• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay

    2013-01-08 08:39:27ZhangDingwenCaoZhiguoFanLibinDengYongfeng
    關(guān)鍵詞:年青外祖母男子

    Zhang Dingwen Cao Zhiguo Fan Libin Deng Yongfeng

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Soft marine clay deposits around the coast of Lianyungang and Yancheng regions in Jiangsu province. Its natural water content varies from 50% to 110% and the liquidity indices of the marine clay are in the range of close to or more than one. In particular, the salt concentration is high in pore water of marine soft soil. Due to its very high water content, low shear strength and high salt concentration, the disposal of marine clay at construction sites is a challenge encountered by engineers. An improvement of the super soft soil within a short period to serve as a geomaterial is necessary in ocean and geotechnical engineering practise.

    The deep mixing method is an attractive ground improvement technique for high water content soft clay. In the deep mixing method, powder cement or slurry cement is injected into the natural soil at the required depth and a blade is pushed into the ground to mix the soil and cement. This technique has been increasingly used worldwide, especially in Europe, North America and Asia since its development in Sweden and Japan in 1970s[1]. The deep mixing method was introduced to China in the early 1980s. Because this technique can effectively reduce the compressibility and permeability and increase the strength of soft ground, it rapidly spread throughout China in the 1990s, especially for controlling seepage and as a cut-off barrier, reduction of settlement, prevention of sliding failure and increasing the bearing capacity of the ground[2-5].The bond strength of cement-treated soil is controlled by many factors such as soil gradation, types of clay minerals, organic matter, pH, slat concentration, mixing energy and so on. Numerous researchers have performed experimental studies on the fundamental mechanical properties and engineering behaviour of soil-cement in the past four decades[6-9].

    This study, therefore, aims to quantify the influence of the sodium chloride salt concentration on the strength of cement stabilized Lianyungang soft marine clays. Clay with various sodium chloride salt concentrations was prepared artificially and stabilized by ordinary Portland cement with different contents. A series of UCS tests were performed on cement stabilized clay specimens after desired curing periods. Based on the experimental results, a new parameter, termed as porosity-salt concentration/cement content (PSC) ratio, is found to be appropriate to describe the effect of salt on the strength of cement-treated soil.

    1 Materials and Method

    1.1 Materials

    1.1.1 Soil sample

    The Lianyungang marine clay used in this investigation was obtained from the Liezikou bridge construction field, Guannan County, Jiangsu Province, China. Clay was sampled at 2.0 m depth under the ground surface. The properties of Lianyungang marine clay samples are shown in Tab.1. The clay has a high plasticity with a liquid limit of 58.7% and a plastic limit of 33.8%. The total salt concentration is quite high, with a value of 46.16 g/L. Tab.2 presents the chemical analysis results of the pore water of Lianyungang marine clay. The results show that the dominant salt composition in the pore water is sodium chloride. Based on the sieving and hydrometer analysis (see Fig.1), the soil used in this research consists of 2.8% sand and 97.2% fines (53.5% silt and 43.7% clay), indicating that the Lianyungang marine clay is composed of silt and clay fractions. The pH value of the pore water of natural clay is about 7.8, which is close to neutrality. Liu et al.[15]reported that the most predominant clay minerals in Lianyungang marine deposits were illite-smectite mixed-layer mineral and illite. These results indicate that the Lianyungang marine clay has not only high water content, high void ratio, high compressibility, but also contains a much higher content of sodium chloride salt.

    Tab.1 Properties of Lianyungang marine clay

    Tab.2 Chemical analysis results of pore water of Lianyungang marine clay

    Fig.1 Soil particle distribution curve

    1.1.2 Cement

    Ordinary Portland cement type I is used to investigate the effect of the cement content (the ratio of cement weight to weight of the dry soil, termed asaw) on the strength of stabilized clay.

    1.2 Test method

    In order to investigate the effect of the salt concentration, the clays were treated to eliminate the salt by the wash method first. The wash method was applied as follows: the Lianyungang marine clay from the construction field was air-dried, crushed down, sieved, and dipped in distilled water for 24 h. Salt in the soft soil was removed after repeating this process 5 times. After that, the desired content of sodium chloride salt was added into the washed soil and mixed thoroughly for 10 min by a miniature mixing machine. Their sodium chloride salt concentrations (ratios of the sodium chloride salt weight to the dry soil weight, termed asCs), were 2.5%, 5.0%, 7.5% and 10.0%.

    The clay was then mixed with 10%, 15% and 20% cement by mass of dry soil. In order to eliminate the effects of differences in water content, the samples were prepared to contain the same water content of 70% (i.e. 1.2 times liquid limit) by adding the distilled water into the clay. Kitchen stand mixers were used to mix the cement into the clay for a total mixing time of 10 min until a homogenous clay-water-cement paste was attained. To ensure thorough mixing, the sides of the bowl were continuously scraped and the mixer was stopped as often as needed to scrape off any materials packed onto the bottom of the bowl. Upon completion of mixing, the soil was compacted into plastic tubes with an internal diameter of 50 mm and a height of 100 mm (see Fig.2). All the samples were compacted by hand vibrating to eliminate the entrapped air. The samples were cured at a temperature of about 20 ℃ and a humidity of 95% for the desired curing periods. The samples were removed and carefully extruded from the plastic molds after curing the desired periods. The UCS tests were run on specimens after curing periods of 7, 14 and 28 d according to the procedure of ASTM D2166-06 at a strain rate of 1% per minute. Before the UCS test, the diameter, height and weight of the specimens were measured with accuracies of about 0.1 mm and 0.01 g.

    Fig.2 Picture of prepared specimens

    2 Test Results and Discussion

    2.1 Effect of salt concentration on the UCS

    Since the UCS after curing 28 d is usually used as the design value, the UCS after curing 28 d is discussed hereafter. Fig.3 shows the UCS of the cement stabilized clay after curing 28 d vs. salt concentration, where each data point represents the mean of three specimens. The measured UCS of specimens after curing 7 d and 14 d exhibits the same trend as that after curing 28 d. It can be seen that the UCS of the specimens increases with the increase in cement content and curing time, indicating that a great amount of hydration compounds such as calcium silicate hydrate and calcium aluminate hydrate gels is formed. Compared with the UCS of undisturbed natural sample (i.e. 15 kPa), the results indicate that the addition of cement induces a drastic strength improvement of Lianyungang marine clay and cement stabilization is an attractive and successful method to improve the engineering properties of the Lianyungang soft marine clay.

    Fig.3 UCS of specimens vs. salt concentration

    Fig.3 also indicates that the salt concentration has a great effect on the strength of cement-treated Lianyungang marine clay. It can be seen that the UCS decreases approximately linearly with the increase in the salt concentration. For instance, for specimens with a cement of 20% and a salt concentration of 2.5%, the 28-d UCS is 1.54 MPa. Nevertheless, if the salt concentration is increased to 10.0%, the 28-d UCS is only 1.146 MPa. This leads to the conclusion that the presence of sodium chloride salt in soil has a detrimental effect on the process of the cementation of cement-soil mixtures. This finding agrees with the experimental results of Sinat[16]and Xing et al[12]. However, an increase in strength with salt content in cement-treated clay was reported by Miura et al.[17], Onitsuka et al.[18]and Nor[19]. It should be noted that the strength increase with the increase in the salt concentration was achieved in cement- or lime-treated clay with a high humic acid content. It is generally accepted that the presence of the organic matter in the clay acts to the detriment of the strength of cement or lime stabilized clays. The salt contributes to coagulate with the organic cation, which leaves the clay particles exposed to cement or lime for pozzolanic reaction content, as a result, the strength of cement- or lime-treated soil increases with the increase in salt concentration.

    2.2 Prediction model of UCS of cement-treated salt-rich clay

    Lorenzo and Bergado[8]reported that the after-curing void ratio (et) and cement content (aw) are the fundamental parameters to characterize the strength and compressibility of cement-admixed clay at high water contents. Fig.4 shows the UCS as a function of the after-curing voids/cement content ratio (et/aw, defined as the after-curing voids divided by the cement content). It can be seen that it is not possible to establish a unique relationship between these two factors. The results differ from those obtained by Lorenzo and Bergado[8]where the after-curing voids/cement content ratio was found to be a useful parameter in the analysis of the strength development of materials that the writers studied. However, in their study the salt concentration of the soil was not reported and constant, so that the after-curing voids/cement content ratio does not reflect the influence of salt concentration.

    Fig.4 UCS vs. et/aw ratio

    As mentioned above, the UCS of cement-treated soil is dependent on the cement content, the salt concentration, the curing time and the total water content, and so on; therefore, a new parameter, termed as the PSC ratio, is proposed to relate the UCS values and those factors.

    翠姨越來越瘦了,哥哥去到外祖母家看了她兩次,也不過是吃飯,喝酒,應(yīng)酬了一番。而且說是去看外祖母的。在這里年青的男子,去拜訪年青的女子,是不可以的。哥哥回來也并不帶回什么歡喜或是什么新的憂郁,還是一樣和大家打牌下棋。

    (1)

    wherenis the porosity.

    Since the structure of the cement-treated soil is dependent on cement content, soil mineral, curing time and water content in the cement-water-soil mixture, it is logical to utilize a parameter that combines the effects of these factors. The porositynis adopted in this study to take into account the effect of water content primarily. The porosity can be determined by void ratioeusing Eq.(2), which can be determined by the solid-liquid-air phase concept using Eq. (3) with the predetermined indices of specific gravity, water contentw, and bulk density. The bulk density is calculated according to the dimensions of the specimen measured before the UCS test. For convenience of use by engineers in practise, water content here refers to the water in the soil before the mix of cement (i.e. 70% in this study). A composite specific gravity, based on the soil, cement and sodium chloride salt mass percentages in the specimen, is used. The specific gravity values of the soil, the cement, and the sodium chloride salt are 2.72, 3.10 and 2.165, respectively. Sodium chloride salt is simply assumed as a solid phase, although it would react with hydrated products and form complicated forms. Such an assumption is useful to derive the values of the specific gravity of mixed soils.

    (2)

    (3)

    whereGsis the composite specific gravity of the treated soil (dimensionless);γis the unit weight of the treated soil (kN/m3);γwis the unit weight of water (kN/m3).

    Fig.5 shows the UCS of the cement stabilized clay after curing 28 d vs. the PSC ratio. It can be seen that the unconfined compressive strengths increase with the decrease in the ratio. As expected, the increase in cement content, the reduction of water content and the decrease in salt concentration results in a reduction of the ratio, consequently, yielding an increase of unconfined compressive strength. A good correlation (coefficient of determination,R2>0.97) can be observed between this ratio and the UCS of the soil-cement mixture, which can be expressed as

    PSC=Aln(UCS)+B

    (4)

    whereAis the slope of the linear regression, andBis the intercept with ordinate. Furthermore, all the fitting curves representing various salt concentrations present a similar format. The parametersAandBare dependent upon the salt concentration, as observed in Fig.6.

    Fig.5 UCS vs. PSC ratio

    Fig.6 Parameters A and B vs. salt concentration

    It is important to point out that the slopes of the fitting lines and the intercepts change linearly with the increase in the salt concentrationCsand the parameters can be fit very well by the following equations:

    A=-0.012Cs-0.016

    (5)

    B=0.117 4Cs+0.123

    (6)

    Substituting Eqs. (5) and (6) into Eq. (4) gives

    PSC=(-0.012Cs-0.016)ln(UCS)+(0.011 74Cs+0.123)

    (7)

    Eq.(7) relates the UCS of cement-treated soil to the cement content, the salt concentration and the water content of the soil. This equation is very practical for finding the right design parameters. For instance, using Eq.(7), the engineer can choose the amount of cement to provide the soil-cement mixture that meets the strength required by the project for Lianyungang marine clay with a given salt concentration.

    It should be pointed out that those parameters in the empirical equation depend on the used materials (soil, cement and salt type). Therefore, one trying to stabilize a different soil has to carry out a similar testing program and develop the relevant equation using this approach.

    3 Conclusions

    1) The presence of sodium chloride salt in soil has a detrimental effect on the UCS of cement-treated Lianyungang soft marine clay.

    2) The PSC ratio is shown to be an appropriate parameter to evaluate the effect of the salt concentration on the UCS of the soil-cement mixture.

    3) An empirical equation is proposed to predict the UCS of cement-treated Lianyungang marine clay taking the effect of salt into account. It is possible that those parameters in the empirical equation depend on the used materials (soil, cement and salt type).

    Although this study provides information of the UCS of cement-treated Lianyungang marine clay, the microstructure mechanism of adverse effect of salt on the UCS of cement-treated soils requires additional research.

    [1]Bruce D A, Bruce M E C, Dimillio A F. Dry mix methods: a brief overview of international practice[C]//ProceedingsofInternationalConferenceonDryMixMethodsforDeepSoilStabilization. Rotterdam, Netherlands, 1999: 15-25.

    [2]Porbaha A, Tanaka H, Kobayashi M. State of the art in deep mixing technology: part Ⅱ. applications[J].GroundImprovement, 1998,2(3): 125-139.

    [3]Han J, Zhou H T, Ye F. State-of-practice review of deep soil mixing techniques in China[J].JournalofTransportationResearchRecord, 2002,1808: 49-57.

    [4]Liu S Y, Hryciw R D. Evaluation and quality control of dry-jet-mixed clay soil-cement columns by standard penetration test[J].JournalofTransportationResearchRecord, 2003,1849: 47-52.

    [5]Xu C, Ye G B. Deformation and bearing capacity of composite foundation with cement-soil mixed pile[J].ChineseJournalofGeotechnicalEngineering, 2005,27(5): 600-604.(in Chinese)

    [6]Coastal Development Institute of Technology.Thedeepmixingmethod—principle,designandconstruction[M]. Rotterdam,Netherlands: A. A. Balkema Publishers, 2002.

    [7]Horpibulsuk S, Miura N, Nagaraj T S. Assessment of strength development in cement admixed high water content clays with Abram’s law as basis[J].Géotechnique, 2003,53(4): 439-444.

    [8]Lorenzo G A, Bergado D T. Fundamental parameters of cement-admixed clay-new approach[J].JournalofGeotechnicalandGeoenvironmentalEngineering,ASCE, 2004,130(10):1042-1050.

    [9]Shen S L, Han J, Miura N. Laboratory evaluation of mixing energy consumption and its influence on soil-cement strength[J].JournalofTransportationResearchRecord, 2004,1868: 23-30.

    [10]Moh Z C. Soil stabilization with cement and sodium additives[J].JournalofSoilMechanicsandFoundationDivision,ASCE, 1962,88(6): 81-105.

    [11]Angelova R. Effect of some chemical additives on the strength development of soil-cement[C]//ProceedingsoftheInternationalConferenceontheImplicationsofGroundChemistryandMicrobiologyforConstruction. Bristol, UK, 1992: 147-159.

    [12]Xing H F, Yang X M, Xu C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J].EngineeringGeology, 2009,103(1/2): 33-38.

    [13]Modmoltin C, Voottipruex P. Influence of salts on strength of cement-treated clays[J].GroundImprovement, 2009,162(2):15-26.

    [14]Modmoltin C, Lu J M, Onitsuka K. Influence of humic acid and salt concentration on lime stabilised Ariake clays and microstructure research[J].ChineseJournalofGeotechnicalEngineering, 2004,26(2): 281-286.

    [15]Liu S Y, Shao G H, Du Y J. Depositional and geotechnical properties of marine clays in Lianyungang, China[J].EngineeringGeology, 2011,121(1): 66-74.

    [16]Sinat K. Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization[D]. Saga, Japan: Saga University, 2006.

    [17]Miura N, Taesiri Y, Koga Y, et al. Practical of improvement of Ariake clay by mixing admixtures[C]//ProceedingsoftheInternationalSymposiumonShallowSeaandLowLand. Saga, Japan, 1998: 159-168.

    [18]Onitsuka K, Modmoltin M, Kouno M, et al. Effect of organic matter on lime and cement stabilized Ariake clay[J].JournalofGeotechnicalEngineering,JSCE, 2004,729(Ⅲ-62): 1-13.

    [19]Nor Z B M Y. Stabilisation of organic clay using lime-added salt[D]. Skudai, Malaysia: Universiti Teknologi Malaysia, 2007.

    猜你喜歡
    年青外祖母男子
    外祖母的美味(節(jié)選)
    對(duì)歌趁年青
    歌海(2021年2期)2021-06-22 02:25:59
    年青一代應(yīng)助力長(zhǎng)輩科學(xué)用網(wǎng)
    2019年下半年男子棋手等級(jí)分
    棋藝(2019年8期)2019-12-25 01:25:06
    回憶我的外祖母——堅(jiān)強(qiáng)獨(dú)立的女“水客”廖德英
    文史春秋(2019年9期)2019-10-23 05:18:54
    占先
    智族GQ(2019年7期)2019-08-26 09:31:36
    從男子力保衛(wèi)戰(zhàn)開始
    男子買執(zhí)照騙47萬拆遷款
    菊香依存
    滿臉通紅
    久久韩国三级中文字幕| 日韩中字成人| 欧美日韩乱码在线| 最近的中文字幕免费完整| 国产久久久一区二区三区| 特级一级黄色大片| 18禁黄网站禁片免费观看直播| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 亚洲在线自拍视频| 人人妻人人澡人人爽人人夜夜 | 能在线免费观看的黄片| 亚洲天堂国产精品一区在线| 国产白丝娇喘喷水9色精品| av在线观看视频网站免费| 亚洲熟妇熟女久久| 久久久色成人| 免费人成在线观看视频色| 精品一区二区三区视频在线观看免费| 精品午夜福利在线看| 禁无遮挡网站| 国产高清三级在线| 欧美日韩综合久久久久久| 久久精品国产自在天天线| 超碰av人人做人人爽久久| 午夜激情欧美在线| 亚洲欧美日韩高清在线视频| 成人特级黄色片久久久久久久| 久久久久久伊人网av| 日韩av在线大香蕉| 国产久久久一区二区三区| 色综合色国产| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 男人狂女人下面高潮的视频| 亚洲性久久影院| 亚洲av中文av极速乱| 欧美精品国产亚洲| 午夜激情欧美在线| 不卡视频在线观看欧美| 最新中文字幕久久久久| 午夜福利在线观看吧| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 国产精品av视频在线免费观看| 69人妻影院| 啦啦啦啦在线视频资源| 一个人看视频在线观看www免费| 色在线成人网| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 夜夜夜夜夜久久久久| 国产伦在线观看视频一区| 久久人人精品亚洲av| 亚洲最大成人av| 99热全是精品| 又黄又爽又免费观看的视频| 高清日韩中文字幕在线| 国产真实乱freesex| 免费观看精品视频网站| 天天躁夜夜躁狠狠久久av| 久久精品影院6| 国产片特级美女逼逼视频| 精品一区二区三区av网在线观看| 精品人妻偷拍中文字幕| 欧美性感艳星| 亚洲不卡免费看| 亚洲av二区三区四区| 久久精品国产亚洲av香蕉五月| 精品久久久久久久末码| 99热这里只有是精品50| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 成人一区二区视频在线观看| 日本与韩国留学比较| 天美传媒精品一区二区| 国产综合懂色| 国产三级中文精品| 激情 狠狠 欧美| 99热全是精品| 亚洲色图av天堂| 草草在线视频免费看| 日韩高清综合在线| 乱码一卡2卡4卡精品| 欧美三级亚洲精品| 激情 狠狠 欧美| 欧美中文日本在线观看视频| 婷婷精品国产亚洲av| 国产精品一及| 国产精品嫩草影院av在线观看| 可以在线观看毛片的网站| 此物有八面人人有两片| 色播亚洲综合网| 国产乱人偷精品视频| 欧美三级亚洲精品| 露出奶头的视频| av女优亚洲男人天堂| 国产av一区在线观看免费| 午夜免费男女啪啪视频观看 | 免费看美女性在线毛片视频| 好男人在线观看高清免费视频| 久久精品国产亚洲av天美| 国产精品1区2区在线观看.| 免费在线观看影片大全网站| 人人妻人人澡欧美一区二区| 欧美一区二区精品小视频在线| 变态另类成人亚洲欧美熟女| 搡老熟女国产l中国老女人| 亚洲成a人片在线一区二区| 男人和女人高潮做爰伦理| 久久久久国内视频| 亚洲av第一区精品v没综合| 国产成年人精品一区二区| 两个人视频免费观看高清| 久久精品国产亚洲网站| 精品久久久噜噜| 精品福利观看| 午夜福利18| 日韩强制内射视频| 别揉我奶头~嗯~啊~动态视频| 国产 一区 欧美 日韩| 亚洲色图av天堂| 成人三级黄色视频| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 一本久久中文字幕| 干丝袜人妻中文字幕| 99精品在免费线老司机午夜| 免费av不卡在线播放| 亚洲精品日韩av片在线观看| 国产精品三级大全| 一本久久中文字幕| 亚洲精品乱码久久久v下载方式| 国产伦一二天堂av在线观看| 三级国产精品欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 精品一区二区三区视频在线观看免费| av在线天堂中文字幕| 精品日产1卡2卡| 在线天堂最新版资源| 亚洲熟妇熟女久久| 精品久久久久久成人av| 国产爱豆传媒在线观看| 亚洲高清免费不卡视频| 免费观看精品视频网站| 久久精品夜夜夜夜夜久久蜜豆| 禁无遮挡网站| 亚洲最大成人中文| 久久久久久久久久黄片| 91精品国产九色| 插逼视频在线观看| a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 亚洲成人av在线免费| 亚洲精品粉嫩美女一区| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av| 久久精品影院6| 美女高潮的动态| .国产精品久久| 国产成人福利小说| 99热这里只有精品一区| 国产精品久久久久久亚洲av鲁大| 日日摸夜夜添夜夜爱| 99热这里只有是精品50| eeuss影院久久| 亚洲四区av| av在线亚洲专区| 草草在线视频免费看| 亚洲国产色片| 国产精品一区二区三区四区免费观看 | 在线观看午夜福利视频| 91狼人影院| 一进一出好大好爽视频| 又爽又黄无遮挡网站| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月| 美女xxoo啪啪120秒动态图| 午夜精品在线福利| 国产黄色小视频在线观看| 国产成年人精品一区二区| 高清日韩中文字幕在线| 婷婷六月久久综合丁香| 此物有八面人人有两片| 久久精品人妻少妇| 亚洲专区国产一区二区| 免费无遮挡裸体视频| 在线播放无遮挡| 亚洲中文字幕日韩| 天天一区二区日本电影三级| 亚洲精品日韩在线中文字幕 | 波多野结衣巨乳人妻| 国产色爽女视频免费观看| 国产大屁股一区二区在线视频| 尤物成人国产欧美一区二区三区| 别揉我奶头 嗯啊视频| 性欧美人与动物交配| 国产色爽女视频免费观看| 黄色日韩在线| 国产黄片美女视频| 日韩,欧美,国产一区二区三区 | 亚洲av免费在线观看| 亚洲五月天丁香| 免费看日本二区| 国语自产精品视频在线第100页| www.色视频.com| 亚洲最大成人手机在线| 亚洲av中文字字幕乱码综合| 色在线成人网| 欧美一区二区亚洲| 三级毛片av免费| 中文资源天堂在线| 一a级毛片在线观看| 日韩高清综合在线| 国产欧美日韩精品一区二区| 国产av在哪里看| 日本爱情动作片www.在线观看 | 神马国产精品三级电影在线观看| 激情 狠狠 欧美| 国产淫片久久久久久久久| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在 | 成人国产麻豆网| 国产黄色小视频在线观看| 国产精品久久电影中文字幕| 色av中文字幕| 欧美+日韩+精品| 国产精品无大码| 两个人的视频大全免费| 国产男人的电影天堂91| 六月丁香七月| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 国产成年人精品一区二区| 国产真实乱freesex| 久久久久久久久中文| 麻豆久久精品国产亚洲av| 日韩制服骚丝袜av| 久久韩国三级中文字幕| 国产aⅴ精品一区二区三区波| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 人妻少妇偷人精品九色| 国内久久婷婷六月综合欲色啪| 久久精品国产鲁丝片午夜精品| 观看免费一级毛片| 中文在线观看免费www的网站| 级片在线观看| 精品久久久噜噜| 午夜福利在线观看免费完整高清在 | 成人一区二区视频在线观看| 久久久午夜欧美精品| 精品免费久久久久久久清纯| 别揉我奶头 嗯啊视频| 国产一级毛片七仙女欲春2| 久久久久久久久久黄片| 国产一区二区在线av高清观看| 亚洲aⅴ乱码一区二区在线播放| 在线观看午夜福利视频| 最近在线观看免费完整版| 一进一出抽搐动态| 蜜桃亚洲精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| av专区在线播放| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 老司机午夜福利在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国产精品野战在线观看| 中文资源天堂在线| 国产探花极品一区二区| 三级国产精品欧美在线观看| 十八禁网站免费在线| 最近的中文字幕免费完整| 亚洲欧美成人精品一区二区| 最新中文字幕久久久久| 国产亚洲精品久久久com| 看黄色毛片网站| 亚洲激情五月婷婷啪啪| 99九九线精品视频在线观看视频| 69av精品久久久久久| 简卡轻食公司| 成年女人毛片免费观看观看9| 亚洲天堂国产精品一区在线| 久久人妻av系列| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 日韩欧美 国产精品| 嫩草影视91久久| 少妇被粗大猛烈的视频| 在线观看午夜福利视频| 联通29元200g的流量卡| 亚洲自拍偷在线| 亚洲欧美清纯卡通| 看黄色毛片网站| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 国产欧美日韩精品亚洲av| 久久午夜亚洲精品久久| 免费人成在线观看视频色| 人妻夜夜爽99麻豆av| 一级毛片电影观看 | 99riav亚洲国产免费| 精品无人区乱码1区二区| 一级av片app| 级片在线观看| 99久久久亚洲精品蜜臀av| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 久久欧美精品欧美久久欧美| 欧美成人a在线观看| 啦啦啦啦在线视频资源| 国产 一区 欧美 日韩| 日韩一区二区视频免费看| 亚洲专区国产一区二区| 国产男靠女视频免费网站| 在线免费观看的www视频| 免费大片18禁| 最近手机中文字幕大全| 欧美丝袜亚洲另类| 国产精品人妻久久久久久| 欧美区成人在线视频| 高清日韩中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩精品一区二区| 色噜噜av男人的天堂激情| 国产片特级美女逼逼视频| 亚洲最大成人中文| 亚洲成人中文字幕在线播放| 亚洲欧美清纯卡通| 在线播放无遮挡| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| 精品久久久噜噜| 久久久久久久久久久丰满| 国产精品亚洲美女久久久| 无遮挡黄片免费观看| 久久久久久伊人网av| 欧美性感艳星| 熟女人妻精品中文字幕| 久久久久久久久久久丰满| av天堂中文字幕网| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 在线播放国产精品三级| 此物有八面人人有两片| 噜噜噜噜噜久久久久久91| 国产精华一区二区三区| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 真实男女啪啪啪动态图| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 精品人妻熟女av久视频| 国内少妇人妻偷人精品xxx网站| 成人av在线播放网站| 国产高潮美女av| 亚洲欧美中文字幕日韩二区| 精品人妻偷拍中文字幕| 可以在线观看的亚洲视频| 国产乱人视频| 中文字幕精品亚洲无线码一区| 日韩精品青青久久久久久| 在线免费观看不下载黄p国产| 97碰自拍视频| 99热6这里只有精品| 日本黄大片高清| 色播亚洲综合网| 看黄色毛片网站| 亚洲18禁久久av| 亚洲第一电影网av| 亚洲美女视频黄频| 内地一区二区视频在线| 国内揄拍国产精品人妻在线| 别揉我奶头 嗯啊视频| 久久久成人免费电影| 别揉我奶头 嗯啊视频| 丰满的人妻完整版| 老女人水多毛片| 日日撸夜夜添| 精品国内亚洲2022精品成人| or卡值多少钱| 久久鲁丝午夜福利片| 卡戴珊不雅视频在线播放| 99精国产麻豆久久婷婷| 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 男人爽女人下面视频在线观看| av网站免费在线观看视频| 最近的中文字幕免费完整| 日日啪夜夜撸| 久久久久久久大尺度免费视频| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 亚洲自偷自拍三级| 精品一品国产午夜福利视频| 成人漫画全彩无遮挡| 国产探花极品一区二区| 免费观看无遮挡的男女| 免费av不卡在线播放| 亚洲综合精品二区| 在线看a的网站| 最近2019中文字幕mv第一页| 如日韩欧美国产精品一区二区三区 | 天美传媒精品一区二区| 岛国毛片在线播放| 精品国产国语对白av| 九九在线视频观看精品| 精品国产国语对白av| 色5月婷婷丁香| 2018国产大陆天天弄谢| 久久久久久久大尺度免费视频| 91久久精品电影网| √禁漫天堂资源中文www| 韩国av在线不卡| 国产毛片在线视频| 少妇人妻一区二区三区视频| 99久久精品国产国产毛片| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 国产成人精品婷婷| 少妇人妻精品综合一区二区| 欧美老熟妇乱子伦牲交| 亚洲真实伦在线观看| 久久6这里有精品| kizo精华| 亚洲av男天堂| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 黄色毛片三级朝国网站 | 日韩制服骚丝袜av| 亚洲四区av| 久久久欧美国产精品| 在线观看免费日韩欧美大片 | 国产高清有码在线观看视频| 中文字幕免费在线视频6| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 永久免费av网站大全| 老司机亚洲免费影院| 久久国产精品大桥未久av | 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| 午夜免费鲁丝| 精品亚洲成国产av| 在线看a的网站| 人人妻人人添人人爽欧美一区卜| 亚洲精品乱码久久久v下载方式| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 熟女人妻精品中文字幕| 搡女人真爽免费视频火全软件| 黄色毛片三级朝国网站 | 国产熟女午夜一区二区三区 | 精品久久久精品久久久| 两个人免费观看高清视频 | 亚洲成人一二三区av| 日本免费在线观看一区| 高清不卡的av网站| 亚洲欧美日韩东京热| 嫩草影院新地址| 国产毛片在线视频| 偷拍熟女少妇极品色| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 国产精品女同一区二区软件| 亚洲图色成人| 亚洲精品乱码久久久久久按摩| 在线观看免费高清a一片| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 欧美一级a爱片免费观看看| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 国产亚洲91精品色在线| 精品视频人人做人人爽| 亚洲欧洲日产国产| 国产在线男女| 成人影院久久| 日韩在线高清观看一区二区三区| 久久久久人妻精品一区果冻| 欧美老熟妇乱子伦牲交| 久久综合国产亚洲精品| 国产一区有黄有色的免费视频| av免费在线看不卡| tube8黄色片| 欧美精品国产亚洲| 免费人成在线观看视频色| 亚洲欧洲日产国产| 免费少妇av软件| 一本色道久久久久久精品综合| 内地一区二区视频在线| 日日啪夜夜撸| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 少妇人妻精品综合一区二区| 国产永久视频网站| 亚洲欧美一区二区三区国产| 国产永久视频网站| a 毛片基地| 久久久亚洲精品成人影院| 亚洲国产色片| 亚洲一区二区三区欧美精品| 亚洲人与动物交配视频| 免费av不卡在线播放| 日日爽夜夜爽网站| 国产毛片在线视频| 久久久久久伊人网av| 精品人妻熟女av久视频| 色网站视频免费| 亚洲精品久久午夜乱码| 91精品一卡2卡3卡4卡| 美女国产视频在线观看| 欧美 日韩 精品 国产| 男女啪啪激烈高潮av片| av不卡在线播放| 夫妻性生交免费视频一级片| 在线观看国产h片| 两个人免费观看高清视频 | 国产亚洲av片在线观看秒播厂| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| av免费观看日本| 九九爱精品视频在线观看| 亚洲精品乱久久久久久| 久久精品熟女亚洲av麻豆精品| 狂野欧美激情性xxxx在线观看| 国产毛片在线视频| 在线观看免费高清a一片| 高清午夜精品一区二区三区| 成人无遮挡网站| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网| av.在线天堂| 黄色视频在线播放观看不卡| 亚洲精品亚洲一区二区| 99热全是精品| 街头女战士在线观看网站| 国产精品一二三区在线看| 天天操日日干夜夜撸| 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 高清不卡的av网站| 久久久国产精品麻豆| 人人澡人人妻人| 91精品一卡2卡3卡4卡| 欧美另类一区| 午夜免费观看性视频| 精品久久久久久久久av| av在线老鸭窝| 一本色道久久久久久精品综合| 极品少妇高潮喷水抽搐| 丰满人妻一区二区三区视频av| 久久精品国产鲁丝片午夜精品| 国产极品粉嫩免费观看在线 | 国国产精品蜜臀av免费| 成人综合一区亚洲| 男女国产视频网站| 免费大片黄手机在线观看| 王馨瑶露胸无遮挡在线观看| 久久99一区二区三区| 国产精品国产三级国产专区5o| 看非洲黑人一级黄片| 亚洲国产毛片av蜜桃av| 亚洲精品国产色婷婷电影| 国产精品99久久久久久久久| 青青草视频在线视频观看| 色5月婷婷丁香| 精品少妇久久久久久888优播| 黄色配什么色好看| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 国产成人免费无遮挡视频| 黄色配什么色好看| 男男h啪啪无遮挡| 女人久久www免费人成看片| 日本欧美国产在线视频| 亚洲国产精品一区二区三区在线| 亚洲av免费高清在线观看| 国产成人精品久久久久久| 亚洲精品日本国产第一区| 久久久午夜欧美精品| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 国产亚洲av片在线观看秒播厂| 国产精品三级大全| 亚洲无线观看免费| 男男h啪啪无遮挡| 欧美三级亚洲精品| 亚洲人与动物交配视频| 一级,二级,三级黄色视频| 美女视频免费永久观看网站| 视频区图区小说| 精品亚洲成国产av| 亚洲国产欧美在线一区| 免费少妇av软件| 久久午夜综合久久蜜桃| 日韩成人伦理影院| 免费观看无遮挡的男女| 最近中文字幕2019免费版| 女性被躁到高潮视频|