姚清華, 顏孫安,葉建洪, 黃敏敏, 陳美珍, 林虬
噴施農(nóng)藥對銀耳生長的影響及膳食暴露風(fēng)險評估
姚清華1*, 顏孫安1,葉建洪2, 黃敏敏1, 陳美珍1, 林虬1*
(1. 農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險評估實驗室(福州),福建省農(nóng)產(chǎn)品質(zhì)量安全重點實驗室,福建省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)質(zhì)量標準與檢測技術(shù)研究所,福州 350003;2. 古田建宏農(nóng)業(yè)開發(fā)有限公司,福建 寧德 352200)
為制訂銀耳()栽培中農(nóng)藥合理使用的建議,以我國銀耳主栽菌株Tr01為對象,研究8組常用農(nóng)藥對其生長的影響,采用食品安全指數(shù)法評估長期膳食銀耳導(dǎo)致的農(nóng)藥殘留慢性暴露健康風(fēng)險。結(jié)果表明,除咪鮮胺乳油和噠螨靈、啶蟲脒微乳劑的部分處理外,其余6組農(nóng)藥對銀耳子實體生長并無顯著影響。銀耳中的農(nóng)藥殘留水平與農(nóng)藥種類及噴施模式密切相關(guān),當農(nóng)藥殘留水平低于GB 2763-2019標準中蔬菜的農(nóng)藥最大殘留限量時,成人和兒童長期膳食銀耳的慢性健康風(fēng)險商(cHQ)分別為0.001~0.174和0.002~0.191,風(fēng)險水平可接受。結(jié)合我國農(nóng)藥使用現(xiàn)狀,建議銀耳栽培中應(yīng)禁用乙酰甲胺磷、毒死蜱、克百威,減少阿維菌素、咪鮮胺、異丙威的使用頻率,在合適的安全間隔期下可以使用聯(lián)苯菊酯、啶蟲脒、吡蟲啉、噠螨靈。
銀耳;農(nóng)藥;殘留;風(fēng)險評估
銀耳()是著名傳統(tǒng)食藥兼用真菌。野生銀耳絕大多數(shù)在亞熱帶針葉樹或闊葉樹的原木上腐生[1],人工代料栽培常見于中國及部分亞洲國家[2]。與多數(shù)食用菌類似,銀耳富含多糖、膳食纖維、礦物質(zhì)和維生素,具抗氧化、抗腫瘤、提高人體免疫力的功效[3–5]。銀耳的產(chǎn)量和質(zhì)量易受栽培過程中青霉、螨蟲、菇蚊等病蟲害影響[6],但與其他小宗農(nóng)作物類似,銀耳栽培暫無確切可供使用的登記農(nóng)藥和農(nóng)藥殘留限量標準,非常不利于栽培中的病蟲害防控[7–8]。目前,農(nóng)藥殘留是影響銀耳質(zhì)量安全的主要因素,直接威脅消費者的身體健康和產(chǎn)業(yè)形象[9]。已有部分學(xué)者報道了關(guān)于銀耳栽培中農(nóng)藥使用的相關(guān)研究[6,10–12],重點集中于農(nóng)殘檢測分析和消解規(guī)律。溫志強等[6]研究了敵敵畏等8種農(nóng)藥在拌料和噴霧方式下對銀耳生長發(fā)育的影響;姚清華等[10]對阿維菌素等11種農(nóng)藥在拌料方式下對銀耳產(chǎn)量影響及農(nóng)藥殘留規(guī)律進行了膳食健康風(fēng)險評估。另有文獻報道乙酰甲胺磷、滅蠅胺等農(nóng)藥及代謝物在銀耳子實體生長過程的消解規(guī)律[11–12]。但部分研究的農(nóng)藥種類,如甲基托布津、敵敵畏等,與近年銀耳栽培中農(nóng)藥的實際使用情況有所不符,且均未提供明確的農(nóng)藥使用建議。本研究以我國銀耳主栽菌株Tr01為試驗對象,選擇8組銀耳栽培中常用的農(nóng)藥,探討在原基形成不同階段噴霧施用對銀耳生長的影響,并采用食品安全指數(shù)法評估不同人群長期攝食銀耳導(dǎo)致的慢性暴露健康風(fēng)險,提出農(nóng)藥合理使用建議, 旨在為銀耳栽培良好農(nóng)業(yè)規(guī)范(GAP)制定和農(nóng)藥登記提供有益借鑒并消除銀耳消費者的膳食健康疑慮。
供試銀耳()菌株Tr01來源于福建省古田縣建宏農(nóng)業(yè)開發(fā)有限公司。供試的8組農(nóng)藥劑型等信息見表1。乙酸乙酯等農(nóng)藥提取用有機試劑為色譜純,購自美國賽默飛世爾科技有限公司;氯化鈉等其他試劑為分析純,購自國藥集團化學(xué)試劑有限公司;PSA和GCB固相萃取填料,購自美國Agilent公司;C18固相萃取填料,購自美國Welch Material公司;農(nóng)藥標準品購自農(nóng)業(yè)部環(huán)境保護科研監(jiān)測所;液相色譜柱:Phenomenex Luna C8 (150 mm× 2.0 mm×3.0m),購自美國菲羅門公司; 氣相色譜柱:SH-Rxi-5Sil MS毛細管柱(30.0 m×0.250 mm× 0.25m),購自日本島津公司。
表1 供試農(nóng)藥信息
高效液相色譜儀(Agilent 1200,美國安捷倫科技有限公司)-三重四極桿質(zhì)譜(Agilent 6460,美國安捷倫科技有限公司);氣相色譜儀(GC-2010 plus,日本島津公司)-三重四極桿質(zhì)譜(TSQ8040,日本島津公司);渦旋混合器(德國IKA公司);超聲儀(KD-500DE,昆山市超聲儀器有限公司);離心機(Anke TDL-5-A,上海安亭科學(xué)儀器廠);吹氮濃縮儀(Reati-Therm III HRATING/STIRRING MODMLE, PIERCE公司)。
銀耳代料栽培在溫度、濕度等環(huán)境參數(shù)均可控的工廠化條件下進行。試驗共涉及4種農(nóng)藥噴施模式(M1~M4),M1為原基形成時噴施,20 d后采摘; M2為原基形成10 d時噴施,10 d后采摘;M3為原基形成時噴藥1次,5 d后第2次噴藥,15 d后采摘;M4為原基形成10 d時噴藥1次,5 d后第2次噴藥, 5 d后采摘。每種模式設(shè)3個農(nóng)藥噴施濃度:1 000、2 000和4 000mg/L; 每次噴施量均為1 800 mL,則用藥量分別為1.8、3.6和7.2 g。共計12個試驗處理,每處理3個重復(fù),每重復(fù)10個菌包,共360個菌包。每種模式均以噴施同樣體積的純凈水作為空白對照。
栽培試驗結(jié)束后,隨機選取5個菌包,每個菌包隨機選取1朵銀耳,采用游標卡尺測定子實體直徑(=5)。數(shù)據(jù)以“平均值±標準差”表示,采用SPSS 22.0軟件進行獨立樣本檢驗,比較試驗組與對照組間的差異顯著性,以<0.05表示差異顯著。
隨機選取試驗組的5朵銀耳,磨碎,供農(nóng)藥殘留測定。農(nóng)藥及主要代謝物測定參照國家標準GB 23200.113–2018[13]和姚清華等的方法[14]。采用GC- MS/MS測定銀耳中聯(lián)苯菊酯、毒死蜱、乙酰甲胺磷、噠螨靈殘留水平;采用LC-MS/MS測定銀耳中啶蟲脒、阿維菌素、甲胺磷、咪鮮胺、吡蟲啉、異丙威和克百威的殘留水平。方法驗證結(jié)果表明,該方法線性良好(2>0.995), 低、中、高3個添加水平回收率70%~110%、定量限為0.01 mg/kg,可以滿足本試驗的要求。
采用食品安全指數(shù)法,計算成人和兒童長期攝食銀耳的農(nóng)藥慢性暴露風(fēng)險商(chronic hazard quotient, cHQ),cHQ越小風(fēng)險越小,當cHQ<1時,表示健康風(fēng)險可接受;當cHQ≥1時,表示有不可接受的健康風(fēng)險。cHQ=EDI/ADI, 式中EDI為每人1 kg體重農(nóng)藥殘留每日攝入量[edible daily intake,mg/(kg Bw·d)],ADI為每日容許攝入量[acceptable daily intake, mg/(kg Bw·d)]。EDI=(×D)/Bw, 式中,為銀耳中農(nóng)藥殘留水平(mg/kg),D為每日攝入量(成人30 g,兒童10 g)[15–16],Bw為消費者平均體重(成人53.23 kg,兒童16.14 kg)[17]。
從圖1可見,農(nóng)藥種類、施用方式、施用濃度對銀耳生長都有一定影響。銀耳原基形成時噴施農(nóng)藥(M1),用2 000 mg/L聯(lián)苯菊酯+啶蟲脒微乳劑、乙酰甲胺磷乳油、異丙威乳油和噠螨靈+啶蟲脒微乳劑噴施時,銀耳子實體直徑顯著高于對照(<0.05), 用1 000~4 000 mg/L阿維菌素乳油、咪鮮胺乳油和丁硫克百威+毒死蜱顆粒劑噴施時,銀耳子實體直徑顯著高于對照(<0.05)。銀耳原基形成10 d時噴施農(nóng)藥(M2),用4 000 mg/L的聯(lián)苯菊酯+啶蟲脒微乳劑或阿維菌素乳油可顯著提高銀耳子實體直徑(<0.05),用1 000~4 000 mg/L乙酰甲胺磷乳油、吡蟲啉粉劑、異丙威乳油、噠螨靈+啶蟲脒微乳劑和丁硫克百威+毒死蜱顆粒劑噴施的銀耳子實體直徑顯著高于對照(<0.05),但噴施4 000 mg/L的咪鮮胺乳油會導(dǎo)致銀耳子實體生長停滯。當銀耳原基形成時噴藥1次,5 d后第2次噴藥(M3),噴施1 000~4 000 mg/L的咪鮮胺乳油和2 000~4 000 mg/L的噠螨靈+啶蟲脒微乳劑會導(dǎo)致銀耳子實體生長停滯,其余處理與對照無顯著差異(>0.05)。在原基形成后10 d噴藥1次,5 d后第2次噴藥(M4),農(nóng)藥對銀耳子實體生長的影響與M3模式相似,但噴施1 000 mg/L的10%吡蟲啉粉劑可顯著提高銀耳子實體的直徑。
從表2可見,4種噴施模式下,銀耳的乙酰甲胺磷及其代謝物甲胺磷的殘留水平均低于方法檢測限(0.01 mg/kg)。其他農(nóng)藥殘留水平基本呈現(xiàn)M4> M2>M3>M1的趨勢,與子實體采摘安全間隔期長短一致:M1 (20 d)>M3 (15 d)>M2 (10 d)>M4 (5 d)。由于暫無銀耳農(nóng)藥殘留限量標準[7], 根據(jù)食物歸類時常將食用菌劃歸蔬菜的現(xiàn)狀[18],本研究參照蔬菜農(nóng)藥殘留限量標準進行判定[19],聯(lián)苯菊酯+啶蟲脒微乳劑、乙酰甲胺磷乳油噴施的農(nóng)藥殘留水平均低于相應(yīng)的農(nóng)藥殘留限量。阿維菌素乳油、咪鮮胺乳油、吡蟲啉粉劑、噠螨靈+啶蟲脒微乳劑和丁硫克百威+毒死蜱顆粒劑等5組農(nóng)藥僅在銀耳原基初形成時噴施,且噴施濃度低于4 000 mg/kg時, 殘留水平才低于相應(yīng)的農(nóng)藥殘留限量。在M1和M3模式下, 噴施濃度低于4 000 mg/kg的異丙威, 銀耳子實體中的異丙威殘留均不會超標。
圖1 不同噴施模式下農(nóng)藥對銀耳生長的影響。CK: 對照; A~H見表1。
在未超過GB 2763-2019中蔬菜農(nóng)藥殘留最大限量值的水平,評估成人和兒童長期攝食銀耳引起的農(nóng)藥(含代謝物)慢性暴露風(fēng)險。從表3可見,12種農(nóng)藥的慢性膳食暴露風(fēng)險(cHQ)為0.001~0.174 (成人)和0.002~0.191 (兒童),遠低于1,健康風(fēng)險水平可接受。其中,阿維菌素、乙酰甲胺磷、甲胺磷、丁硫克百威、吡蟲啉、毒死蜱、噠螨靈、克百威、啶蟲脒的cHQ均小于0.01,甚至為0。聯(lián)苯菊酯、異丙威、咪鮮胺的cHQ分別為0.174、0.093、0.059 (成人)和0.191、0.102、0.065 (兒童)。
綜合考慮農(nóng)藥使用現(xiàn)狀、毒性和cHQ,8組農(nóng)藥在銀耳栽培中的使用建議見表4。因乙酰甲胺磷、毒死蜱、克百威在我國已禁用或已在蔬菜上撤銷登記,且其(或代謝物)具中高毒性,應(yīng)在銀耳栽培中禁用;咪鮮胺在M2、M3、M4噴施模式下使用會抑制銀耳子實體生長,阿維菌素和異丙威為中高毒農(nóng)藥,在銀耳栽培中應(yīng)減少這3種農(nóng)藥的使用;聯(lián)苯菊酯、啶蟲脒、吡蟲啉、噠螨靈為中低毒農(nóng)藥,合理使用時對銀耳子實體生長無顯著性影響,在銀耳栽培中可以合理使用但應(yīng)注意采摘安全間隔期,尤其是聯(lián)苯菊酯的cHQ高達0.174 (成人)和0.191 (兒童),在使用中應(yīng)降低噴施濃度。
在良好農(nóng)業(yè)規(guī)范(GAP)下,合理使用農(nóng)藥既能提高農(nóng)作物的產(chǎn)量又可將農(nóng)藥殘留對人體健康的危害控制在可接受的水平[20–21]。但與其它食用菌不同,銀耳必須有香灰菌伴生才能完成整個生活史[22]。有文獻報道[6],部分農(nóng)藥尤其是廣譜性殺真菌劑會對銀耳生長發(fā)育造成損害,抑制子實體生長或子實體畸形、腐爛。本研究中噴施咪鮮胺乳油,噠螨靈、啶蟲脒微乳劑的部分試驗組也有類似現(xiàn)象。因此,在銀耳栽培過程中施用農(nóng)藥,需同時考慮農(nóng)藥對銀耳菌絲和香灰菌的影響。
表2 不同噴施模式下銀耳農(nóng)藥及其代謝產(chǎn)物殘留水平(mg/kg)
ND: 農(nóng)藥未檢出; NDa: 農(nóng)藥及其主要代謝物均未檢出;b: 檢出值為克百威; /: 子實體生長停滯或腐爛; *: 超過農(nóng)藥殘留限量。1: 聯(lián)苯菊酯、啶蟲脒,噠螨靈、啶蟲脒; 2: 丁硫克百威及降解物(克百威)、毒死蜱; A~H見表1。
ND: Pesticide undetected; NDa: Pesticide and its metabolites undetected;b: Detected concentration of carbofuran; /: Snow fungus fruit growth were inhibited; *: Exceeding pesticide residue limit; 1: Determination value of bifenthrin, acetamiprid, pyridaben, and acetamiprid; 2: Determination value of carbosulfan and its metabolite, chlorpyrifos. A-H see Table 1.
表3 長期膳食銀耳慢性暴露風(fēng)險評估
ND: 農(nóng)藥未檢出; MRLs: 最大殘留限量; cHQ: 慢性暴露風(fēng)險商; EDI: 日攝入量; ADI: 日容許攝入量。
ND: Pesticide undetected; MRLs: Maximum residues limits; cHQ: Chronic hazard quotient; EDI: Edible daily intake; ADI: Acceptable daily intake.
表4 銀耳栽培過程農(nóng)藥使用建議
B: 禁用; D: 減少使用; U: 可使用但要注意采摘安全間隔期。
B: Banned use in China; D: Diminish use; U: Use with consideration of the appropriate pre-harvest interval.
不同農(nóng)藥在農(nóng)作物上的消解規(guī)律和殘留水平也有明顯差異。本研究中,除聯(lián)苯菊酯、啶蟲脒微乳劑外,多數(shù)試驗組農(nóng)藥殘留高于GB 2763-2019中部分蔬菜相應(yīng)的農(nóng)藥殘留限量。這與前人的研究結(jié)果相似,劉瑜等[23]對聯(lián)苯菊酯在茶葉上的使用安全性研究顯示,聯(lián)苯菊酯具有殘留期短且殺蟲譜廣的特點。聯(lián)苯菊酯在桃()上的半衰期也僅為1.6~6.7 d, 屬易消解農(nóng)藥[24]。王世英等[25]的研究表明,施用聯(lián)苯菊酯7 d后,其在甘藍(var.)中的殘留水平低于0.01 mg/kg,在土壤中的半衰期為6.77~13.51 d。這可能與聯(lián)苯菊酯分子結(jié)構(gòu)、配制用的試劑及噴施對象代謝、生長稀釋等因素密切相關(guān)。
在膳食暴露評估方面,部分不確定性因素會影響評估結(jié)果的準確性,如銀耳在食用前常經(jīng)過清洗和烹飪兩道工序,會顯著降低銀耳中農(nóng)藥殘留的攝入量。根據(jù)Cengiz等[26]的研究表明,在自來水下搓洗15 s可以去除西紅柿()中68%的腐霉利殘留。Abou-Arab等[27]也認為清洗可以有效去除西紅柿表面的多種農(nóng)藥殘留。Boon等[28]在評估膳食中有機磷農(nóng)藥暴露評估時,將清洗的農(nóng)藥去除系數(shù)設(shè)為0.76。相比清洗,烹飪可更有效降低農(nóng)藥殘留量。Huan等[29]的研究表明,烹飪能顯著降低豇豆()中的噠螨靈、聯(lián)苯菊酯等8種農(nóng)藥殘留,降低幅度遠大于清洗。而烹飪處理的蔬菜中三唑磷殘留量要比生食低72%[30]。本研究中,銀耳清洗、烹飪對農(nóng)藥殘留去除系數(shù)的缺失會導(dǎo)致膳食暴露風(fēng)險高估,但不會降低對消費者膳食風(fēng)險的保護水平,且有利于制定更嚴格的銀耳栽培農(nóng)藥使用建議。
在銀耳栽培過程中,除連續(xù)噴施咪鮮胺和中高濃度噠螨靈、啶蟲脒外,其余6組農(nóng)藥對銀耳子實體的生長并無明顯的抑制。銀耳中的農(nóng)藥殘留水平與農(nóng)藥種類、噴施濃度和采摘安全間隔期密切相關(guān),聯(lián)苯菊酯、啶蟲脒微乳劑組和乙酰甲胺磷乳油組所有處理的農(nóng)藥殘留量均低于GB 2763-2019中部分蔬菜的農(nóng)藥殘留限量。在農(nóng)藥殘留水平低于限量時,長期膳食銀耳導(dǎo)致的慢性風(fēng)險商遠小于1,風(fēng)險水平可接受。綜合考慮8組農(nóng)藥使用現(xiàn)狀、毒性和風(fēng)險商,建議在銀耳栽培中禁用乙酰甲胺磷、毒死蜱、克百威,減少阿維菌素、咪鮮胺、異丙威的使用頻率,合理使用聯(lián)苯菊酯、啶蟲脒、吡蟲啉、噠螨靈,但應(yīng)注意使用濃度和安全間隔期。
[1] WANG C W. Study on key cultivation techniques of[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017: 12. 王長文. 袋栽銀耳栽培關(guān)鍵技術(shù)研究 [D]. 福州: 福建農(nóng)林大學(xué), 2017: 12.
[2] WU Y J, WEI Z X, ZHANG F M, et al. Structure, bioactivities and applications of the polysaccharides frommush- room: A review [J]. Int J Biol Macromol, 2019, 121: 1005–1010. doi: 10.1016/j.ijbiomac.2018.10.117.
[3] LI H, LEE H S, KIM S H, et al. Antioxidant and anti-inflammatory activities of methanol extracts ofand its major phenolic acids [J]. J Food Sci, 2014, 79(4): C460–C468. doi: 10.1111/ 1750-3841.12393.
[4] WEN W T, JIA D H, GUO Y, et al. Phylogeny and genetic diversity ofspp. paired with cultivatedBerk [J]. Sci Agric Sin, 2010, 43(3): 552–558. doi: 10.3864/j.issn.0578-1752. 2010.03.015.溫文婷, 賈定洪, 郭勇, 等. 中國主栽銀耳配對香灰菌的系統(tǒng)發(fā)育和遺傳多樣性[J]. 中國農(nóng)業(yè)科學(xué), 2010, 43(3): 552–558. doi: 10. 3864/j.issn.0578-1752.2010.03.015.
[5] WENG B Q, JIANG Z H, LEI J G, et al. Effects of exogenous selenium on topography and quantitative characters ofS. Wasser fruit bodies [J]. J Trop Subtrop Bot, 2009, 17(6): 578–583.翁伯琦, 江枝和, 雷錦桂, 等. 外源硒對巴西蘑菇子實體數(shù)量和形態(tài)特征的影響[J]. 熱帶亞熱帶植物學(xué)報, 2009, 17(6): 578–583.
[6] WEN Z Q, CHEN L F, LI B B. Pesticide and fungicide residues in the cultivation substrate and fruit bodies of[J]. Acta Edulis Fungi, 2014, 21(3): 70–76. doi: 10.3969/j.issn.1005-9873.2014. 03.016.溫志強, 陳麗芳, 李兵兵. 農(nóng)藥對銀耳生長發(fā)育的影響及殘留情況分析[J]. 食用菌學(xué)報, 2014, 21(3): 70–76. doi: 10.3969/j.issn.1005- 9873.2014.03.016.
[7] PU Q R, WANG H M. Comparative study on the current maximum residue limits for edible fungi between China and other countries [J]. J Yunnan Agric Univ (Nat Sci), 2018, 33(6): 1127–1138. doi: 10.12101/j. issn.1004-390X(n).201709009.普秋榕, 王紅漫. 國內(nèi)外現(xiàn)行食用菌中農(nóng)藥最大殘留限量標準比較分析[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2018, 33(6): 1127–1138. doi: 10.12101/j.issn.1004-390X(n).201709009.
[8] YANG X F, LUO J H, LI S H, et al. Evaluation of nine pesticide residues in three minor tropical fruits from southern China [J]. Food Control, 2016, 60: 677–682. doi: 10.1016/j.foodcont.2015.08.036.
[9] BAJWA U, SANDHU K S. Effect of handling and processing on pesticide residues in food: A review [J]. J Food Sci Technol, 2014, 51(2): 201–220. doi: 10.1007/s13197-011-0499-5.
[10] YAO Q H, YAN S A, CHEN M Z, et al. Effects of pesticides on growth and food safety of[J]. Fujian J Agric Sci, 2019, 34 (9): 1064–1072. doi: 10.19303/j.issn.1008-0384.2019.09.011.姚清華, 顏孫安, 陳美珍, 等. 農(nóng)藥對銀耳生長的影響及質(zhì)量安全風(fēng)險評估[J]. 福建農(nóng)業(yè)學(xué)報, 2019, 34(9): 1064–1072. doi: 10.19303/ j.issn.1008-0384.2019.09.011.
[11] CAI C P, QIN F L, XUE Z M, et al. Residue dynamics of cyromazine and its metabolite melamine in tremellaand culture material [J]. Environ Chem, 2012, 31(9): 1417–1422. 蔡春平, 秦福龍, 薛芝敏, 等. 滅蠅胺及其代謝物三聚氰胺在銀耳及銀耳培養(yǎng)料中的消解和殘留[J]. 環(huán)境化學(xué), 2012, 31(9): 1417– 1422.
[12] QIN F L, CAI C P, Wang Q, et al. Residue dynamics of acephate and its metabolite methamidophos inand culture material [J]. Edible Fungi China, 2012, 31(4): 40–42. doi: 10.13629/j.cnki.53-1054. 2012.04.001.秦福龍, 蔡春平, 王琪, 等. 乙酰甲胺磷及代謝物在銀耳及培養(yǎng)料中消解殘留規(guī)律[J]. 中國食用菌, 2012, 31(4): 40–42. doi: 10.13629/ j.cnki.53-1054.2012.04.001.
[13] National Health Commission of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, State Administration for Market Regulation. GB23200.113– 2018 National food safety standards: Determination of 208 pesticides and metabolites residues in foods of plant origin gas chromatography- tandem mass spectrometry method [S]. Beijing: Standards Press of China, 2018. 中華人民共和國國家衛(wèi)生健康委員會, 農(nóng)業(yè)農(nóng)村部, 國家市場監(jiān)督管理總局. GB 23200.113–2018食品安全國家標準: 植物源性食品中208種農(nóng)藥及其代謝物殘留量的測定氣相色譜-質(zhì)譜聯(lián)用法[S]. 北京: 中國標準出版社, 2018.
[14] YAO Q H, LI J, KE Q X, et al. Determination of eight pesticide residues inBerk by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. J Anal Sci, 2020, 36(1): 106–110. doi: 10.13526/j.issn.1006-6144.2020. 01.019. 姚清華, 李捷, 柯秋璇, 等. 固相萃取-高效液相色譜-串聯(lián)質(zhì)譜法同時測定銀耳中的8種農(nóng)藥殘留[J]. 分析科學(xué)學(xué)報, 2020, 36(1): 106– 110. doi: 10.13526/j.issn.1006-6144.2020.01.019.
[15] LIU B R, HUANG Q, CAI H J, et al. Study of heavy metal concen- trations in wild edible mushrooms in Yunnan Province, China [J]. Food Chem, 2015, 188: 294–300. doi: 10.1016/j.foodchem.2015.05.010.
[16] KHANI R, MOUDI M, KHOJEH V. Contamination level, distribution and health risk assessment of heavy and toxic metallic and metalloid elements in a cultivated mushroom(Mont.) singer [J]. Environ Sci Pollut Res, 2017, 24(5): 4699–4708. doi: 10.1007/s11356- 016-8222-8.
[17] LI Z X, NIE J Y, YAN Z, et al. A monitoring survey and dietary risk assessment for pesticide residues on peaches in China [J]. Regul Toxicol Pharm, 2018, 97: 152–162. doi: 10.1016/j.yrtph.2018.06.007.
[18] FEENEY M J, MILLER A M, ROUPAS P. Mushrooms-biologically distinct and nutritionally unique: Exploring a “third food kingdom” [J]. Nutri Today, 2014, 49(6): 301–307. doi: 10.1097/NT.0000000000000063.
[19] National Health Commission of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, State Administration for Market Regulation. GB 2763-2019 National food safety standard: Maximum residue limits for pesticides in food [S]. Beijing: Standards Press of China, 2020. 中華人民共和國國家衛(wèi)生健康委員會, 農(nóng)業(yè)農(nóng)村部, 國家市場監(jiān)督管理總局. GB 2763–2019 食品安全國家標準: 食品中農(nóng)藥最大殘留限量[S]. 北京: 中國標準出版社, 2020.
[20] WANG X R, ZHOU L, ZHANG X Z, et al. Transfer of pesticide residue during tea brewing: Understanding the effects of pesticide’s physico-chemical parameters on its transfer behavior [J]. Food Res Int, 2019, 121: 776–784. doi: 10.1016/j.foodres.2018.12.060.
[21] XIAO J J, LI Y, FANG Q K, et al. Factors affecting transfer of pyre- throid residues from herbal teas to infusion and influence of physico- chemical properties of pesticides [J]. Int J Environ Res Public Health, 2017, 14(10): 1157. doi: 10.3390/ijerph14101157.
[22] HUANG N L. The producing principle and methods for snow fungus [J]. Edible Fungi, 2007, 29(1): 25–27. doi: 10.3969/j.issn.1000-8357. 2007.01.015.黃年來. 銀耳菌種生產(chǎn)的原理和方法[J]. 食用菌, 2007, 29(1): 25– 27. doi: 10.3969/j.issn.1000-8357.2007.01.015.
[23] LIU Y, ZHANG Y J, REN M X, et al. Application of bifenthrin and other pyrethroids in tea fields [J]. J Tea, 2015, 41(4): 207–211, 217. doi: 10.3969/j.issn.0577-8921.2015.04.008. 劉瑜, 張友炯, 任明興, 等. 聯(lián)苯菊酯等菊酯類農(nóng)藥在茶葉上使用安全性研究[J]. 茶葉, 2015, 41(4): 207–211,217. doi: 10.3969/j.issn. 0577-8921.2015.04.008.
[24] LIU X, LIU C D, LU Z Q, et al. Residues and dietary intake risk assessment of flonicamid and bifenthrin in peach [J]. J Fruit Sci, 2019, 36(12): 1712–1719. doi: 10.13925/j.cnki.gsxb.20190263.柳璇, 劉傳德, 鹿?jié)蓡? 等. 氟啶蟲酰胺和聯(lián)苯菊酯在桃上的殘留行為及膳食攝入風(fēng)險評估[J]. 果樹學(xué)報, 2019, 36(12): 1712–1719. doi: 10.13925/j.cnki.gsxb.20190263.
[25] WANG S Y, HUANG R L, LI Z H, et al. Degradation dynamics of bifenthrin in cabbage and soil [J]. J S China Agric Univ, 2016, 37(3): 82–85. doi: 10.7671/j.issn.1001-411X.2016.03.012.王世英, 黃日林, 李梓豪, 等. 聯(lián)苯菊酯在甘藍及土壤中的消解動態(tài)[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報, 2016, 37(3): 82–85. doi: 10.7671/j.issn. 1001-411X.2016.03.012.
[26] CENGIZ M F, CERTEL M, KARAKA? B, et al. Residue contents of captan and procymidone applied on tomatoes grown in greenhouses and their reduction by duration of a pre-harvest interval and post- harvest culinary applications [J]. Food Chem, 2007, 100(4): 1611– 1619. doi: 10.1016/j.foodchem.2005.12.059.
[27] ABOU-ARAB A A K. Behavior of pesticides in tomatoes during commercial and home preparation [J]. Food Chem, 1999, 65(4): 509– 514. doi: 10.1016/S0308-8146(98)00231-3.
[28] BOON P E, VAN DER VOET H, VAN RAAIJ M T M, et al. Cumu- lative risk assessment of the exposure to organophosphorus and carbamate insecticides in the Dutch diet [J]. Food Chem Toxicol, 2008, 46(9): 3090–3098. doi: 10.1016/j.fct.2008.06.083.
[29] HUAN Z B, XU Z, JIANG W N, et al, et al. Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing [J]. Food Chem, 2015, 170: 118–122. doi: 10.1016/j.foodchem.2014.08.052.
[30] HOLDEN A J, CHEN L, SHAW I C. Thermal stability of organopho- sphorus pesticide triazophos and its relevance in the assessment of risk to the consumer of triazophos residues in food [J]. J Agric Food Chem, 2001, 49(1): 103–106. doi: 10.1021/jf0002589.
Effects of Pesticide onBerk Growth and Risk Assessment of Dietary Exposure
YAO Qing-hua1*, YAN Sun-an1, YE Jian-hong2, HUANG Min-min1,CHEN Mei-zhen1, LIN Qiu1*
(1. Ministry of Agriculture and Rural Affairs Laboratory of Quality & Safety Risk Assessment for Agro-products (Fuzhou), Fujian Key Laboratory of Quality and Safety for Agro-products, Institute of Quality Standards and Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences,Fuzhou 350003, China; 2. Gutian Jianhong Agricultural Development Co., Ltd., Ningde 352200, Fujian, China)
To provide the suggestion for pesticide application in snow fungus () cultivation, eight pesticides were used under spraying mode in different periods. The effects of pesticides on snow fungus strain Tr01 growth and health risk assessment of dietary exposure were studied. The results showed that all pesticides except prochloraz cream and pyridaben/acetamiprid microemulsion had not significant effects on growth of snow fungus. The level of pesticides residue was closely related to the type of pesticide and spraying mode. While the pesticide residue were below the corresponding MRL adopted from GB 2763-2019, the cHQ (chronic hazard quotient) of long-term dietary exposure for general population and young child ranged from 0.001 to 0.174 and 0.002 to 0.191, respectively. It indicated that the risk was acceptable. Based on the risk assessment, it was recommended for snow fungus cultivation that acephate, chlorpyrifos, and carbofuran should be banned, the use frequency of abamectin, prochloraz, and isoprocarb should be gradually reduced, and bifenthrin, acetamiprid, imidacloprid, and pyridaben could be used with the appropriate pre-harvest interval. These might be useful for designing good agricultural practices (GAP) and registering pesticide for snow fungus cultivation.
; Pesticide; Residue; Risk assessment
10.11926/jtsb.4251
2020–05–19
2020–06–15
國家農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險評估項目(GJFP2019014);福建省屬公益類科研院所基本科研專項(2018R1018-7);福建省農(nóng)業(yè)科學(xué)院創(chuàng)新團隊項目(STIT2017-1-12)資助
This work was supported by the National Project for Risk Assessment of Quality and Safety of Agro-products (Grant No. GJFP2019014); the Program for Public Welfare Scientific Research Institute in Fujian Province (Grant No.2018R1018-7); and the Project for Innovation Team of Fujian Academy of Agricultural Sciences (STIT2017-1-12).
姚清華(1985~ ),男,副研究員,主要從事農(nóng)產(chǎn)品質(zhì)量安全與風(fēng)險評估研究。
E-mail: yaoyaoshuimu@163.com; linqiu3163@163.com