袜香蕉在线| 国产无遮挡羞羞视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av免费高清在线观看| 婷婷色综合大香蕉| 国产av一区二区精品久久| 午夜老司机福利剧场| 欧美日韩在线观看h| 精品视频人人做人人爽| 好男人视频免费观看在线| 日本与韩国留学比较| 国产色婷婷99| 亚洲成人手机| 亚洲精品久久久久久婷婷小说| 少妇精品久久久久久久| 日日爽夜夜爽网站| 亚洲av中文av极速乱| tube8黄色片| 日日爽夜夜爽网站| 婷婷色麻豆天堂久久| 精品亚洲成国产av| 亚洲色图综合在线观看| 亚洲精品日韩在线中文字幕| 国产一区有黄有色的免费视频| 久久6这里有精品| 这个男人来自地球电影免费观看 | 边亲边吃奶的免费视频| 乱人伦中国视频| 综合色丁香网| 22中文网久久字幕| 乱码一卡2卡4卡精品| 日本爱情动作片www.在线观看| 天天躁夜夜躁狠狠久久av| 在线观看人妻少妇| 高清不卡的av网站| 日韩一本色道免费dvd| 一个人免费看片子| 黄色毛片三级朝国网站 | 久久久久久久久久久丰满| 色视频在线一区二区三区| 国产永久视频网站| av黄色大香蕉| 啦啦啦中文免费视频观看日本| 亚洲av中文av极速乱| 在线观看一区二区三区激情| 午夜免费鲁丝| 成人毛片a级毛片在线播放| 高清在线视频一区二区三区| 久久青草综合色|