• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay

    2013-09-17 06:00:10ZhangDingwenCaoZhiguoFanLibinDengYongfeng

    Zhang Dingwen Cao Zhiguo Fan Libin Deng Yongfeng

    (School of Transportation, Southeast University, Nanjing 210096, China)

    S oft marine clay deposits around the coast of Lianyungang and Yancheng regions in Jiangsu province.Its natural water content varies from 50%to 110%and the liquidity indices of the marine clay are in the range of close to or more than one.In particular, the salt concentration is high in pore water of marine soft soil.Due to its very high water content,low shear strength and high salt concentration,the disposal of marine clay at construction sites is a challenge encountered by engineers.An improvement of the super soft soil within a short period to serve as a geomaterial is necessary in ocean and geotechnical engineering practise.

    The deep mixing method is an attractive ground improvement technique for high water content soft clay.In the deep mixing method,powder cement or slurry cement is injected into the natural soil at the required depth and a blade is pushed into the ground to mix the soil and cement.This technique has been increasingly used worldwide, especially in Europe, North America and Asia since its development in Sweden and Japan in 1970s[1].The deep mixing method was introduced to China in the early 1980s.Because this technique can effectively reduce the compressibility and permeability and increase the strength of soft ground,it rapidly spread throughout China in the 1990s,especially for controlling seepage and as a cut-off barrier, reduction of settlement, prevention of sliding failure and increasing the bearing capacity of the ground[2-5].The bond strength of cement-treated soil is controlled by many factors such as soil gradation,types of clay minerals, organic matter, pH, slat concentration,mixing energy and so on.Numerous researchers have performed experimental studies on the fundamental mechanical properties and engineering behaviour of soil-cement in the past four decades[6-9].

    Concerning the effect of salt concentration on the cement-treated soil,limited researches have been conducted.Moh[10]found that the increase in salt content can increase the compressive strength of the treated soils by mixing them with chemical admixtures such as sodium chloride, calcium chloride and sodium hydroxide in clay.Angelova[11]studied the impact of the same or similar inorganic chemical additives on the strength of stabilised soil,and showed that after a longer curing time(up to two years),the effect of these additives was not consistent.In contrast, Xing et al.[12]reported that different amounts of Mg2+, Cl-, and SO24-not only caused differences in the microstructures of soil-cement but also influenced the soil-cement strength.Xing et al.[12]found that Cl-h(huán)as a negative effect on the strength of soil-cement in the short and the long term.Modmoltin and Voottipruex[13]reported that the influence of salts on cementtreated Bangkok Clay,bentonite and kaolinite varied as a result of the soil structure and chemical reactions.Modmoltin et al.[14]showed that the salt in soil can decrease the detrimental effect of organic matter on the strength of lime-treated and cement-treated soil.Literature reviews demonstrate that the reported results are not consistent and the influence of the salt concentration on the cement-treated soil needs to be further investigated.Especially,there is not a rational prediction model to help engineers to design the cementation of salt-rich soil.

    This study, therefore, aims to quantify the influence of the sodium chloride salt concentration on the strength of cement stabilized Lianyungang soft marine clays.Clay with various sodium chloride salt concentrations was prepared artificially and stabilized by ordinary Portland cement with different contents.A series of UCS tests were performed on cement stabilized clay specimens after desired curing periods.Based on the experimental results, a new parameter,termed as porosity-salt concentration/cement content(PSC)ratio,is found to be appropriate to describe the effect of salt on the strength of cement-treated soil.

    1 Materials and Method

    1.1 Materials

    1.1.1 Soil sample

    The Lianyungang marine clay used in this investigation was obtained from the Liezikou bridge construction field,Guannan County, Jiangsu Province, China.Clay was sampled at 2.0 m depth under the ground surface.The properties of Lianyungang marine clay samples are shown in Tab.1.The clay has a high plasticity with a liquid limit of 58.7%and a plastic limit of 33.8%.The total salt concentration is quite high, with a value of 46.16 g/L.Tab.2 presents the chemical analysis results of the pore water of Lianyungang marine clay.The results show that the dominant salt composition in the pore water is sodium chloride.Based on the sieving and hydrometer analysis(see Fig.1), the soil used in this research consists of 2.8%sand and 97.2%fines(53.5%silt and 43.7%clay),indicating that the Lianyungang marine clay is composed of silt and clay fractions.The pH value of the pore water of natural clay is about 7.8, which is close to neutrality.Liu et al.[15]reported that the most predominant clay minerals in Lianyungang marine deposits were illite-smectite mixed-layer mineral and illite.These results indicate that the Lianyungang marine clay has not only high water content, high void ratio, high compressibility,but also contains a much higher content of sodium chloride salt.

    Tab.1 Properties of Lianyungang marine clay

    Tab.2 Chemical analysis results of pore water of Lianyungang marine clay

    Fig.1 Soil particle distribution curve

    1.1.2 Cement

    Ordinary Portland cement type I is used to investigate the effect of the cement content(the ratio of cement weight to weight of the dry soil,termed as aw)on the strength of stabilized clay.

    1.2 Test method

    In order to investigate the effect of the salt concentration,the clays were treated to eliminate the salt by the wash method first.The wash method was applied as follows:the Lianyungang marine clay from the construction field was air-dried, crushed down, sieved, and dipped in distilled water for 24 h.Salt in the soft soil was removed after repeating this process 5 times.After that, the desired content of sodium chloride salt was added into the washed soil and mixed thoroughly for 10 min by a miniature mixing machine.Their sodium chloride salt concentrations(ratios of the sodium chloride salt weight to the dry soil weight, termed as Cs), were 2.5%, 5.0%,7.5%and 10.0%.

    The clay was then mixed with 10%,15%and 20%cement by mass of dry soil.In order to eliminate the effects of differences in water content,the samples were prepared to contain the same water content of 70%(i.e.1.2 times liquid limit)by adding the distilled water into the clay.Kitchen stand mixers were used to mix the cement into the clay for a total mixing time of 10 min until a homogenous clay-water-cement paste was attained.To ensure thorough mixing,the sides of the bowl were continuously scraped and the mixer was stopped as often as needed to scrape off any materials packed onto the bottom of the bowl.Upon completion of mixing, the soil was compacted into plastic tubes with an internal diameter of 50 mm and a height of 100 mm(see Fig.2).All the samples were compacted by hand vibrating to eliminate the entrapped air.The samples were cured at a temperature of about 20℃and a humidity of 95%for the desired curing periods.The samples were removed and carefully extruded from the plastic molds after curing the desired periods.The UCS tests were run on specimens after curing periods of 7,14 and 28 d according to the procedure of ASTM D2166-06 at a strain rate of 1%per minute.Before the UCS test, the diameter, height and weight of the specimens were measured with accuracies of about 0.1 mm and 0.01 g.

    Fig.2 Picture of prepared specimens

    2 Test Results and Discussion

    2.1 Effect of salt concentration on the UCS

    Since the UCS after curing 28 d is usually used as the design value,the UCS after curing 28 d is discussed hereafter.Fig.3 shows the UCS of the cement stabilized clay after curing 28 d vs.salt concentration, where each data point represents the mean of three specimens.The measured UCS of specimens after curing 7 d and 14 d exhibits the same trend as that after curing 28 d.It can be seen that the UCS of the specimens increases with the increase in cement content and curing time,indicating that a great amount of hydration compounds such as calcium silicate hydrate and calcium aluminate hydrate gels is formed.Compared with the UCS of undisturbed natural sample(i.e.15 kPa), the results indicate that the addition of cement induces a drastic strength improvement of Lianyungang marine clay and cement stabilization is an attractive and successful method to improve the engineering properties of the Lianyungang soft marine clay.

    Fig.3 UCS of specimens vs.salt concentration

    Fig.3 also indicates that the salt concentration has a great effect on the strength of cement-treated Lianyungang marine clay.It can be seen that the UCS decreases approximately linearly with the increase in the salt concentration.For instance, for specimens with a cement of 20%and a salt concentration of 2.5%, the 28-d UCS is 1.54 MPa.Nevertheless, if the salt concentration is increased to 10.0%, the 28-d UCS is only 1.146 MPa.This leads to the conclusion that the presence of sodium chloride salt in soil has a detrimental effect on the process of the cementation of cement-soil mixtures.This finding agrees with the experimental results of Sinat[16]and Xing et al[12].However, an increase in strength with salt content in cement-treated clay was reported by Miura et al.[17], Onitsuka et al.[18]and Nor[19].It should be noted that the strength increase with the increase in the salt concentration was achieved in cement-or lime-treated clay with a high humic acid content.It is generally accepted that the presence of the organic matter in the clay acts to the detriment of the strength of cement or lime stabilized clays.The salt contributes to coagulate with the organic cation,which leaves the clay particles exposed to cement or lime for pozzolanic reaction content, as a result, the strength of cement-or lime-treated soil increases with the increase in salt concentration.

    2.2 Prediction model of UCS of cement-treated saltrich clay

    Lorenzo and Bergado[8]reported that the after-curing void ratio(et)and cement content(aw)are the fundamental parameters to characterize the strength and compressibility of cement-admixed clay at high water contents.Fig.4 shows the UCS as a function of the after-curing voids/cement content ratio(et/aw,defined as the after-curing voids divided by the cement content).It can be seen that it is not possible to establish a unique relationship between these two factors.The results differ from those obtained by Lorenzo and Bergado[8]where the aftercuring voids/cement content ratio was found to be a useful parameter in the analysis of the strength development of materials that the writers studied.However, in their study the salt concentration of the soil was not reported and constant,so that the after-curing voids/cement content ratio does not reflect the influence of salt concentration.

    Fig.4 UCS vs.et/awratio

    As mentioned above,the UCS of cement-treated soil is dependent on the cement content, the salt concentration,the curing time and the total water content,and so on;

    wherenis the porosity.

    Since the structure of the cement-treated soil is dependent on cement content, soil mineral, curing time and water content in the cement-water-soil mixture,it is logical to utilize a parameter that combines the effects of these factors.The porositynis adopted in this study to take into account the effect of water content primarily.The porosity can be determined by void ratioeusing Eq.(2), which can be determined by the solid-liquid-air phase concept using Eq.(3)with the predetermined indices of specific gravity,water contentw,and bulk density.The bulk density is calculated according to the dimensions of the specimen measured before the UCS test.For convenience of use by engineers in practise,water content here refers to the water in the soil before the mix of cement(i.e.70%in this study).A composite specific gravity, based on the soil,cement and sodium chloride salt mass percentages in the specimen, is used.The specific gravity values of the soil, the cement, and the sodium chloride salt are 2.72,3.10 and 2.165, respectively.Sodium chloride salt is simply assumed as a solid phase,although it would react with hydrated products and form complicated forms.Such an assumption is useful to derive the values of the specific gravity of mixed soils.therefore, a new parameter, termed as the PSC ratio, is proposed to relate the UCS values and those factors.

    whereGsis the composite specific gravity of the treated soil(dimensionless);γ is the unit weight of the treated soil(kN/m3); γwis the unit weight of water(kN/m3).

    Fig.5 shows the UCS of the cement stabilized clay after curing 28 d vs.the PSC ratio.It can be seen that the unconfined compressive strengths increase with the decrease in the ratio.As expected, the increase in cement content,the reduction of water content and the decrease in salt concentration results in a reduction of the ratio,consequently,yielding an increase of unconfined compressive strength.A good correlation(coefficient of determination,R2>0.97)can be observed between this ratio and the UCS of the soil-cement mixture,which can be expressed as

    whereAis the slope of the linear regression,andBis the intercept with ordinate.Furthermore, all the fitting curves representing various salt concentrations present a similar format.The parametersAandBare dependent upon the salt concentration, as observed in Fig.6.

    Fig.5 UCS vs.PSC ratio

    Fig.6 Parameters A and B vs.salt concentration

    It is important to point out that the slopes of the fitting lines and the intercepts change linearly with the increase in the salt concentrationCsand the parameters can be fit very well by the following equations:

    Substituting Eqs.(5)and(6)into Eq.(4)gives

    Eq.(7)relates the UCS of cement-treated soil to the cement content,the salt concentration and the water content of the soil.This equation is very practical for finding the right design parameters.For instance, using Eq.(7),the engineer can choose the amount of cement to provide the soil-cement mixture that meets the strength required by the project for Lianyungang marine clay with a given salt concentration.

    It should be pointed out that those parameters in the empirical equation depend on the used materials(soil,cement and salt type).Therefore, one trying to stabilize a different soil has to carry out a similar testing program and develop the relevant equation using this approach.

    3 Conclusions

    1)The presence of sodium chloride salt in soil has a detrimental effect on the UCS of cement-treated Lianyungang soft marine clay.

    2)The PSC ratio is shown to be an appropriate parameter to evaluate the effect of the salt concentration on the UCS of the soil-cement mixture.

    3)An empirical equation is proposed to predict the UCS of cement-treated Lianyungang marine clay taking the effect of salt into account.It is possible that those parameters in the empirical equation depend on the used materials(soil, cement and salt type).

    Although this study provides information of the UCS of cement-treated Lianyungang marine clay,the microstructure mechanism of adverse effect of salt on the UCS of cement-treated soils requires additional research.

    [1]Bruce D A,Bruce M E C,Dimillio A F.Dry mix methods:a brief overview of international practice[C]//Proceedings of International Conference on Dry Mix Methods for DeepSoil Stabilization.Rotterdam, Netherlands,1999:15-25.

    [2]Porbaha A,Tanaka H,Kobayashi M.State of the art in deep mixing technology: part Ⅱ.applications[J].Ground Improvement,1998, 2(3):125-139.

    [3]Han J, Zhou H T, Ye F.State-of-practice review of deep soil mixing techniques in China[J].Journal of Transportation Research Record,2002, 1808:49-57.

    [4]Liu S Y,Hryciw R D.Evaluation and quality control of dry-jet-mixed clay soil-cement columns by standard penetration test[J].Journal of Transportation Research Record,2003, 1849:47-52.

    [5]Xu C, Ye G B.Deformation and bearing capacity of composite foundation with cement-soil mixed pile[J].Chinese Journal of Geotechnical Engineering,2005, 27(5):600-604.(in Chinese)

    [6]Coastal Development Institute of Technology.The deep mixing method—principle,design and construction[M].Rotterdam,Netherlands:A.A.Balkema Publishers,2002.

    [7]Horpibulsuk S, Miura N, Nagaraj T S.Assessment of strength development in cement admixed high water content clays with Abram's law as basis[J].Géotechnique,2003, 53(4):439-444.

    [8]Lorenzo G A, Bergado D T.Fundamental parameters of cement-admixed clay-new approach [J].JournalofGeotechnical and Geoenvironmental Engineering,ASCE,2004, 130(10):1042-1050.

    [9]Shen S L, Han J, Miura N.Laboratory evaluation of mixing energy consumption and its influence on soil-cement strength[J].Journal of Transportation Research Record,2004, 1868:23-30.

    [10]Moh Z C.Soil stabilization with cement and sodium additives[J].Journal of Soil Mechanics and Foundation Division,ASCE, 1962, 88(6):81-105.

    [11]Angelova R.Effect of some chemical additives on the strength development of soil-cement[C]//Proceedings of theInternationalConferenceontheImplicationsof Ground Chemistry and Microbiology for Construction.Bristol, UK, 1992:147-159.

    [12]Xing H F,Yang X M,Xu C,et al.Strength characteristics and mechanisms of salt-rich soil-cement[J].Engineering Geology,2009, 103(1/2):33-38.

    [13]Modmoltin C, Voottipruex P.Influence ofsalts on strength of cement-treated clays[J].Ground Improvement,2009, 162(2):15-26.

    [14]Modmoltin C,Lu J M,Onitsuka K.Influence of humic acid and salt concentration on lime stabilised Ariake clays and microstructure research [J].ChineseJournal of Geotechnical Engineering,2004, 26(2):281-286.

    [15]Liu S Y,Shao G H,Du Y J.Depositional and geotechnical properties of marine clays in Lianyungang, China[J].Engineering Geology,2011, 121(1):66-74.

    [16]Sinat K.Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization[D].Saga, Japan:Saga University, 2006.

    [17]Miura N,Taesiri Y,Koga Y,et al.Practical of improvement of Ariake clay by mixing admixtures[C]//Proceedings of the International Symposium on Shallow Sea and LowLand.Saga, Japan, 1998:159-168.

    [18]Onitsuka K, Modmoltin M, Kouno M, et al.Effect of organic matter on lime and cement stabilized Ariake clay[J].Journal of Geotechnical Engineering,JSCE, 2004,729(Ⅲ-62):1-13.

    [19]Nor Z B M Y.Stabilisation of organic clay using limeadded salt[D].Skudai, Malaysia:Universiti Teknologi Malaysia, 2007.

    国产精品 欧美亚洲| 丝袜喷水一区| 久久久久精品人妻al黑| 91国产中文字幕| 成人国产av品久久久| 黄色 视频免费看| av在线播放免费不卡| 露出奶头的视频| 欧美日韩一级在线毛片| 成人精品一区二区免费| 午夜视频精品福利| 十八禁网站网址无遮挡| bbb黄色大片| 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区| 十八禁高潮呻吟视频| 国产91精品成人一区二区三区 | 老司机亚洲免费影院| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 中国美女看黄片| 欧美一级毛片孕妇| 757午夜福利合集在线观看| 天天躁夜夜躁狠狠躁躁| 老司机影院毛片| 最黄视频免费看| 欧美大码av| 午夜激情av网站| 欧美在线黄色| 天天操日日干夜夜撸| 桃花免费在线播放| 脱女人内裤的视频| 婷婷成人精品国产| 十八禁网站免费在线| 又大又爽又粗| 国产人伦9x9x在线观看| 中文亚洲av片在线观看爽 | 精品国产一区二区三区久久久樱花| 欧美成狂野欧美在线观看| www.精华液| 超碰成人久久| 国产一区有黄有色的免费视频| 91成年电影在线观看| 久久香蕉激情| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 国产在线视频一区二区| 99热国产这里只有精品6| 高潮久久久久久久久久久不卡| 黄色视频在线播放观看不卡| avwww免费| 狠狠狠狠99中文字幕| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 亚洲 国产 在线| 久久久水蜜桃国产精品网| 国产黄频视频在线观看| 亚洲色图综合在线观看| 国产在线一区二区三区精| 国产午夜精品久久久久久| 波多野结衣一区麻豆| 天堂8中文在线网| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 久久九九热精品免费| 两个人看的免费小视频| 精品国产亚洲在线| 国产一区二区三区综合在线观看| 国产极品粉嫩免费观看在线| 午夜福利视频精品| 18禁观看日本| 俄罗斯特黄特色一大片| 日韩一卡2卡3卡4卡2021年| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| bbb黄色大片| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 国产精品九九99| 国产精品美女特级片免费视频播放器 | 午夜免费成人在线视频| 久久中文字幕人妻熟女| 一级片'在线观看视频| 757午夜福利合集在线观看| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 成人国产一区最新在线观看| 亚洲人成77777在线视频| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 啦啦啦免费观看视频1| 狠狠狠狠99中文字幕| 成人三级做爰电影| 欧美成人午夜精品| 午夜福利,免费看| 欧美日韩视频精品一区| 午夜91福利影院| 免费黄频网站在线观看国产| 男女免费视频国产| 国产片内射在线| 一区二区三区激情视频| 亚洲人成77777在线视频| 国产成人欧美在线观看 | av在线播放免费不卡| 电影成人av| 欧美国产精品一级二级三级| 久久婷婷成人综合色麻豆| 在线天堂中文资源库| 欧美日韩一级在线毛片| 高清欧美精品videossex| 涩涩av久久男人的天堂| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 啪啪无遮挡十八禁网站| 黄色怎么调成土黄色| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| 夜夜夜夜夜久久久久| av不卡在线播放| 美女午夜性视频免费| 电影成人av| 国产日韩一区二区三区精品不卡| 欧美 日韩 精品 国产| 亚洲中文av在线| 日本撒尿小便嘘嘘汇集6| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 欧美黄色淫秽网站| 9热在线视频观看99| 91麻豆精品激情在线观看国产 | 久久精品成人免费网站| 日日摸夜夜添夜夜添小说| 国产在线一区二区三区精| 香蕉丝袜av| 高清av免费在线| 新久久久久国产一级毛片| 天天添夜夜摸| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 极品教师在线免费播放| 国产高清videossex| 精品一区二区三区视频在线观看免费 | 欧美日韩国产mv在线观看视频| 波多野结衣av一区二区av| cao死你这个sao货| 黄色怎么调成土黄色| av线在线观看网站| 日韩人妻精品一区2区三区| 精品第一国产精品| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 国产精品免费大片| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| www.熟女人妻精品国产| 每晚都被弄得嗷嗷叫到高潮| 69av精品久久久久久 | 精品久久久久久久毛片微露脸| 国产成人欧美在线观看 | 亚洲精品一二三| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 午夜福利,免费看| 国产成人一区二区三区免费视频网站| 精品福利观看| 国产精品二区激情视频| 免费久久久久久久精品成人欧美视频| 999久久久精品免费观看国产| 色94色欧美一区二区| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 日韩熟女老妇一区二区性免费视频| 精品欧美一区二区三区在线| 黄色 视频免费看| 少妇裸体淫交视频免费看高清 | 成人手机av| 日日摸夜夜添夜夜添小说| 色在线成人网| 波多野结衣一区麻豆| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 国产麻豆69| 99国产精品一区二区三区| 国产免费av片在线观看野外av| 欧美人与性动交α欧美精品济南到| 国产成+人综合+亚洲专区| 人妻 亚洲 视频| 成人黄色视频免费在线看| 咕卡用的链子| 亚洲,欧美精品.| 视频区图区小说| 欧美性长视频在线观看| 天堂动漫精品| 亚洲国产中文字幕在线视频| av线在线观看网站| 亚洲五月婷婷丁香| 我要看黄色一级片免费的| 少妇被粗大的猛进出69影院| 国产成人免费观看mmmm| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 美女主播在线视频| 老熟妇乱子伦视频在线观看| 国产精品一区二区在线观看99| 国产男女内射视频| 老汉色∧v一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 久久影院123| 日韩欧美国产一区二区入口| 成人手机av| 国产成+人综合+亚洲专区| 91麻豆精品激情在线观看国产 | 国产欧美日韩一区二区精品| 岛国在线观看网站| 黑丝袜美女国产一区| 久久久精品94久久精品| 日本欧美视频一区| 亚洲人成伊人成综合网2020| 国产成人欧美| 中亚洲国语对白在线视频| 国产免费视频播放在线视频| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 久久99一区二区三区| 久久青草综合色| 丁香欧美五月| 亚洲国产av影院在线观看| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 老司机福利观看| 午夜精品国产一区二区电影| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 捣出白浆h1v1| 搡老乐熟女国产| 十八禁高潮呻吟视频| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 亚洲精品一二三| 女人精品久久久久毛片| 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 成人国产av品久久久| 欧美乱妇无乱码| 欧美国产精品va在线观看不卡| 亚洲成av片中文字幕在线观看| 国产单亲对白刺激| 久久精品国产a三级三级三级| 亚洲精品自拍成人| 老司机亚洲免费影院| 国产欧美亚洲国产| 国产aⅴ精品一区二区三区波| 免费看a级黄色片| 一区二区三区精品91| 我要看黄色一级片免费的| 一二三四社区在线视频社区8| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 精品免费久久久久久久清纯 | 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 搡老熟女国产l中国老女人| 亚洲成人国产一区在线观看| 2018国产大陆天天弄谢| 91成人精品电影| 波多野结衣一区麻豆| 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 女人被躁到高潮嗷嗷叫费观| 久久九九热精品免费| 一边摸一边抽搐一进一出视频| 亚洲精品美女久久av网站| 夫妻午夜视频| 国产日韩欧美在线精品| 国产国语露脸激情在线看| 久久影院123| 国产日韩欧美在线精品| 国产成人免费观看mmmm| www.自偷自拍.com| 国产欧美日韩一区二区精品| 丰满饥渴人妻一区二区三| 亚洲国产精品一区二区三区在线| 精品少妇内射三级| 老汉色av国产亚洲站长工具| 9色porny在线观看| 久久精品国产亚洲av香蕉五月 | av不卡在线播放| 精品久久久久久久毛片微露脸| 9色porny在线观看| 蜜桃在线观看..| 国产成人免费观看mmmm| 久久人人97超碰香蕉20202| 欧美亚洲 丝袜 人妻 在线| 不卡av一区二区三区| 亚洲av日韩精品久久久久久密| 国产片内射在线| 国产又爽黄色视频| 两人在一起打扑克的视频| 亚洲国产欧美日韩在线播放| 日韩大码丰满熟妇| 97人妻天天添夜夜摸| 黑丝袜美女国产一区| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| av天堂久久9| 久久精品熟女亚洲av麻豆精品| 久久久久久亚洲精品国产蜜桃av| 精品人妻1区二区| 人人妻人人澡人人看| 亚洲精品国产区一区二| 两性夫妻黄色片| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 在线 av 中文字幕| 狠狠狠狠99中文字幕| 亚洲欧美一区二区三区久久| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 久久天堂一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 欧美一级毛片孕妇| 久久狼人影院| 婷婷丁香在线五月| 搡老岳熟女国产| 99久久国产精品久久久| 丝瓜视频免费看黄片| 久久久国产成人免费| 亚洲熟女毛片儿| 啪啪无遮挡十八禁网站| 黄色视频在线播放观看不卡| 国产成人精品无人区| 香蕉久久夜色| 欧美激情高清一区二区三区| 美国免费a级毛片| 90打野战视频偷拍视频| 脱女人内裤的视频| 黄色视频不卡| 怎么达到女性高潮| 99国产精品免费福利视频| 中文字幕最新亚洲高清| 久久毛片免费看一区二区三区| 777米奇影视久久| 国产日韩欧美在线精品| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 欧美黄色淫秽网站| 亚洲成人免费av在线播放| 成人手机av| 亚洲成人免费电影在线观看| 大香蕉久久成人网| 婷婷成人精品国产| 免费在线观看黄色视频的| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 搡老熟女国产l中国老女人| 人人妻人人澡人人爽人人夜夜| 日日夜夜操网爽| 日本黄色日本黄色录像| 淫妇啪啪啪对白视频| 国产精品国产av在线观看| svipshipincom国产片| 一区二区日韩欧美中文字幕| 免费av中文字幕在线| 成年动漫av网址| 一级片'在线观看视频| 日本欧美视频一区| 美女扒开内裤让男人捅视频| 久久久精品免费免费高清| 免费久久久久久久精品成人欧美视频| 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| 亚洲avbb在线观看| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| 一级片'在线观看视频| 在线观看免费视频网站a站| 亚洲成国产人片在线观看| 老熟女久久久| 国产一区二区在线观看av| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 国产日韩欧美亚洲二区| 久久久久视频综合| 久久久精品免费免费高清| 成人影院久久| 99在线人妻在线中文字幕 | 国产高清视频在线播放一区| 无人区码免费观看不卡 | 久久久精品94久久精品| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| 欧美日本中文国产一区发布| 亚洲av片天天在线观看| 亚洲精品中文字幕一二三四区 | 美女主播在线视频| 十八禁高潮呻吟视频| 国产成人欧美在线观看 | 夜夜爽天天搞| 麻豆成人av在线观看| a在线观看视频网站| 超碰97精品在线观看| 久久午夜亚洲精品久久| av线在线观看网站| 777米奇影视久久| 久久久精品免费免费高清| 最新美女视频免费是黄的| 深夜精品福利| 热re99久久国产66热| 成在线人永久免费视频| 高清欧美精品videossex| cao死你这个sao货| 国产亚洲一区二区精品| 一进一出抽搐动态| 亚洲欧美色中文字幕在线| www.精华液| 久久中文看片网| av国产精品久久久久影院| 国产免费现黄频在线看| 夜夜骑夜夜射夜夜干| 久久久久久久精品吃奶| 动漫黄色视频在线观看| 国产欧美日韩综合在线一区二区| 免费黄频网站在线观看国产| 久久久精品94久久精品| 亚洲精品美女久久av网站| 午夜日韩欧美国产| 亚洲一码二码三码区别大吗| 亚洲欧美激情在线| 最黄视频免费看| 精品亚洲成a人片在线观看| 精品午夜福利视频在线观看一区 | 免费不卡黄色视频| 精品视频人人做人人爽| 精品一区二区三区av网在线观看 | 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 香蕉久久夜色| 1024视频免费在线观看| 国产欧美日韩一区二区三区在线| 国产97色在线日韩免费| 日韩欧美一区二区三区在线观看 | 精品高清国产在线一区| 18禁美女被吸乳视频| 又紧又爽又黄一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产男靠女视频免费网站| 久久久国产一区二区| 亚洲第一青青草原| 亚洲中文日韩欧美视频| 久久精品国产亚洲av高清一级| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 国产免费现黄频在线看| 曰老女人黄片| 成人黄色视频免费在线看| av天堂在线播放| 一本—道久久a久久精品蜜桃钙片| av欧美777| 午夜免费鲁丝| 国产av精品麻豆| 久久久久精品国产欧美久久久| 亚洲成av片中文字幕在线观看| 午夜日韩欧美国产| 一级片免费观看大全| 老汉色∧v一级毛片| 女人精品久久久久毛片| 亚洲视频免费观看视频| 99国产精品99久久久久| cao死你这个sao货| 丝袜在线中文字幕| 中文字幕色久视频| 蜜桃在线观看..| 黄色毛片三级朝国网站| 亚洲七黄色美女视频| 黄网站色视频无遮挡免费观看| 热99re8久久精品国产| 国产xxxxx性猛交| 9色porny在线观看| 99国产综合亚洲精品| 国产精品久久久久成人av| 叶爱在线成人免费视频播放| 精品高清国产在线一区| videosex国产| 一区二区三区国产精品乱码| 满18在线观看网站| 老司机靠b影院| 亚洲成国产人片在线观看| 国产不卡av网站在线观看| 少妇猛男粗大的猛烈进出视频| 精品免费久久久久久久清纯 | 另类亚洲欧美激情| 丁香六月欧美| 男女下面插进去视频免费观看| 欧美日韩黄片免| 一本—道久久a久久精品蜜桃钙片| 1024香蕉在线观看| netflix在线观看网站| 男女边摸边吃奶| 亚洲全国av大片| aaaaa片日本免费| 嫩草影视91久久| 亚洲成a人片在线一区二区| 成年动漫av网址| 日日夜夜操网爽| 国产成人精品久久二区二区91| 国产精品久久久久久精品古装| 18禁裸乳无遮挡动漫免费视频| 黄片小视频在线播放| 亚洲国产欧美网| 男女边摸边吃奶| 丝瓜视频免费看黄片| √禁漫天堂资源中文www| 亚洲熟妇熟女久久| 曰老女人黄片| 一进一出抽搐动态| 80岁老熟妇乱子伦牲交| 色播在线永久视频| 久久精品成人免费网站| 国产男靠女视频免费网站| av天堂久久9| 久久中文字幕人妻熟女| 精品国产亚洲在线| 日韩中文字幕视频在线看片| 中文字幕人妻丝袜一区二区| 免费日韩欧美在线观看| 国产av又大| 久久国产精品男人的天堂亚洲| 精品少妇久久久久久888优播| 一夜夜www| 亚洲精品国产区一区二| 亚洲综合色网址| 欧美激情极品国产一区二区三区| 下体分泌物呈黄色| 一进一出抽搐动态| 另类亚洲欧美激情| 女人爽到高潮嗷嗷叫在线视频| 黄片大片在线免费观看| 一个人免费看片子| 黄色怎么调成土黄色| 久久99一区二区三区| 午夜精品国产一区二区电影| 国产精品 欧美亚洲| 90打野战视频偷拍视频| 日韩一区二区三区影片| 桃花免费在线播放| 天堂动漫精品| 手机成人av网站| 一区二区av电影网| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区久久| 国产精品偷伦视频观看了| 日韩成人在线观看一区二区三区| 一级毛片女人18水好多| 交换朋友夫妻互换小说| 亚洲伊人色综图| av天堂久久9| 免费女性裸体啪啪无遮挡网站| 久久婷婷成人综合色麻豆| 美女扒开内裤让男人捅视频| 一个人免费在线观看的高清视频| 国产视频一区二区在线看| 亚洲精品乱久久久久久| 亚洲精品美女久久久久99蜜臀| 亚洲午夜精品一区,二区,三区| 三级毛片av免费| 久久天堂一区二区三区四区| 一本大道久久a久久精品| 欧美人与性动交α欧美精品济南到| 一区福利在线观看| 亚洲国产欧美网| 欧美精品一区二区免费开放| 日本欧美视频一区| 少妇猛男粗大的猛烈进出视频| 99riav亚洲国产免费| 免费黄频网站在线观看国产| 亚洲 欧美一区二区三区| 亚洲国产欧美一区二区综合| 涩涩av久久男人的天堂| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 99久久人妻综合| 欧美久久黑人一区二区| 纵有疾风起免费观看全集完整版| 嫩草影视91久久| 久久人人爽av亚洲精品天堂| 大型av网站在线播放| 韩国精品一区二区三区| 欧美久久黑人一区二区| 天天操日日干夜夜撸| 日本五十路高清| 淫妇啪啪啪对白视频| 亚洲国产欧美一区二区综合| 国产野战对白在线观看| 窝窝影院91人妻| 日韩大码丰满熟妇| 美女午夜性视频免费| netflix在线观看网站| 亚洲天堂av无毛| 国产精品久久久人人做人人爽|