• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      連續(xù)流層析及用于抗體分離的新進(jìn)展

      2021-03-19 08:43:10荊淑瑩姚善涇林東強(qiáng)
      關(guān)鍵詞:層析柱連續(xù)流雙柱

      荊淑瑩, 史 策, 姚善涇, 林東強(qiáng)

      連續(xù)流層析及用于抗體分離的新進(jìn)展

      荊淑瑩, 史 策, 姚善涇, 林東強(qiáng)

      (浙江大學(xué) 生物質(zhì)化工教育部重點(diǎn)實(shí)驗(yàn)室, 浙江大學(xué) 化學(xué)工程與生物工程學(xué)院, 浙江 杭州 310027)

      連續(xù)生物制造是生物制藥的發(fā)展趨勢(shì),其中連續(xù)流層析是關(guān)鍵環(huán)節(jié)。作者根據(jù)近年來(lái)國(guó)內(nèi)外連續(xù)流層析的研究進(jìn)展,著重介紹了產(chǎn)物捕獲和精制階段的連續(xù)流層析技術(shù),分析了不同模式的技術(shù)差異、各自特點(diǎn)和應(yīng)用現(xiàn)狀。針對(duì)未來(lái)發(fā)展趨勢(shì),進(jìn)一步介紹了整合連續(xù)流層析過(guò)程,以及用于抗體連續(xù)生產(chǎn)的難點(diǎn)和挑戰(zhàn)。作為一項(xiàng)新興技術(shù),抗體連續(xù)生產(chǎn)具有提高過(guò)程產(chǎn)率和產(chǎn)品質(zhì)量、促進(jìn)設(shè)備小型化和流程自動(dòng)化、拓展過(guò)程靈活性和可靠性、降低生產(chǎn)成本等顯著優(yōu)勢(shì),但尚有不少方面需要改進(jìn)和深化,包括過(guò)程設(shè)計(jì)、過(guò)程分析技術(shù)和過(guò)程控制技術(shù)等,特別是基于模型的預(yù)測(cè)分析和控制方法。

      連續(xù)流層析;抗體;捕獲;精制;過(guò)程集成;過(guò)程分析技術(shù)

      1 引 言

      單克隆抗體(簡(jiǎn)稱單抗)藥物具有靶向性強(qiáng)、療效好、副作用小等特點(diǎn),在治療癌癥、自身免疫性疾病等方面具有顯著優(yōu)勢(shì)[1-2]。1985年首個(gè)鼠源單抗藥物被美國(guó)食品藥品監(jiān)督管理局(Food and Drug Administration, FDA)批準(zhǔn)上市,2002年首個(gè)全人源單抗藥物上市,此后單抗類藥物所占市場(chǎng)份額迅速增加[3-5]。2019年,全球藥品銷售額前十名中,7個(gè)為單抗藥物。近年來(lái),多個(gè)重磅單抗藥物專利到期,各大藥企紛紛開展相關(guān)產(chǎn)品研發(fā)[6-7]。國(guó)家通過(guò)“4+7”帶量采購(gòu)、醫(yī)保藥品談判等措施,極大壓低了藥品價(jià)格。因此,制藥企業(yè)面臨著新的挑戰(zhàn),提高過(guò)程效率和產(chǎn)能、降低生產(chǎn)成本,是必須面對(duì)的迫切問(wèn)題。

      連續(xù)生物制造(continuous biomanufacturing)是目前業(yè)界普遍關(guān)注的熱點(diǎn)。連續(xù)生產(chǎn)已廣泛應(yīng)用于石油化工、冶金精煉、汽車制造等眾多行業(yè)[8-11]。近年來(lái)生物制藥行業(yè)也開始加大對(duì)連續(xù)生產(chǎn)的探索,美國(guó)FDA公開表示支持連續(xù)生產(chǎn)工藝,組建了專門的團(tuán)隊(duì)以推進(jìn)連續(xù)生產(chǎn)工藝的研發(fā)和實(shí)施[12]。2019年FDA發(fā)布官方聲明推動(dòng)生物制藥的連續(xù)制造,并頒布了質(zhì)量控制指南[13]。目前連續(xù)灌流細(xì)胞培養(yǎng)技術(shù)已經(jīng)得到突破,并逐漸普及,在上游培養(yǎng)實(shí)現(xiàn)連續(xù)化的情況下,下游分離純化就成為整個(gè)生產(chǎn)過(guò)程的關(guān)鍵限速步驟[14-17]。麻省理工學(xué)院、瑞士聯(lián)邦理工學(xué)院等一些研究機(jī)構(gòu)積極探索下一代抗體連續(xù)制備新技術(shù),各生物制藥公司也紛紛建立連續(xù)制造研發(fā)中心,嘗試全流程的連續(xù)生產(chǎn)工藝[18]。相關(guān)研究表明,連續(xù)制造可提高過(guò)程產(chǎn)率和產(chǎn)品質(zhì)量,促進(jìn)設(shè)備小型化和流程自動(dòng)化,拓展過(guò)程的靈活性和可靠性,顯著降低制備成本。但是連續(xù)生產(chǎn)過(guò)程復(fù)雜、難度較大,至今尚未有抗體藥物的連續(xù)生產(chǎn)工藝被批準(zhǔn),仍有許多方面有待進(jìn)一步改善。

      單抗藥物分離通常采用蛋白A親和層析捕獲和兩步層析精制的平臺(tái)工藝。層析是典型的批次處理過(guò)程,針對(duì)不同分離階段的需要,實(shí)現(xiàn)高效的連續(xù)流層析,是過(guò)程開發(fā)的關(guān)鍵。本文將綜述國(guó)內(nèi)外連續(xù)流層析的研究進(jìn)展,著重介紹不同環(huán)節(jié)中連續(xù)流層析技術(shù)的原理、應(yīng)用和存在的問(wèn)題,以及連續(xù)流層析在單抗藥物生產(chǎn)過(guò)程中面臨的挑戰(zhàn)。

      2 捕獲階段的連續(xù)流層析

      2.1 基本原理

      抗體下游過(guò)程的層析分離主要分為捕獲與精制2個(gè)環(huán)節(jié),捕獲階段多采用蛋白A親和層析,去除大量雜質(zhì),普遍認(rèn)為該階段是抗體藥物生產(chǎn)下游過(guò)程的關(guān)鍵步驟[19]。層析過(guò)程一般采取批次運(yùn)行模式,即平衡、上樣、沖洗、洗脫、再生等各個(gè)步驟依次進(jìn)行,產(chǎn)能和過(guò)程效率比較有限。

      目前連續(xù)流層析主要應(yīng)用于抗體捕獲階段,一般采用多柱操作,通過(guò)順序切換層析柱,實(shí)現(xiàn)連續(xù)上樣分離,又稱為周期性逆流層析(periodic counter-current chromatography,PCC)。圖1(a)是典型的蛋白穿透曲線,為了避免損失,常規(guī)的批次層析通常采取較低的穿透點(diǎn)上樣,此時(shí)介質(zhì)的利用率較低(一般為50%~60%),相當(dāng)于圖1(a)中僅A部分的介質(zhì)容量被利用,造成了蛋白A層析介質(zhì)的浪費(fèi)。為提高介質(zhì)利用率,可以將常規(guī)的單柱批次處理方式(圖1(b))轉(zhuǎn)變?yōu)槎嘀?lián)的連續(xù)上樣模式(圖1(c)):柱1穿透的蛋白進(jìn)入后續(xù)柱2繼續(xù)吸附,持續(xù)上樣至?xí)r間2,此時(shí)柱1的介質(zhì)吸附容量為(A+B),介質(zhì)利用率顯著提高,經(jīng)優(yōu)化后可達(dá)90% 以上;柱1吸附完成后,將串聯(lián)的2根層析柱斷開,料液切換至柱2持續(xù)上樣,而柱1則進(jìn)行沖洗、洗脫、再生和平衡等操作,然后柱1再次與柱2串聯(lián),上述步驟依次進(jìn)行,循環(huán)操作,可以實(shí)現(xiàn)料液的持續(xù)上樣。該方式能夠在避免蛋白損失的前提下顯著提高介質(zhì)利用率,同時(shí)提高過(guò)程產(chǎn)率,減少緩沖液消耗,降低生產(chǎn)成本。

      圖1 連續(xù)捕獲層析原理圖

      2.2 不同模式比較

      基于上述原理,已開發(fā)出不同模式的連續(xù)流層析過(guò)程,主要有GE Healthcare公司PCC、Pall公司BioSMB、Novasep公司BioSC和ChromaCon公司CaptureSMB。

      (1) 雙柱連續(xù)流層析和CaptureSMB

      ChromaCon公司推出雙柱連續(xù)流層析系統(tǒng)Contichrom? CUBE,使用2根層析柱,是最精簡(jiǎn)的連續(xù)流層析系統(tǒng),其蛋白捕獲模式稱為CaptureSMB,YMC Process Technologies公司推出了相應(yīng)的制備生產(chǎn)級(jí)EcoPrime? Twin系統(tǒng)。具體操作包括6個(gè)步驟,如圖2所示。首先,2根層析柱以串聯(lián)方式上樣,1#柱流穿的蛋白被2#柱捕獲;1#柱達(dá)到設(shè)定的穿透點(diǎn)后,將未吸附的蛋白沖洗到2#柱;然后將兩柱斷開,1#柱進(jìn)行淋洗、洗脫、再生、再平衡等步驟(Recovery-Regeneration,R-R),與此同時(shí)2#柱繼續(xù)上樣。待1#柱完成所有洗脫和再生步驟,將1#柱串聯(lián)至2#柱后,2#柱持續(xù)上樣,與前面過(guò)程類似,只是兩柱調(diào)換了位置。因此,通過(guò)雙柱交替上樣,便可以實(shí)現(xiàn)連續(xù)層析分離。為使系統(tǒng)快速達(dá)到穩(wěn)定狀態(tài),通常會(huì)在最前面添加一個(gè)啟動(dòng)環(huán)節(jié),還會(huì)在結(jié)束前添加一個(gè)終止環(huán)節(jié)。

      圖2 雙柱連續(xù)流層析(CaptureSMB)捕獲蛋白示意圖[20]

      CaptureSMB模式只使用2根層析柱,最大程度上簡(jiǎn)化了設(shè)備及操作,但具有一定的局限性。由于存在雙柱串聯(lián)的沖洗階段(Step 2和5),因此上樣過(guò)程存在中斷,一種改進(jìn)方式是在Step 2和5中對(duì)后柱持續(xù)上樣,以保持上樣過(guò)程的連續(xù)性。此外,在單柱上樣階段(Step 3和6),為了平衡另一柱的洗脫和再生過(guò)程,通常會(huì)減慢上樣流速,因此CaptureSMB模式為變流速上樣。

      (2) 3~4柱連續(xù)流層析和PCC

      GE Healthcare公司推出PCC連續(xù)流層析系統(tǒng),包括實(shí)驗(yàn)室規(guī)模的?KTA pcc和制備生產(chǎn)規(guī)模的BioProcess pcc,采取3C-PCC和4C-PCC兩種模式,分別使用3和4根層析柱。

      3C-PCC系統(tǒng)的具體步驟見圖3,與CaptureSMB類似,也是采用2根層析柱串聯(lián)上樣。首先,1#和2#柱串聯(lián)進(jìn)行上樣,3#層析柱進(jìn)行R-R等步驟;當(dāng)3#柱再生完畢,1#柱也達(dá)到預(yù)設(shè)的穿透比例,將1#柱與3#柱串聯(lián),1#柱中未吸附的蛋白沖洗到3#柱,與此同時(shí)料液切換到2#柱,以恒定速度上樣;待1#柱沖洗完畢,斷開1#柱與3#柱,連接2#柱與3#柱,持續(xù)上樣,1#柱進(jìn)行R-R步驟。重復(fù)以上步驟,從Step 1到Step 6,每根層析柱都完成了層析操作的所有步驟,恢復(fù)到初始狀態(tài),即完成了一個(gè)分離循環(huán)。需要注意的是,上樣過(guò)程和洗脫再生過(guò)程需要合理設(shè)計(jì),互相匹配。

      圖3 3柱連續(xù)流層析(3C-PCC)捕獲蛋白示意圖

      如果蛋白濃度較高,上樣時(shí)間較短,而洗脫再生時(shí)間較長(zhǎng),使得再生過(guò)程中蛋白可能從前面2根層析柱中穿透出來(lái),造成蛋白的損失。針對(duì)這一狀況,可以使用4根層析柱的4C-PCC系統(tǒng),具體見圖4,仍采用雙柱串聯(lián)的方式進(jìn)行上樣,但將洗脫和再生分為2個(gè)階段,分別在2根層析柱內(nèi)進(jìn)行。

      不同于雙柱CaptureSMB模式,3C-PCC和4C-PCC采用恒定流速上樣,即在整個(gè)層析過(guò)程中,無(wú)論是2柱串聯(lián)上樣還是單柱上樣,上樣流速均保持不變。不過(guò),對(duì)于PCC模式,需要合理匹配上樣過(guò)程和洗脫再生過(guò)程。若洗脫再生時(shí)間較長(zhǎng)時(shí),則通過(guò)增加層析柱數(shù)來(lái)分?jǐn)傁疵撛偕臅r(shí)間,保證上樣過(guò)程中不會(huì)有蛋白損失;若上樣時(shí)間較長(zhǎng),洗脫再生完畢后,層析柱需要等待,直至上樣完成。對(duì)于雙柱CaptureSMB模式,則一般通過(guò)計(jì)算上樣量,利用降低單柱上樣的流速來(lái)匹配洗脫再生步驟,從而實(shí)現(xiàn)過(guò)程優(yōu)化。

      (3) 3~16柱連續(xù)流層析和BioSMB

      Pall公司開發(fā)了Cadence BioSMB連續(xù)流層析系統(tǒng),使用獨(dú)特的一次性閥系統(tǒng),可以實(shí)現(xiàn)復(fù)雜的流路設(shè)計(jì),滿足3~16根層析柱的連續(xù)流層析。BioSMB系統(tǒng)最簡(jiǎn)單的3柱連續(xù)流層析與3C-PCC技術(shù)類似,差異主要在沖洗階段,如Step 2步驟,BioSMB系統(tǒng)將1#柱和2#柱的出口并聯(lián),共同接入3#柱,這樣可以保證2#柱中蛋白不會(huì)出現(xiàn)穿透的風(fēng)險(xiǎn)。待1#柱沖洗完畢,斷開1#柱與3#柱,2#柱與3#柱繼續(xù)串聯(lián)上樣,1#柱則進(jìn)行R-R步驟。對(duì)于BioSMB系統(tǒng),當(dāng)再生時(shí)間較長(zhǎng)、上樣時(shí)間較短的情況下,可以通過(guò)增加層析柱,將洗脫再生步驟時(shí)間分?jǐn)偟綆赘鶎游鲋?,可以避免因再生時(shí)間較長(zhǎng)而導(dǎo)致蛋白從層析柱中穿透而損失。

      圖4 4柱連續(xù)流層析(4C-PCC)捕獲蛋白示意圖

      (4) 多柱序列層析和SMCC技術(shù)

      Novasep公司開發(fā)BioSC系統(tǒng),也稱作多柱序列層析(sequential multicolumn chromatography,SMCC),適用于4~8根層析柱。以4根層析柱為例介紹SMCC操作方式。將前3根層析柱(1#、2#和3#)串聯(lián),進(jìn)行上樣,4#柱進(jìn)行R-R步驟;當(dāng)4#柱再生完畢,接到3#柱后,此時(shí)1#柱已飽和吸附,將未吸附的蛋白沖洗到后續(xù)層析柱后,1#柱與后續(xù)層析柱斷開;1#柱進(jìn)行R-R步驟;2#、3#和4#柱串聯(lián)進(jìn)行上樣。每根層析柱交替完成層析過(guò)程的所有步驟,恢復(fù)到初始狀態(tài),完成一個(gè)循環(huán)。BioSC系統(tǒng)采用3根層析柱串聯(lián)進(jìn)行上樣,能充分保證蛋白不會(huì)從層析柱中穿透。若蛋白濃度較高,且R-R步驟的時(shí)間較長(zhǎng),3柱串聯(lián)仍可能導(dǎo)致蛋白從層析柱中穿透,此時(shí)可以添加層析柱。但是,隨串聯(lián)層析柱增加,會(huì)造成床層壓力升高,容易引起介質(zhì)坍塌,可以使用較小的線性流速或者較短的層析柱。

      與傳統(tǒng)批次層析相比,連續(xù)流層析利用多柱串聯(lián)上樣,提高了介質(zhì)的利用率和過(guò)程產(chǎn)率,減少介質(zhì)消耗,同時(shí)降低緩沖液等物料消耗,減少了廢液排放。但是,需要注意的是,連續(xù)流層析過(guò)程較為復(fù)雜,以上幾種模式各有優(yōu)缺點(diǎn),還需進(jìn)一步優(yōu)化設(shè)計(jì)。此外,連續(xù)流層析的影響因素較多,包括系統(tǒng)本身、工藝條件以及層析介質(zhì)等,利用層析模型進(jìn)行預(yù)測(cè)分析,系統(tǒng)評(píng)價(jià)關(guān)鍵參數(shù)對(duì)連續(xù)捕獲的影響,將有助于連續(xù)流層析過(guò)程的理性設(shè)計(jì)。

      2.3 抗體連續(xù)捕獲的應(yīng)用和發(fā)展

      蛋白A親和層析介質(zhì)價(jià)格昂貴[21-22],采用連續(xù)流層析進(jìn)行抗體捕獲,可顯著提高介質(zhì)和設(shè)備利用率,增大過(guò)程產(chǎn)率,降低生產(chǎn)成本。近年來(lái),多個(gè)研究機(jī)構(gòu)和公司都在研發(fā)連續(xù)捕獲工藝,既有實(shí)驗(yàn)室小試,又有中試嘗試。

      Angarita等[23]對(duì)動(dòng)物細(xì)胞表達(dá)的單抗進(jìn)行CaptureSMB雙柱連續(xù)流親和捕獲,相較于常規(guī)批次層析過(guò)程,產(chǎn)率提高38%,介質(zhì)用量減少28%。高宗曄等[24]以兩款蛋白 A 親和層析介質(zhì)為對(duì)象,比較CaptureSMB與常規(guī)批次過(guò)程的差異,結(jié)果表明在低保留時(shí)間下動(dòng)態(tài)載量高的介質(zhì)具有優(yōu)勢(shì),過(guò)程效果顯著提升,產(chǎn)率提高約40%,介質(zhì)利用率提高約25%,緩沖液消耗下降約40%。Godawat等[25]采用?KTA pcc 75系統(tǒng),對(duì)動(dòng)物細(xì)胞表達(dá)的單抗進(jìn)行3C-PCC 3柱連續(xù)流親和捕獲,與常規(guī)批次層析相比,連續(xù)流過(guò)程的介質(zhì)利用率增加30%,緩沖液消耗減少80%,同時(shí)柱體積減小26倍。Gjoka等[26]采用Cadence BioSMB系統(tǒng),建立了多柱連續(xù)流親和捕獲工藝,相較于常規(guī)批次過(guò)程,根據(jù)上樣步驟所連接的柱數(shù)量不同,產(chǎn)率提高40%~50%。

      Angelo等[27]將實(shí)驗(yàn)室規(guī)模的CaptureSMB雙柱連續(xù)流親和層析放大100倍,采用EcoPrime Twin 100系統(tǒng)進(jìn)行中試驗(yàn)證,結(jié)果表明連續(xù)分離的宿主細(xì)胞蛋白去除、DNA殘留、蛋白A配基泄漏和抗體純度等均與批次過(guò)程相當(dāng),產(chǎn)率可提高1.8~2.5倍,介質(zhì)利用率從67% 提高到92%,緩沖溶液消耗節(jié)省一半。Otes等[28]將實(shí)驗(yàn)室規(guī)模的Cadence? BioSMB PD系統(tǒng)(5.65 mL層析柱)放大至Cadence? BioSMB Process 80 system系統(tǒng)(200 mL層析柱),中試實(shí)驗(yàn)結(jié)果與小試規(guī)模相同,相比于批次過(guò)程,產(chǎn)率提高400%~500%。Pollock等[29]從成本和操作可行性出發(fā),對(duì)早期臨床、后期臨床及商業(yè)化生產(chǎn)3個(gè)階段的PCC多柱連續(xù)流親和層析進(jìn)行預(yù)測(cè)分析,結(jié)果表明早期臨床階段的成本構(gòu)成對(duì)連續(xù)流技術(shù)最為敏感,應(yīng)用連續(xù)流親和捕獲可以節(jié)省約30% 成本。

      3 精制階段的連續(xù)流層析

      抗體精制的目標(biāo)在于去除微量雜質(zhì),包括宿主細(xì)胞蛋白、DNA、抗體片段、聚體、異質(zhì)體等,一般采用離子交換層析、疏水相互作用層析和混合模式層析。精制階段連續(xù)流層析的相關(guān)研究相對(duì)較少,原理和模式差別較大,以下分別介紹。

      3.1 MCSGP模式

      在蛋白梯度洗脫分離中,常會(huì)遇到目標(biāo)主峰P和相似組分無(wú)法完全分離的情況,包括交疊的前峰雜質(zhì)W和后峰雜質(zhì)S。通過(guò)分離條件優(yōu)化,如減小流速、放緩梯度和減小介質(zhì)粒徑等,可以一定程度上提高分離度,但常常難以達(dá)到完全分離[30-34]。因此,常規(guī)的單柱層析分離必然存在純度和收率之間的矛盾:若要保證產(chǎn)品純度,就必須減小產(chǎn)品收集區(qū)間,導(dǎo)致收率較低;若想得到較高的收率,需要增大收集區(qū)間,純度就必然下降。為此,Steinebach等[35]提出了一個(gè)連續(xù)流層析的解決方案:通過(guò)收集主峰和雜質(zhì)峰的交疊區(qū)間,實(shí)現(xiàn)循環(huán)上樣,稱為多柱逆流溶劑梯度純化(multicolumn counter-current solvent gradient purification, MCSGP)。雙柱MCSGP的具體操作步驟見圖5,根據(jù)峰形分布,柱1適時(shí)收集高純度的目標(biāo)蛋白區(qū)間P,前峰交疊區(qū)W和后峰交疊區(qū)S經(jīng)在線稀釋后相繼進(jìn)入后續(xù)柱2,與新鮮料液一起通過(guò)柱2進(jìn)一步實(shí)現(xiàn)分離,柱1經(jīng)清洗和再生,兩柱交替換位,從而實(shí)現(xiàn)連續(xù)性分離。雙柱連續(xù)流層析系統(tǒng)Contichrom? CUBE combined整合了 MCSGP分離模式,相應(yīng)推出制備生產(chǎn)級(jí)的MCSGP連續(xù)流層析系統(tǒng),可以自動(dòng)實(shí)現(xiàn)多柱切換和在線稀釋。

      圖5 雙柱MCSGP連續(xù)流層析分離示意圖

      MCSGP連續(xù)分離模式,在保證目標(biāo)物純度的同時(shí),顯著提高收率,特別適合于性質(zhì)相似組分的分離,已應(yīng)用于抗體電荷異質(zhì)體、抗體聚集體、雙特異性單抗、多肽等分離純化[36-38]。Müller-Sp?th等[39]利用MCSGP分離單抗異質(zhì)體,結(jié)果表明MCSGP的分離效果明顯優(yōu)于單柱批次過(guò)程,目標(biāo)單抗的純度及收率均達(dá)到93%。Steinebach等[35]簡(jiǎn)化了MCSGP操作,用于單抗電荷異質(zhì)體分離,經(jīng)優(yōu)化后單抗主體蛋白純度和收率均大于90%。Vogg等[40]以目標(biāo)蛋白的純度和收率作為評(píng)價(jià)指標(biāo),對(duì)MCSGP過(guò)程參數(shù)進(jìn)行評(píng)價(jià),結(jié)果表明收集區(qū)段的選取對(duì)目標(biāo)蛋白純度有決定性作用。

      3.2 雙柱批次循環(huán)模式

      Persson等[41]提出雙柱批次循環(huán)模式(two-column batch-to-batch recirculation)。與MCSGP的“交疊組分循環(huán)上樣”思路相似,該模式也使用2根層析柱,柱1適時(shí)收集高純度的目標(biāo)蛋白區(qū)間P,前峰交疊區(qū)W和后峰交疊區(qū)S經(jīng)在線稀釋后相繼進(jìn)入后續(xù)柱2,與新鮮料液一起通過(guò)柱2進(jìn)一步實(shí)現(xiàn)分離。不同于MCSGP模式的1套設(shè)備運(yùn)轉(zhuǎn)2根層析柱,該模式采用2臺(tái)單柱層析設(shè)備(?KTA explore 100),每臺(tái)設(shè)備運(yùn)轉(zhuǎn)1根層析柱,借助三通閥將2臺(tái)設(shè)備進(jìn)行耦合。Persson等[41]采用該模式對(duì)核糖核酸酶A、細(xì)胞色素C和溶菌酶的混合物進(jìn)行分離,建立層析模型對(duì)參數(shù)進(jìn)行優(yōu)化,結(jié)果表明可減少產(chǎn)物損失并提高產(chǎn)物純度,經(jīng)20個(gè)周期的循環(huán)分離后,在保證細(xì)胞色素C純度大于90% 前提下,收率由單柱批次層析的45.4% 提高至93.6%,產(chǎn)率提高3.4倍。該模式使用常規(guī)層析設(shè)備進(jìn)行改造,但切換閥等部件較多,控制單元比較復(fù)雜,具有一定的局限性。

      3.3 多柱置換層析模式

      Khanal等[42]將置換層析與連續(xù)流層析相結(jié)合,提出了多柱置換層析(multi-column displacement chromatography),構(gòu)建了一套由3根層析柱構(gòu)成的連續(xù)流層析系統(tǒng),用于分離單抗電荷異質(zhì)體。

      單抗電荷異質(zhì)體分為堿性異質(zhì)體和酸性異質(zhì)體,其中前者的等電點(diǎn)比主體蛋白(P)高,與陽(yáng)離子交換介質(zhì)的結(jié)合能力強(qiáng),即為強(qiáng)吸附組分(S);后者的等電點(diǎn)比主體蛋白低,與陽(yáng)離子交換介質(zhì)的結(jié)合能力弱,即為弱吸附組分(W)。首先將3根層析柱串聯(lián),對(duì)1#柱上樣,在上樣量大于介質(zhì)載量的情況下,料液中的強(qiáng)吸附組分會(huì)把主體蛋白及弱吸附組分置換出來(lái),根據(jù)結(jié)合能力強(qiáng)弱,強(qiáng)吸附組分、主體蛋白和弱吸附組分分別主要分布于1#、2#和3#柱中,每根柱中均存在交疊組分;用平衡緩沖液進(jìn)行沖洗,使1#和2#柱中未結(jié)合的殘留蛋白進(jìn)入3#柱,以減少蛋白損失;然后將3根層析柱斷開,分別對(duì)1#和2#柱進(jìn)行洗脫,此時(shí)3#柱中主要為弱吸附組分和主體蛋白;接著將3根層析柱重新連接,反向從3#柱開始上樣,通過(guò)這種方式,將第1個(gè)循環(huán)中未洗脫的3#柱內(nèi)的弱吸附組分和主體蛋白循環(huán)上樣,提高主體蛋白的收率。結(jié)果表明,將堿性異質(zhì)體和主體蛋白作為自置換劑,實(shí)現(xiàn)了主體蛋白的富集,在滿足主體蛋白90%純度的基礎(chǔ)上,收率從65%提高到90%。

      3.4 不同層析過(guò)程組合的連續(xù)精制純化

      將精制純化階段的不同層析單元進(jìn)行整合,建立連續(xù)精制層析工藝,不僅提高分離效率,還可以減少中間儲(chǔ)罐的使用,節(jié)省工藝時(shí)間與費(fèi)用。

      Kateja等[43]利用一臺(tái)?KTA層析設(shè)備對(duì)2根層析柱進(jìn)行串聯(lián)上樣,單抗樣品經(jīng)陽(yáng)離子交換層析柱分離后,通過(guò)三通閥加入緩沖液實(shí)現(xiàn)在線調(diào)節(jié)離子強(qiáng)度,之后進(jìn)入混合模式層析柱進(jìn)行分離,去除電荷異質(zhì)體和聚集體,純化時(shí)間從12縮短至6 h。對(duì)純化后的單抗進(jìn)行檢測(cè),結(jié)果表明聚體含量少于1%,宿主細(xì)胞蛋白小于10′10-6,DNA含量小于5′10-9。

      L?fgren等[44]將陰離子交換層析、病毒滅活和疏水相互作用層析3步純化單元整合并實(shí)現(xiàn)連續(xù)化操作,采用1臺(tái)?KTA層析系統(tǒng)裝配2根層析柱分別用于陰離子交換層析和疏水相互作用層析,使用Superloop上樣器進(jìn)行病毒滅活。通過(guò)連續(xù)精制純化,整個(gè)純化工藝由7步減少為2步,縮減了生產(chǎn)時(shí)間與費(fèi)用。

      4 抗體制備的整合連續(xù)流層析過(guò)程

      將捕獲階段與精制階段進(jìn)行整合,構(gòu)建全流程的整合連續(xù)流層析,可以顯著提高過(guò)程效率。

      Girard等[45]通過(guò)3柱SMCC系統(tǒng),將蛋白A親和層析和離子交換層析2個(gè)單元進(jìn)行整合,結(jié)果表明捕獲階段蛋白A親和層析的產(chǎn)率從0.39提高至1.77 kg×(L×d)-1,精制階段離子交換層析的產(chǎn)率從1.0提高至6.1 kg×(L×d)-1,分別提高了4.5和6.1倍。

      Gjoka等[46]通過(guò)2臺(tái)Cadence BioSMB PD系統(tǒng),實(shí)現(xiàn)了蛋白A親和層析、病毒滅活、陰離子交換層析(流穿模式)和混合模式陽(yáng)離子交換層析4個(gè)單元的整合,將傳統(tǒng)批次過(guò)程轉(zhuǎn)換為連續(xù)化生產(chǎn),可減少95% 的蛋白A及混合模式介質(zhì)的使用,緩沖液消耗減少44%。對(duì)于捕獲階段,產(chǎn)率從13提高至50 g×(L×h)-1;對(duì)于混合模式層析階段,產(chǎn)率從10提高至60 g×(L×h)-1。

      將下游連續(xù)流層析系統(tǒng)與上游灌流細(xì)胞培養(yǎng)相耦合,可以實(shí)現(xiàn)抗體的全流程連續(xù)生產(chǎn),從而提高單抗質(zhì)量的穩(wěn)定性和生產(chǎn)效率,降低生產(chǎn)成本[47-48]。Warikoo等[49]對(duì)上下游整合進(jìn)行了嘗試,利用PCC連續(xù)流層析系統(tǒng),構(gòu)建了與灌流生物反應(yīng)器組合的連續(xù)捕獲,不間斷地運(yùn)行30 d,結(jié)果表明產(chǎn)品質(zhì)量穩(wěn)定。在此基礎(chǔ)上,Godawat等[50]進(jìn)一步擴(kuò)展為端到端的全流程整合連續(xù)系統(tǒng),細(xì)胞培養(yǎng)液經(jīng)過(guò)濾后泵入一次性緩沖罐中,然后進(jìn)行連續(xù)捕獲層析、病毒滅活,過(guò)濾、連續(xù)精制層析、膜層析,最后得到單抗原液。該工藝采用封閉系統(tǒng)以減少污染的風(fēng)險(xiǎn),自動(dòng)化操作保證產(chǎn)品質(zhì)量的穩(wěn)定性,提高生產(chǎn)效率和靈活性,降低成本。

      5 抗體連續(xù)生產(chǎn)的難點(diǎn)及展望

      作為一項(xiàng)新興技術(shù),抗體連續(xù)生產(chǎn)具有顯著優(yōu)勢(shì),是生物制藥發(fā)展的必然趨勢(shì)[51]。但是,實(shí)現(xiàn)抗體連續(xù)生產(chǎn),除了法規(guī)部門的監(jiān)管因素外,在過(guò)程設(shè)計(jì)、過(guò)程分析和過(guò)程控制等方面仍存在嚴(yán)峻的挑戰(zhàn)。

      5.1 過(guò)程設(shè)計(jì)

      連續(xù)流層析模式較多,操作復(fù)雜,過(guò)程參數(shù)多,優(yōu)化設(shè)計(jì)較為困難。對(duì)連續(xù)流層析建立數(shù)學(xué)模型,優(yōu)化過(guò)程參數(shù),可輔助過(guò)程設(shè)計(jì)與放大。Ng等[52]分別建立了單柱及多柱SMCC連續(xù)流親和捕獲模型,借助模型進(jìn)行過(guò)程優(yōu)化,將最優(yōu)產(chǎn)率從傳統(tǒng)批次層析的2.9提高到4.0 kg×d-1。Shi等[20]建立了連續(xù)捕獲的數(shù)學(xué)模型與設(shè)計(jì)方法,對(duì)CaptureSMB過(guò)程進(jìn)行綜合分析,針對(duì)過(guò)程產(chǎn)率和介質(zhì)利用率雙指標(biāo)進(jìn)行優(yōu)化,確定合適的保留時(shí)間和穿透點(diǎn)比例。為了更好地比較不同模式的連續(xù)流層析,林東強(qiáng)等[53]提出基于層析模型的連續(xù)流層析設(shè)計(jì)及優(yōu)化策略,見圖6,系統(tǒng)分析連續(xù)流層析操作參數(shù)和設(shè)計(jì)參數(shù)對(duì)分離性能的影響,得到過(guò)程產(chǎn)率和介質(zhì)利用率分布圖,合理設(shè)計(jì)連續(xù)流層析的操作空間,顯著提高連續(xù)流層析過(guò)程開發(fā)效率,并進(jìn)一步研發(fā)了集成軟件包,輔助不同模式連續(xù)捕獲的過(guò)程設(shè)計(jì)[54-55]。在此基礎(chǔ)上,為了提高數(shù)據(jù)處理和復(fù)雜優(yōu)化的能力,林東強(qiáng)等[56]引入人工神經(jīng)網(wǎng)絡(luò)(artificial neural network, ANN),采用ANN替代機(jī)理模型進(jìn)行穿透曲線的擬合和預(yù)測(cè),在保證計(jì)算精度的情況下,加快了運(yùn)算速度,有利于多維的參數(shù)分析和優(yōu)化,實(shí)現(xiàn)連續(xù)流層析的綜合優(yōu)化,同時(shí)也研發(fā)了相應(yīng)的集成軟件包[57]。Sellberg等[58]針對(duì)MCSGP過(guò)程建立了單柱模擬,以實(shí)現(xiàn)對(duì)連續(xù)分離過(guò)程的動(dòng)態(tài)優(yōu)化,結(jié)果表明借助模型對(duì)操作條件進(jìn)行優(yōu)化,目標(biāo)蛋白純度可以提高到95%,收率達(dá)99%。鑒于連續(xù)流層析的復(fù)雜性,采用合適的模型,引入先進(jìn)的數(shù)據(jù)處理方法,將有助于過(guò)程的合理設(shè)計(jì)和優(yōu)化。

      圖6 基于層析模型的連續(xù)流層析設(shè)計(jì)及優(yōu)化[53]

      5.2 過(guò)程分析技術(shù)

      連續(xù)生產(chǎn)過(guò)程中,料液連續(xù)輸入,產(chǎn)品連續(xù)輸出,其中任一環(huán)節(jié)出現(xiàn)異常,均會(huì)對(duì)整批產(chǎn)品的質(zhì)量產(chǎn)生重要影響。因此,連續(xù)生產(chǎn)的關(guān)鍵在于確保每一環(huán)節(jié)中間產(chǎn)品的關(guān)鍵質(zhì)量屬性合格且均一穩(wěn)定,即需要對(duì)各環(huán)節(jié)進(jìn)行實(shí)時(shí)監(jiān)測(cè)[59-62]。

      為了便于藥物生產(chǎn)的質(zhì)量控制,2004年FDA開始倡導(dǎo)過(guò)程分析技術(shù)(process analytical technology, PAT),即通過(guò)及時(shí)測(cè)量樣品、中間產(chǎn)品的關(guān)鍵質(zhì)量屬性,對(duì)藥物生產(chǎn)過(guò)程進(jìn)行評(píng)估和控制,以確保終產(chǎn)品的質(zhì)量[63]。對(duì)于連續(xù)分離過(guò)程,目前仍主要依賴于紫外檢測(cè)器進(jìn)行監(jiān)控,缺乏實(shí)時(shí)、高效的PAT技術(shù)。紫外檢測(cè)過(guò)于單一,無(wú)法全面反映蛋白的關(guān)鍵質(zhì)量屬性,若中間產(chǎn)品存在偏差將極有可能導(dǎo)致整批產(chǎn)品的浪費(fèi),而取樣離線檢測(cè)耗時(shí)過(guò)長(zhǎng),無(wú)法實(shí)現(xiàn)快速分析,難以滿足連續(xù)分離的監(jiān)測(cè)需求[64]。因此,研發(fā)新型過(guò)程分析技術(shù)十分重要,如拉曼光譜、近紅外光譜等,一方面發(fā)展小型化、快速化、可靠的過(guò)程分析設(shè)備,另一方面需要考慮復(fù)雜組分的分析,以及取樣策略等對(duì)連續(xù)過(guò)程的影響[65-67]。

      5.3 過(guò)程控制技術(shù)

      高效的過(guò)程控制是維護(hù)連續(xù)過(guò)程穩(wěn)定運(yùn)行的保障[68-69],其中關(guān)鍵點(diǎn)包括下游捕獲與上游細(xì)胞培養(yǎng)的銜接、連續(xù)層析的預(yù)測(cè)控制、全流程的集成控制。

      下游親和層析捕獲與上游細(xì)胞培養(yǎng)(如灌流培養(yǎng))的銜接是整合連續(xù)過(guò)程中至關(guān)重要的環(huán)節(jié)。主要問(wèn)題在于灌流培養(yǎng)輸出的蛋白料液濃度是變化的[70-72],料液濃度的波動(dòng)將會(huì)直接影響蛋白穿透曲線,從而影響蛋白A親和捕獲的過(guò)程控制。?KTA pcc系統(tǒng)在層析柱之前和之后分別設(shè)置紫外檢測(cè)器,在線監(jiān)測(cè)單抗UV值的疊加響應(yīng),以控制合適的穿透比例設(shè)定值,稱為DUV控制;Contichrom? CUBE combined系統(tǒng)則只在柱后檢測(cè)單抗UV值的疊加響應(yīng),通過(guò)計(jì)算單抗穿透曲線的積分面積,以控制合適的上樣量,稱為AutomAb控制。這2種控制策略,一定程度上可以適應(yīng)料液蛋白濃度的小幅波動(dòng),但歸根結(jié)底是通過(guò)監(jiān)測(cè)UV的被動(dòng)控制。如果采用層析模型對(duì)當(dāng)前時(shí)刻的穿透曲線進(jìn)行擬合,并對(duì)后續(xù)柱的穿透曲線進(jìn)行預(yù)測(cè)評(píng)估,提前進(jìn)行過(guò)程參數(shù)調(diào)整,就可以提高控制的精準(zhǔn)性和可靠性。預(yù)測(cè)控制的關(guān)鍵在于建立合適的模型,對(duì)監(jiān)測(cè)數(shù)據(jù)進(jìn)行快速處理分析,并對(duì)后續(xù)數(shù)據(jù)進(jìn)行預(yù)測(cè)評(píng)估和比對(duì),模型質(zhì)量將直接影響控制決策,進(jìn)一步影響工藝流程的適用性與穩(wěn)健性。

      對(duì)于連續(xù)過(guò)程,各單元之間沒(méi)有等待和緩沖,各步驟操作的精準(zhǔn)性和時(shí)效性要求很高。以MCSGP模式為例,對(duì)于相似組分的分離純化,分離條件的微小改變均有可能對(duì)層析柱內(nèi)的分離性能產(chǎn)生影響,進(jìn)而導(dǎo)致實(shí)際循環(huán)再分離的組分發(fā)生變化,從而影響產(chǎn)品純度與收率。此外,每個(gè)循環(huán)中切割的交疊組分,隨循環(huán)次數(shù)的增加而發(fā)生細(xì)微改變,若采取恒定的控制模式將產(chǎn)生偏差,難以實(shí)現(xiàn)對(duì)目標(biāo)組分的準(zhǔn)確分離。因此,需要加強(qiáng)對(duì)連續(xù)層析過(guò)程的認(rèn)識(shí),建立高預(yù)測(cè)性、高穩(wěn)健性、高響應(yīng)性的模型以實(shí)現(xiàn)預(yù)測(cè)控制,通過(guò)實(shí)時(shí)調(diào)整關(guān)鍵操作參數(shù),實(shí)現(xiàn)穩(wěn)定的過(guò)程控制。近年來(lái),越來(lái)越多的研究集中于建立層析模型以實(shí)現(xiàn)不同條件下分離效果的預(yù)測(cè),提高控制效率[73-76]。針對(duì)傳統(tǒng)批次層析的模型已較為成熟,能夠較好地對(duì)分離效果進(jìn)行預(yù)測(cè),快速優(yōu)化合適的操作參數(shù),對(duì)過(guò)程中出現(xiàn)的各種波動(dòng)及時(shí)進(jìn)行自動(dòng)調(diào)整,從而增強(qiáng)層析系統(tǒng)的穩(wěn)健性[77-79]。但是,連續(xù)過(guò)程更加復(fù)雜,關(guān)鍵參數(shù)眾多,建立合適模型的難度較大,有待進(jìn)一步研發(fā)。

      對(duì)于整合的單抗全流程連續(xù)生產(chǎn),F(xiàn)eidl等[80]研發(fā)了數(shù)據(jù)采集及監(jiān)控系統(tǒng)(supervisory control and data acquisition system, SCADA),組合了在線和離線檢測(cè),收集并集中存儲(chǔ)所有過(guò)程數(shù)據(jù),對(duì)整個(gè)過(guò)程進(jìn)行監(jiān)測(cè)和控制,實(shí)現(xiàn)各個(gè)單元的優(yōu)化協(xié)調(diào)和集成控制,包括灌流細(xì)胞培養(yǎng)、CaptureSMB連續(xù)流親和捕獲、病毒滅活和兩步精制層析分離,實(shí)現(xiàn)了連續(xù)10 d的穩(wěn)定運(yùn)行。結(jié)果表明,全流程的集成控制有助于應(yīng)對(duì)連續(xù)生產(chǎn)過(guò)程的干擾和漂移,實(shí)現(xiàn)穩(wěn)健的工藝控制,保障穩(wěn)定的產(chǎn)品質(zhì)量。

      6 結(jié) 語(yǔ)

      對(duì)于單抗等生物醫(yī)藥行業(yè),連續(xù)化生產(chǎn)是自動(dòng)化、智能化升級(jí)的必由之路,也是發(fā)展的必然趨勢(shì)。連續(xù)流層析是下游連續(xù)化生產(chǎn)的重要環(huán)節(jié),能夠提高過(guò)程效率、增強(qiáng)產(chǎn)品質(zhì)量的穩(wěn)定性、提高工藝的靈活性,還可以減少人為操作的失誤風(fēng)險(xiǎn),降低設(shè)備及試劑費(fèi)用和人工成本。對(duì)于抗體親和捕獲,多種連續(xù)流層析模式已經(jīng)成功研發(fā),并應(yīng)用于單抗產(chǎn)品的連續(xù)捕獲,但仍需加強(qiáng)過(guò)程的理性設(shè)計(jì)和優(yōu)化。對(duì)于抗體精制階段,研究主要集中于2個(gè)方面,利用交疊組分循環(huán)上樣以提高收率,或者將幾步層析整合以簡(jiǎn)化流程,但相關(guān)研究還有待進(jìn)一步完善。對(duì)于全流程的整合連續(xù)過(guò)程,目前仍處于發(fā)展階段。

      作為一項(xiàng)新興技術(shù),抗體連續(xù)生產(chǎn)具有顯著優(yōu)勢(shì),但真正實(shí)現(xiàn)抗體連續(xù)生產(chǎn)還有不少方面需要深入研究,包括更加理性的過(guò)程設(shè)計(jì)、更加高效的過(guò)程分析技術(shù)、更加精準(zhǔn)的過(guò)程控制,特別是基于模型的預(yù)測(cè)分析和控制方法。

      [1] KLEIN B, CORRINGHAM R, TRIKHA M,. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: A review of the rationale and clinical evidence [J]. Clinical Cancer Research, 2003, 9(13): 4653-4665.

      [2] MEHREN M, ADAMS G P, WEINER L M. Monoclonal antibody therapy for cancer [J]. Annual Review of Medicine, 2003, 54(1): 343-369.

      [3] SMITH S L. Ten years of Orthoclone OKT3 (muromonab-CD3): A review [J]. Journal of Transplant Coordination, 1996, 6(3): 109-121.

      [4] SCHIFF M H, BURMESTER G R, KENT J D,. Safety analyses of adalimumab (HUMIRA) in global clinical trials and US postmarketing surveillance of patients with rheumatoid arthritis [J]. Annals of the Rheumatic Diseases, 2006, 65(7): 889-894.

      [5] ECKER D M, JONES S D, LEVINE H L. The therapeutic monoclonal antibody market [J]. mAbs, 2015, 7(1): 9-14.

      [6] HOLZMANN J, BALSER S, WINDISCH J. Totality of the evidence at work: The first U.S. biosimilar [J]. Expert Opinion on Biological Therapy, 2016, 16(2): 137-142.

      [7] FDA. FDA approves first biosimilar for the treatment of cancer [EB/OL]. (2017)[2020-03-20]. https://www.fda.gov/news-events/ press- announcements/fda-approves-first-biosimilar-treatment-cancer.

      [8] RATHORE A S, AGARWAL H, SHARMA A K,. Continuous processing for production of biopharmaceuticals [J]. Preparative Biochemistry and Biotechnology, 2015, 45(8): 836-849.

      [9] 嚴(yán)生虎, 張穩(wěn), 沈衛(wèi), 等. 微通道中由二氯丙醇連續(xù)合成環(huán)氧氯丙烷的工藝研究 [J]. 高校化學(xué)工程學(xué)報(bào), 2014, 28(2): 352-357.

      YAN S H, ZHANG W, SHEN W,. Research on continuous synthesis of epichlorohydrin from dichloropropanol in micro-channel reactor [J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 352-357.

      [10] 陳春燕, 張俊青, 崔海娣, 等. PDMS膜生物反應(yīng)器封閉循環(huán)連續(xù)發(fā)酵生產(chǎn)ABE [J]. 高?;瘜W(xué)工程學(xué)報(bào), 2013, 27(3): 469-475.

      CHEN C Y, ZHANG J Q, CUI H D,. ABE Fermentation in a continuous and closed-circulating fermentation system with PDMS membrane bioreactor [J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3): 469-475.

      [11] 石爾, 肖澤儀, 黃衛(wèi)星, 等. 硅橡膠膜生物反應(yīng)器封閉循環(huán)連續(xù)發(fā)酵制造乙醇放大實(shí)驗(yàn)及該發(fā)酵系統(tǒng)的基本性能 [J]. 高校化學(xué)工程學(xué)報(bào), 2007, 21(2): 280-285.

      SHI E, XIAO Z Y, HUANG W X,. Scale-up of continuous ethanol fermentation in a silicone rubber membrane bioreactor and study on its fermentation system performance [J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(2): 280-285.

      [12] FDA. Modernizing the way drugs are made: A transition to continuous manufacturing [EB/OL]. (2017)[2020-03-20]. https://www.fda.gov/drugs/news- events-human-drugs/modernizing-way-drugs-are-made-transition-continuous-manufacturing.

      [13] FDA. Quality considerations for continuous manufacturing-Guidance for industry [EB/OL]. (2019)[2020-03-20]. https://www.fda.gov/ media/ 121314/download.

      [14] SOMASUNDARAM B, PLEITT K, SHAVE E,. Progression of continuous downstream processing of monoclonal antibodies: Current trends and challenges [J]. Biotechnology and Bioengineering, 2018, 115(12): 2893-2907.

      [15] KLUTZ S, HOLTMANN L, LOBEDANN M,. Cost evaluation of antibody production processes in different operation modes [J]. Chemical Engineering Science, 2016, 141: 63-74.

      [16] XU S, GAVIN J, JIANG R,. Bioreactor productivity and media cost comparison for different intensified cell culture processes [J]. Biotechnology Progress, 2017, 33(4): 867-878.

      [17] VERMASVUORI R, HURME M. Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes [J]. Biotechnology Progress, 2011, 27(6): 1588-1598.

      [18] BiosanaPharma gets approval to start phase I clinical trial for a biosimilar version of Omalizumab [EB/OL]. (2019)[2020-03-20]. https://www.biosimilardevelopment.com/doc/biosanapharma-gets-approval-to-start-phase-i-clinical-trial-for-a-biosimilar-version-of-omalizumab-0001.

      [19] SHUKLA A A, TH?MMES J. Recent advances in large-scale production of monoclonal antibodies and related proteins [J]. Trends in Biotechnology, 2010, 28(5): 253-261.

      [20] SHI C, GAO Z Y, ZHANG Q L,. Model-based process development of continuous chromatography for antibody capture: A case study with twin-column system [J]. Journal of Chromatography A, 2020, 460936.

      [21] LEE H W, CHRISTIE A, LIU J J,. Estimation of raw material performance in mammalian cell culture using near infrared spectra combined with chemometrics approaches [J]. Biotechnology Progress, 2012, 28(3): 824–832.

      [22] 盧慧麗, 林東強(qiáng), 姚善涇. 抗體藥物分離純化中的層析技術(shù)及進(jìn)展 [J]. 化工學(xué)報(bào), 2018, 69(1): 341-351.

      LU H L, LIN D Q, YAO S J. Chromatographic technology in antibody purification and its progress [J]. CIESC Journal, 2018, 69(1): 341-351.

      [23] ANGARITA M, MüLLER-SP?TH T, BAUR D,. Twin-column CaptureSMB: A novel cyclic process for protein a affinity chromatography [J]. Journal of Chromatography A, 2015, 1389: 85-95.

      [24] 高宗曄, 史策, 姚善涇, 等. 雙柱連續(xù)流層析親和分離抗體的過(guò)程設(shè)計(jì)與應(yīng)用 [J]. 高?;瘜W(xué)工程學(xué)報(bào), 2019, 33(1): 123-133.

      GAO Z Y, SHI C, YAO S J,. Process design and application of twin-column continuous chromatography for antibody affinity separation [J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(1): 123-133.

      [25] GODAWAT R, BROWER K, JAIN S,. Periodic counter-current chromatography-design and operational considerations for integrated and continuous purification of proteins [J]. Biotechnology Journal, 2012, 7(12): 1496-1508.

      [26] GJOKA X, ROGLER K, MARTINO R A,. A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes [J]. Journal of Chromatography A, 2015, 1416: 38-46.

      [27] ANGELO J, PAGANO J, MüLLER-SP?TH T,. Scale-up of twin-column periodic countercurrent chromatography for mAb purification [J]. BioProcess International, 2018, 16(4): 28-37.

      [28] ?TES O, FLATO H, RAMIREZ D V,. Scale-up of continuous multicolumn chromatography for the protein a capture step: From bench to clinical manufacturing [J]. Journal of Biotechnology, 2018, 281: 168-174.

      [29] POLLOCK J, BOLTON G, COFFMAN J,. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture [J]. Journal of Chromatography A, 2013, 1284: 17-27.

      [30] GUIOCHON G, Fundamentals of preparative and nonlinear chromatography [M]. 2nd ed. Amsterdam: Elsevier, 2006.

      [31] FARNAN D, MORENO G T. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography [J]. Analytical Chemistry, 2009, 81(21): 8846-8857.

      [32] FEKETE S, BECK A, FEKETE J,. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach [J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102: 282-289.

      [33] LEE Y F, J?HNCK M, FRECH C. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin [J]. Biotechnology Progress, 2018, 34(4): 973–986.

      [34] JING S Y, GOU J X, GAO D,. Separation of monoclonal antibody charge variants using cation exchange chromatography: Resins and separation conditions optimization [J]. Separation and Purification Technology, 2020, 235: 116136.

      [35] STEINEBACH F, ULMER N, DECKER L,. Experimental design of a twin-column countercurrent gradient purification process [J]. Journal of Chromatography A, 2017, 1492: 19-26.

      [36] AUMANN L, MORBIDELLI M. A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process [J]. Biotechnology and Bioengineering, 2008, 99(3): 728-733.

      [37] AUMANN L, STROEHLEIN G, MORBIDELLI M. Parametric study of a 6-column countercurrent solvent gradient purification (MCSGP) unit [J]. Biotechnology and Bioengineering, 2007, 98(5): 1029-1042.

      [38] AUMANN L, MORBIDELLI M. A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process [J]. Biotechnology and Bioengineering, 2007, 98(5): 1043-1055.

      [39] MüLLER-SP?TH T, KR?TTLI M, AUMANN L,. Increasing the activity of monoclonal antibody therapeutics by continuous chromatography (MCSGP) [J]. Biotechnology and Bioengineering, 2010, 107(4): 652-662.

      [40] VOGG S, ULMER N, SOUQUET J,. Experimental evaluation of the impact of intrinsic process parameters on the performance of a continuous chromatographic polishing unit (MCSGP) [J]. Biotechnology Journal, 2019, 14(7): 1800732.

      [41] PERSSON O, ANDERSSON N, NILSSON B. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography [J]. Journal of Chromatography A, 2018, 1531: 112-121.

      [42] KHANAL O, KUMAR V, WESTERBERG K,. Multi-column displacement chromatography for separation of charge variants of monoclonal antibodies [J]. Journal of Chromatography A, 2019, 1586: 40-51.

      [43] KATEJA N, KUMAR D, GODARA A,. Integrated chromatographic platform for simultaneous separation of charge variants and aggregates from monoclonal antibody therapeutic products [J]. Biotechnology Journal, 2017, 12(11): 1700133.

      [44] L?FGREN A, ANDERSSON N, SELLBERG A,. Designing an autonomous integrated downstream sequence from a batch separation process - an industrial case study [J]. Biotechnology Journal, 2017, 13(4): 1700691.

      [45] GIRARD V, HILBOLD N, NG C K,. Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up [J]. Journal of Biotechnology, 2015, 213: 65-73.

      [46] GJOKA X, GANTIER R, SCHOFIELD M. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements [J]. Journal of Biotechnology, 2017, 242: 11-18.

      [47] ZYDNEY A L. Continuous downstream processing for high value biological products: A review [J]. Biotechnology and Bioengineering, 2016, 113(3): 465-475.

      [48] ICHIHARA T, ITO T, KURISU Y,. Integrated flow-through purification for therapeutic monoclonal antibodies processing [J]. MAbs, 2018, 10(2): 325-334.

      [49] WARIKOO V, GOADWAT R, BROWER K,. Integrated continuous production of recombinant therapeutic proteins [J]. Biotechnology and Bioengineering, 2015, 109(12): 3018-3029.

      [50] GODAWAT R, KONSTANTINOV K, ROHANI M,. End-to-end integrated fully continuous production of recombinant monoclonal antibodies [J]. Journal of Biotechnology, 2015, 213: 13-19.

      [51] LANGER E S, RADER R A. Introduction to continuous manufacturing: Technology landscape and trends [EB/OL]. (2013)[2020-03-20]. http://www.biopharma.com/continuous.pdf

      [52] NG C K, ROUSSET F, VALERY E,. Design of high productivity sequential multi-column chromatography for antibody capture [J]. Food Bioproducts Process, 2014, 92(C2-0): 233-241.

      [53] 林東強(qiáng), 史策, 姚善涇. 基于層析模型實(shí)現(xiàn)多柱連續(xù)流層析設(shè)計(jì)及分析的方法: CN, 110348089A [P]. 2019-10-18.

      LIN D Q, SHI C, YAO S J. Model-based design and analysis of multicolumn continuous chromatography: CN, 110348089A [P]. 2019-10-18.

      [54] 林東強(qiáng), 史策, 姚善涇. 連續(xù)流層析過(guò)程模擬軟件(PSCC V1.0). 計(jì)算機(jī)軟件著作權(quán)登記號(hào): 2018SR885402 [CP]. 2018-11-06.

      LIN D Q, SHI C, YAO S J. Process simulation of continuous chromatography (PSCC V1.0): 2018SR885402 [CP]. 2018-11-06.

      [55] 林東強(qiáng), 史策, 姚善涇. 連續(xù)流層析過(guò)程模擬軟件(PSCC V2.0). 計(jì)算機(jī)軟件著作權(quán)登記號(hào): 2019SR1445792 [CP]. 2019-12-27.

      LIN D Q, SHI C, YAO S J. Process simulation of continuous chromatography (PSCC V2.0) : 2019SR1445792 [CP]. 2019-12-27.

      [56] 林東強(qiáng), 史策, 姚善涇. 基于人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)多柱連續(xù)流層析設(shè)計(jì)及分析的方法: CN, 110348090A [P]. 2019-10-18.

      LIN D Q, SHI C, YAO S J. AI-based design and analysis of multicolumn continuous chromatography: CN, 110348090A [P]. 2019-10-18.

      [57] 林東強(qiáng), 史策, 姚善涇. 人工智能輔助連續(xù)流層析過(guò)程分析軟件(AI-PECC V1.0). 計(jì)算機(jī)軟件著作權(quán)登記號(hào): 2019SR1402682 [CP]. 2019-12-19.

      LIN D Q, SHI C, YAO S J. Process evaluation of continuous chromatography by artificial intelligence (AI-PECC V1.0): 2019SR1402682 [CP]. 2019-12-19.

      [58] SELLBERG A, ANDERSSON N, HOLMQVIST A,. Development and optimization of a single column analog model for a multi-column counter-current solvent gradient purification process [J]. Computer-aided Chemical Engineering, 2017, 40A: 187-192.

      [59] GOTTSCHALK U, BRORSON K, SHUKLA A A. The need for innovation in biomanufacturing [J]. Nature Biotechnology, 2012, 30(6): 489-492.

      [60] FONTEYNE M, VERCRUYSSE J, LEERSNYDER F D,. Process analytical technology for continuous manufacturing of solid-dosage forms [J]. TrAC Trends in Analytical Chemistry, 2015, 67: 159-166.

      [61] RATHORE A S, KAPOOR G. Application of process analytical technology for downstream purification of biotherapeutics [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(2): 228-236.

      [62] UNDEY C, LOW D, MENEZES J C,. PAT applied in biopharmaceutical process development and manufacturing: an enabling tool for quality-by-design [M]. Boca Raton: CRC Press, 2011.

      [63] FDA. Guidance for industry: PAT–a framework for innovative pharmaceutical development, manufacturing and quality assurance U.S. [EB/OL]. (2004)[2020-03-20]. https://www.fda.gov/media/71012/download.

      [64] RATHORE A S, PARR L, DERMAWAN S,. Large scale demonstration of a process analytical technology application in bioprocessing: Use of on-line high performance liquid chromatography for making real time pooling decisions for process chromatography [J]. Biotechnology Progress, 2010, 26(2): 448-457.

      [65] YILMAZ D, MEHDIZADEH H, NAVARO D,. Application of Raman spectroscopy in monoclonal antibody producing continuous systems for downstream process intensification [J]. Biotechnology Progress, 2020, e2947.

      [66] FEIDL F, GARBELLINI S, LUNA F M,. Combining mechanistic modeling and Raman spectroscopy for monitoring antibody chromatographic purification [J]. Processes, 2019, 7(10): 683.

      [67] FEIDL F, GARBELLINI S, VOGG S,. A new flow cell and chemometric protocol for implementing in-line Raman spectroscopy in chromatography [J]. Biotechnology Progress, 2019, 35(5): e2847.

      [68] BHATIA H, READ E, AGARABI C,. A design space exploration for control of critical quality attributes of mAb [J]. International Journal of Pharmaceutics, 2016, 512(1): 242–252.

      [69] RATHORE A S, WINKLE H. Quality by design for biopharmaceuticals [J]. Nature Biotechnology, 2009, 27(1): 26-34.

      [70] RATHORE A S, KUMAR D, KATEJA N. Recent developments in chromatographic purification of biopharmaceuticals [J]. Biotechnology Letters, 2018, 40(6): 895-905.

      [71] KARST D J, STEINEBACH F, SOOS M,. Process performance and product quality in an integrated continuous antibody production process [J]. Biotechnology and Bioengineering, 2017, 114(2): 298-307.

      [72] VOGEL J H, NGUYEN H, GIOVANNINI R,. A new large-scale manufacturing platform for complex biopharmaceuticals [J]. Biotechnology and Bioengineering, 2012, 109(12): 3049-3058.

      [73] RECK J, PABST T, HUNTER A,. Systematic interpolation method predicts antibody monomer‐dimer separation by gradient elution chromatography at high protein loads [J]. Biotechnology Journal, 2019, 14(3): 1800132.

      [74] 史策, 虞驥, 高棟, 等. 單抗制備的過(guò)程模擬和經(jīng)濟(jì)性分析[J]. 化工學(xué)報(bào), 2018: 69(7): 3198-3207.

      SHI C, YU J, GAO D,. Process simulation and economic evaluation of monoclonal antibody production [J]. CIESC Journal, 2018: 69(7): 3198-3207.

      [75] KUMAR V, RATHORE A S. Mechanistic modeling based PAT implementation for ion-exchange process chromatography of charge variants of monoclonal antibody products [J]. Biotechnology Journal, 2017, 12(9): 1700286.

      [76] GUéLAT B, STR?HLEIN G, LATTUADA M,. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography [J]. Journal of Chromatography A, 2012, 1253: 32-43.

      [77] STEINEBACH F, KR?TTLI M, STORTI G,. Equilibrium theory based design space for the multicolumn countercurrent solvent gradient purification process [J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13482-13489.

      [78] LEE Y F, KLUTERS S, HILLMANN M,. Modeling of bispecific antibody elution in mixed-mode cation-exchange chromatography [J]. Journal of Separation Science, 2017, 40(18): 3632-3645.

      [79] SHEKHAWAT L K, CHANDAK M, RATHORE A S. Mechanistic modeling of hydrophobic interaction chromatography for monoclonal antibody purification: process optimization in the quality by design paradigm [J]. Journal of Chemical Technology & Biotechnology, 2017, 92(10): 2527-2537.

      [80] FEIDL F, VOGG S, WOLF M,. Process-wide control and automation of an integrated continuous manufacturing platform for antibodies [J]. Biotechnology and Bioengineering, 2020, 117(5): 1367-1380.

      Progress on continuous chromatography and its application in antibody separation

      JING Shu-ying, SHI Ce, YAO Shan-jing, LIN Dong-qiang

      (Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

      Continuous chromatography is a key unit of continuous biomanufacturing which is the trend in biopharmaceutical industry. The continuous chromatographic technologies for protein capture and polishing were reviewed based on recent research progress. Technical differences, characteristics and current applications of different separation modes are focused. Integrated continuous chromatography is introduced and the challenges for continuous production of antibodies are discussed considering future development. Continuous manufacturing has the potentials to increase productivity and product quality, reduce footprint and costs, and enhance process automatization, flexibility and reliability. However, more studies such as process design, process analytical and control technologies, are necessary to improve continuous manufacturing processes, especially for model-based predictive analysis and control strategies.

      continuous chromatography; antibody; capture; polishing; process integration; process analytical technology

      TQ028.8

      A

      10.3969/j.issn.1003-9015.2021.01.001

      1003-9015(2021)01-0001-12

      2020-03-20;

      2020-05-26。

      國(guó)家自然科學(xué)基金(21776243,22078286);上海市產(chǎn)業(yè)轉(zhuǎn)型升級(jí)發(fā)展專項(xiàng)資金(工業(yè)強(qiáng)基GYQJ-2018-02-01);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金。

      荊淑瑩(1995-),女,河南新鄉(xiāng)人,浙江大學(xué)博士生。

      林東強(qiáng),E-mail:lindq@zju.edu.cn

      猜你喜歡
      層析柱連續(xù)流雙柱
      關(guān)于光合色素的提取、分離及其吸光度的探究
      層析介質(zhì)Capto Core400 和Sephacryl S-1000純化乙型肝炎病毒核心蛋白病毒樣顆粒效果的比較
      雙柱[5]芳烴的研究進(jìn)展
      單一髂腹股溝入路治療髖臼雙柱骨折的療效分析
      糖化血紅蛋白分析儀層析柱反向安裝的應(yīng)用價(jià)值
      硅酸鋅催化臭氧氧化凈水效能連續(xù)流實(shí)驗(yàn)研究
      TMT公司生產(chǎn)管理存在問(wèn)題及精益生產(chǎn)管理改進(jìn)措施探析
      SMT連續(xù)流創(chuàng)建研究
      1000kV交流特高壓新型雙柱換位塔
      雙柱花瓶墩墩頂空間受力分析
      定兴县| 宝丰县| 玛曲县| 泾阳县| 南充市| 怀柔区| 新宁县| 潼南县| 巴马| 东光县| 徐汇区| 藁城市| 原平市| 交城县| 新绛县| 满城县| 营山县| 杭州市| 启东市| 依兰县| 图片| 谢通门县| 张掖市| 三门峡市| 黄山市| 肃北| 贞丰县| 巴东县| 二连浩特市| 满洲里市| 景泰县| 独山县| 东阿县| 临洮县| 沂源县| 贞丰县| 颍上县| 靖安县| 措勤县| 漳平市| 美姑县|