• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Center Problems and Time-Reversibility with Respect to a Linear Involution

    2021-01-07 01:23:26YANGJing楊靜YANGMing楊鳴LUZhengyi陸征一
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:楊靜

    YANG Jing(楊靜),YANG Ming(楊鳴),LU Zhengyi(陸征一)

    (1.Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China;3.School of Mathematical Sciences,Sichuan Normal University,Chengdu 610068,China)

    Abstract: In this paper,the relationship between time-reversibility and the center of a planar quadratic polynomial system in R2 is considered.The necessary and sufficient conditions for the system to be time-reversible w.r.t.a linear involution are obtained.These conditions guarantee that the system has a center at the origin which is symmetric w.r.t.a straight line.

    Key words: Polynomial differential system; Time-reversibility; Linear involution; Center

    1.Introduction

    In the qualitative theory of differential systems,of particular significance are the existence and the number of limit cycles from famous Hilbert 16th problems.In order to know how many limit cycles can bifurcate,it is necessary to have an in-depth understanding of the conditions under which the singular point is a center.If an analytic differential system has a non-degenerate center at the origin,then after making a linear transformation of the variables and rescaling the time variable,it can be transformed into the form as follows:

    where P(x,y) and Q(x,y) are analytic functions without constant term.For the purpose of obtaining the necessary and sufficient conditions for the system (1.1) to have a center,the first step is to obtain the necessary conditions by computing the first several focal values and then to prove the sufficiency of these conditions.The construction of integrating factors[14]and the verification of Poincar′e symmetric principle[10]which has been presented in 1892 are two major methods of checking the sufficiency.Actually,a system satisfying the Poincar′e principle is a time-reversible one w.r.t.a special linear map such that the system has an axisymmetric center.

    The time-reversible theory of differential systems emerged in 1915 with Birkhoff’s work on three bodies[1].In 1976,Devaney[6]developed the theory of reversibility such that the study of it is expanded to analytic differential systems.For planar analytic differential systems,a reversible center has always received attention[11].Gin′e and Maza[7]obtained some results about degenerate center and time-reversibility.In 2018,by using the time-reversibility w.r.t.a special linear map,Boros et al.[2]obtained some new sufficient conditions for Lotka reactions with generalized mass-action kinetics to have a center.Recently,HAN et al.[8]considered a general polynomial quadratic system without constant term in R2and obtained some algebraic conditions for the system to be time-reversible one w.r.t.a linear involution.In their computational procedure,the Closure Theorem[5]which just holds over an algebraically closed field has been misused.

    The purpose of the present paper is to give the necessary and sufficient conditions for the following quadratic system to be time-reversible w.r.t.a linear involution.

    where (x,y)∈R2,ai,bi∈R (i=1,2,3).This kind of problems can be converted into ones of obtaining the set of zero roots of some polynomials with parameters.The concept of triangular decomposition emerges in a lot of computer algebra methods for computing the roots of polynomial systems.For example,the characteristic set of Ritt-Wu’s method[15-16],Groebner bases[3],resultant[5]and so on.The regular chain which was introduced by Kalkbrener[9]and YANG and ZHANG[13]independently is also a kind of triangular decompositions and well-developed in complex field.In 2013,CHEN et al.[4]considered the real solutions for semi-algebraic systems and proposed the following Lemma.

    Lemma 1.1[4]Let S be a semi-algebraic system of Q[x].Then one can compute a triangular decomposition of S,that is finitely many regular semi-algebraic systems Bisuch thatwhere ZRdenotes the zero set in Rnof a semi-algebraic system.

    In this paper,by using the regular chain theory[4],the necessary and sufficient conditions for the system (1.2) to be time-reversible w.r.t.a linear involution are obtained in Section 2.In Section 3,we show that these conditions can ensure the system to have a center by using the result of Teixeire and YANG[12]which indicates that the system (1.1) is time-reversible if and only if it is a center.

    2.Time-Reversible with Respect to a Linear Map

    Firstly,we introduce the definition of a time-reversible system.

    Definition 2.1[12]A Crplanar differential system (r ∈N ∪{∞,ω}),

    having a singularity at the origin is time-reversible if there exists a diffeomorphism φ:R2→R2satisfying φ ?φ=Id such that

    where X is the vector field associated to the system (2.1),and φ*represents the tangent map of φ,i.e.,φ*X = D(x,y)φ(x,y)X in the local coordinates.The map φ is called an involution.Fix(φ)={(x,y)∈R2|φ(x,y)=(x,y)} is called fixed point set of φ.

    Let

    where λi,δi∈R (i = 1,2),According to Definition 2.1,when φ ?φ = Id,φ is an involution.Hence,we have

    Clearly,(2.3) is equivalent to

    or

    Note that condition (2.4) corresponds to two trivial situations: φ(x,y) = ±(x,y).From the definition,the following is a direct result.

    Lemma 2.1A linear map φ(x,y)=(λ1x+λ2y,δ1x+δ2y)is an involution if and only if one of the following conditions is satisfied:

    1) λ2=δ1=0,λ1=δ2=±1,

    2) λ1=-δ2,+λ2δ1=1,

    where λi,δi∈R (i=1,2).

    It is clear that the fixed point set of a linear map satisfying the condition 1) of Lemma 2.1 is either the origin or the whole space.If a linear map satisfies the condition 2)of Lemma 2.1,the fixed point set is

    This set is a straight line passing through the origin.

    Let

    From Definition 2.1 and Lemma 2.1,we have

    Lemma 2.2The system (1.2) is time-reversible w.r.t.a linear map φ(x,y) = (λ1x+λ2y,δ1x+δ2y) if and only if the map φ is an involution such that

    In the case where the linear map φ satisfies the condition 1) of Lemma 2.1,the map φ is an involution satisfying φ(x,y) = (x,y) or φ(x,y) = -(x,y).Furthermore,the equality(2.6) in Lemma 2.2 is equivalent to P(x,y) = Q(x,y) = 0.Hence,the system (1.2) is not time-reversible w.r.t.these involutions.

    Now we consider the case where the linear map φ satisfies the condition 2) of Lemma 2.1.Since the fixed point set of the linear map,in this case,is a straight line,then the phase diagram of the system (1.2) is symmetric w.r.t.a straight line if the system is time-reversible w.r.t.a linear map.The linear part of (2.6) of Lemma 2.2 is as follows,

    therefore,we have the following Lemma.

    Lemma 2.3The system (1.2) is time-reversible w.r.t.a linear map φ(x,y) = (λ1x+λ2y,δ1x+δ2y) if and only if the following conditions are satisfied:

    where (x,y)∈(0,R2),λiand δi∈R,i=1,2.

    According to Lemma 2.3,we just need to consider the involution in the form of φ(x,y)=(λ1x+λ2y,λ2x-λ1y).Let

    then H(x,y)=0 holds for all value of (x,y) in (0,R2).Let

    By Lemma 2.3,the necessary and sufficient conditions for the system (1.2) to be timereversible w.r.t.a linear map is equivalent to the necessary and sufficient conditions of the polynomial set Cof to have a real root in variables λ1and λ2.

    The following is the main result of the present paper which gives a complete description of a time-reversibility w.r.t.a linear involution.

    Theorem 2.1The system (1.2) is time-reversible w.r.t.a linear map if and only if one of the following conditions is satisfied:

    Here

    ω4=(a2a3+b3b2)/(a2b2+4a3b3),

    ω5=a23+3 a22b3-a2b22-b22b3-4 b33,

    ω3=(a3-b2)a23-3 a22b2b3+(4 a33+(-3 b22-12 b32)a3+b23)a2+16 b3(a33-3/4 a32b2-a3b32+1/16 b23+1/4 b2b32),

    ω2= (a2-2 b1-b3)a13+3 a3(a2-b1)a12+((3 a2+3 b3)a32-(b1+b3)2(a2-b3))a1+a3((a2+b1+2 b3)a32-(b1+b3)2(a2+b1)),

    ω1= (a2-2 b1+2 b3)a13+((3 a2-6 b1+6 b3)a3-3 b2(b1+b3))a12+((3 a2-6 b1+6 b3)a32-6 b2(b1+b3)a3+(b1+b3)2(a2+2 b1-2 b3))a1+(a2-2 b1+2 b3)a33-3 b2(b1+b3)a32+(b1+b3)2(a2+2 b1-2 b3)a3+b2(b1+b3)3.

    The Proof of Theorem 2.1The crucial step of proving Theorem 2.1 is to obtain the necessary and sufficient conditions for the existence of the real roots of polynomial set Cof.The set Cof corresponding to the system (1.2) consists of seven polynomials:

    By using the command in the computer algebra system Maple,i.e.,

    RegularChains:-RealTriangularize,

    we obtain a triangular decomposition of these polynomials.In the order of b2>a2>b3>b1>a3>a1>λ2>λ1,the triangular decomposition has six regular semi-algebraic systems such that the union of their real root sets is exactly the real root set of Cof.

    Conditions (A1),(A2),(A3),(A10) in Theorem 2.1 can be obtained directly from the regular semi-algebraic systems Ti,i=2,...,6 as follows

    The other conditions can be obtained by analysing the necessary and sufficient conditions of the regular semi-algebraic system T1to have real roots in variables λ1,λ2.The system T1is as follows:

    1) When a1-a3,by the equalities (2.10) and (2.11),we have

    By substituting λ1,λ2into (2.12) and (2.13),we have

    Inequalities in (2.14) lead to b1+b30,(a1+a3)2(b1+b3)2and 3(a1+a3)2(b1+b3)2.Hence,ω1=ω2=0.Condition (A9) in Theorem 2.1 is proved.

    2) When a1=-a3,equality (2.11) leads to

    Inequalities-1 <λ1<1 together with equality=1 lead to λ20.Hence,b1+b2=0.By substituting a1=-a3and b1=-b3into T1,we have

    (i) When a1=-a3,b1=-b3and a2λ1-b30,we can rewrite the equality (2.21) as

    Substituting λ2into equality (2.22),we obtain

    Since the inequalities in(2.14)lead to(λ1+1)(2 λ1-1)0,the equality(2.25)is equivalent to

    (a) When a2b2+4 a3b30,by the equality (2.26),we have

    The inequalities in (2.14) lead to 0 <|ω4|<1,a2a3+b3b20,(2a3-b2)(a2-2b3)0.By the equality (2.27),we have

    Therefore,a2λ1-b30 is equivalent to a30 and a2±2b3.Furthermore,(2a3-b2)(a2-2b3)0 is equivalent to 2a3-b20.Substituting λ1and λ2into the equality (2.20) leads to ω3=0.Therefore,the condition (A11) in Theorem 2.1 is proved.

    (b) When a2b2+4 a3b3=0,the equality (2.26) is simplified to

    Using the command

    RegularChains:-RealTriangularize,

    we can solve the polynomial equations

    and obtain

    When a1=-a3,b1=-b3,a2λ1-b30,a2=-2b3and b2=2a3,T1is simplified to the following form.

    Since a2= -2b3,a2λ1-b30 is equivalent to b30 as well as 2λ1+10,the equality(2.30) leads to

    By substituting λ2into the equality (2.29),we have

    where Δ(λ1) =Since λ1-1,the equality (2.33)is equivalent to Δ(λ1) = 0.According to the inequalities in (2.14),λ1dose not belong toThus,Δ(-1) = -0,Δ(1) =0,Δ(0) = (a3+b3)(a3-b3)0 and0 lead to a30,b30 and a3±b3.Furthermore,since Δ(-1)=-<0 and Δ(1)=>0,then Δ(λ1)=0 has real roots in the interval (-1,1).If λ1=then=2a30 contradicts Δ(λ1)=0.Hence a30 implies 2λ1+10.Condition (A6)of Theorem 2.1 is proved.

    When a1=-a3,b1=-b3,a2λ1-b30,a2=2b3and b2=-2a3,T1takes the form

    Because a2=2b3anda2λ1-b30 is equivalent to b30.And since λ1/by the equalities (2.34) and (2.35),we have

    Inequalities in (2.14) lead to a30,andHence,the condition (A8) of Theorem 2.1 is proved.

    When a1=-a3,b1=-b3,a2λ1-b30,a3=0 and b2=0,T1becomes

    λ20 and a2λ1-b30 lead to (a2λ1-b3)λ20,which contradicts the equality (2.40).

    That a1=-a3,b1=-b3,a2λ1-b30,a2=0 and b3=0 leads to a contradiction.

    (ii) When a1=-a3,b1=-b3,a2λ1-b3=0 and a20,we have

    In this case,T1is simplified to

    (a) When a1=-a3=0,b1=-b3,a2λ1-b3=0,a20 and a2+2 b30,we have

    In this case,the equality (2.44) becomes

    Since a2+b30,we have ω5= 0.Inequalities in (2.14) lead to -1 <<1,b30 and a22b3.Condition (A7) of Theorem 2.1 is proved.

    (b) When a1=-a3=0,b1=-b3,a2λ1-b3=0,a20 and a2+2 b3=0,the equality(2.49) is equivalent to b2= 0 because of a2+b30.Hence,by the equalities (2.43) and(2.44),we have

    Condition (A5) of Theorem 2.1 is proved.

    (iii) When a1=-a3,b1=-b3,a2λ1-b3=0 and a2=0,T1is

    Hence b2=a3=0.Condition (A4) of Theorem 2.1 is proved.

    The proof of Theorem 2.1 is complete.

    3.Center and Phase Diagram

    Lemma 3.1[12]Consider the Crdifferential system (r ∈N ∪{ω}),

    where f(x,y) = o(|x2+y2|),g(x,y) = o(|x2+y2|),(R2,0) is a neighborhood of the origin.The system (3.1) is time-reversible if and only if the origin is a center.

    By Lemma 3.1 and according to the relationship between a linear involution and its fixed point sets in Section 2,we have

    Fig.3.1 Phase diagram

    Theorem 3.1If the system (1.2) satisfies one of the conditions of Theorem 2.1,the origin is a center.Furthermore,the phase diagram near the origin is symmetric w.r.t.a straight line.

    Figure 3.1 is the phase diagram of the system (1.2),if its parameters satisfy a1= b1=b2= -a3= -b3= 1/2,a2= 7/4 for the condition (A11) in Theorem 2.1.In this case,the system takes the form

    which is time-reversible w.r.t.the involution

    The fixed point set is {(x,y) | 2x+y = 0} represented by dotted line.The solid curves represent orbits nearing the origin.

    猜你喜歡
    楊靜
    Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on(111)Si
    傳統(tǒng)與現(xiàn)代的“吟唱者”
    參花(上)(2022年4期)2022-05-23 22:16:48
    前饋控制策略指導(dǎo)下的母乳口腔護理在用于早產(chǎn)兒喂養(yǎng)不耐受預(yù)防的效果
    逐瘀祛痰法中西醫(yī)結(jié)合治療對腦梗塞患者神經(jīng)功能的影響
    農(nóng) 忙
    楊靜平面設(shè)計作品
    美聯(lián)儲加息的產(chǎn)物研究
    今日財富(2017年32期)2017-10-19 20:30:20
    糾結(jié)的恩怨: “愛心模范” 蛻變成冷血殺手須濡
    分憂(2016年7期)2016-07-14 01:33:20
    Ground-Based Observations of Unusual Atmospheric Light Emissions
    一本書的教訓(xùn)
    亚洲精品日韩在线中文字幕| videossex国产| 午夜激情福利司机影院| 亚洲国产欧美人成| 蜜臀久久99精品久久宅男| 国产在线男女| 久久精品夜色国产| 男女边吃奶边做爰视频| 22中文网久久字幕| 在线观看免费视频网站a站| 欧美xxxx黑人xx丫x性爽| 中文精品一卡2卡3卡4更新| 精品人妻偷拍中文字幕| 久久亚洲国产成人精品v| 欧美日韩亚洲高清精品| videossex国产| 一级片'在线观看视频| 亚洲av欧美aⅴ国产| 成人午夜精彩视频在线观看| 秋霞在线观看毛片| 成年女人在线观看亚洲视频| 97精品久久久久久久久久精品| 国产人妻一区二区三区在| 97热精品久久久久久| 亚洲精品乱码久久久久久按摩| 激情五月婷婷亚洲| 永久网站在线| 人人妻人人看人人澡| 99热这里只有精品一区| 国产69精品久久久久777片| 韩国av在线不卡| 最近2019中文字幕mv第一页| 国精品久久久久久国模美| 亚洲av电影在线观看一区二区三区| 久久久国产一区二区| 久久青草综合色| 成人影院久久| 最近中文字幕高清免费大全6| 久久韩国三级中文字幕| 国模一区二区三区四区视频| 国产精品三级大全| 午夜免费观看性视频| a 毛片基地| 亚洲国产欧美人成| 激情 狠狠 欧美| 夫妻午夜视频| 久久99热这里只频精品6学生| 天堂8中文在线网| 国产一区二区在线观看日韩| 亚洲欧美成人精品一区二区| 纯流量卡能插随身wifi吗| 99热全是精品| 18禁在线无遮挡免费观看视频| 欧美zozozo另类| 热99国产精品久久久久久7| 欧美成人精品欧美一级黄| 晚上一个人看的免费电影| 免费黄频网站在线观看国产| 国产伦在线观看视频一区| av.在线天堂| 日日啪夜夜撸| 精品久久久久久久久亚洲| 亚洲精品,欧美精品| 国产白丝娇喘喷水9色精品| 日韩视频在线欧美| av视频免费观看在线观看| 色网站视频免费| 亚洲精品自拍成人| 久久av网站| 亚洲四区av| 国产av码专区亚洲av| 中文天堂在线官网| 国产精品一区二区在线观看99| h日本视频在线播放| 欧美激情国产日韩精品一区| 最后的刺客免费高清国语| 亚洲av.av天堂| 国产成人91sexporn| 一级二级三级毛片免费看| 久久午夜福利片| 久久久久精品性色| 能在线免费看毛片的网站| 国产亚洲精品久久久com| 在线免费十八禁| av又黄又爽大尺度在线免费看| 日本黄大片高清| 国产一区二区三区综合在线观看 | 国产成人精品久久久久久| 国产欧美日韩精品一区二区| 男女无遮挡免费网站观看| tube8黄色片| 亚洲,一卡二卡三卡| 亚洲av男天堂| 九九在线视频观看精品| 美女中出高潮动态图| 国产精品久久久久久久久免| 一区二区三区乱码不卡18| av国产精品久久久久影院| 大片电影免费在线观看免费| 一个人看的www免费观看视频| 久久这里有精品视频免费| 97精品久久久久久久久久精品| 丰满少妇做爰视频| 深爱激情五月婷婷| 日韩三级伦理在线观看| 午夜日本视频在线| 欧美日韩一区二区视频在线观看视频在线| 一级毛片aaaaaa免费看小| 免费看日本二区| 日韩亚洲欧美综合| 亚洲内射少妇av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩东京热| 建设人人有责人人尽责人人享有的 | 亚洲精品乱久久久久久| av一本久久久久| 黄色怎么调成土黄色| 插阴视频在线观看视频| 国产精品人妻久久久影院| 亚洲国产高清在线一区二区三| 人妻系列 视频| 日韩 亚洲 欧美在线| 97在线人人人人妻| 久久鲁丝午夜福利片| 大香蕉久久网| 新久久久久国产一级毛片| 中国美白少妇内射xxxbb| 久久久久久久久久人人人人人人| av在线蜜桃| 九九久久精品国产亚洲av麻豆| 九色成人免费人妻av| 亚洲av.av天堂| 久久国产乱子免费精品| 亚洲综合色惰| 少妇裸体淫交视频免费看高清| 国产片特级美女逼逼视频| 成年av动漫网址| 亚洲,欧美,日韩| 国产精品久久久久久久电影| 久久99精品国语久久久| 精品久久久久久电影网| 精品午夜福利在线看| 精品久久久久久久久av| 欧美精品一区二区免费开放| 日本黄色日本黄色录像| 免费看不卡的av| 一个人看视频在线观看www免费| 日韩视频在线欧美| 国产白丝娇喘喷水9色精品| 亚洲电影在线观看av| 久久热精品热| 免费人妻精品一区二区三区视频| 国产精品人妻久久久久久| 小蜜桃在线观看免费完整版高清| 丝袜喷水一区| 久久久久久久亚洲中文字幕| 一级毛片aaaaaa免费看小| 欧美日韩综合久久久久久| 黄色日韩在线| 国产精品麻豆人妻色哟哟久久| 在线观看免费视频网站a站| www.av在线官网国产| 免费av不卡在线播放| 亚洲第一区二区三区不卡| 这个男人来自地球电影免费观看 | 精品熟女少妇av免费看| 精品人妻偷拍中文字幕| 国产精品一及| 亚洲av电影在线观看一区二区三区| 国产精品一区二区在线不卡| 国产女主播在线喷水免费视频网站| 国产熟女欧美一区二区| 亚洲精品久久久久久婷婷小说| 亚洲av男天堂| 超碰av人人做人人爽久久| 高清欧美精品videossex| 插阴视频在线观看视频| 亚洲婷婷狠狠爱综合网| 91精品国产国语对白视频| 亚洲,一卡二卡三卡| 美女福利国产在线 | 久久精品国产亚洲网站| 成年免费大片在线观看| 超碰97精品在线观看| 久久精品夜色国产| 国产精品久久久久久久久免| 久久久久久久久久久丰满| 亚洲欧美日韩卡通动漫| 国产精品女同一区二区软件| 2018国产大陆天天弄谢| 亚洲真实伦在线观看| 中文资源天堂在线| 岛国毛片在线播放| 亚洲欧美精品专区久久| 一本色道久久久久久精品综合| 亚洲av.av天堂| 搡女人真爽免费视频火全软件| 少妇高潮的动态图| 精品国产一区二区三区久久久樱花 | 国产淫语在线视频| 你懂的网址亚洲精品在线观看| 久久精品国产自在天天线| 日日啪夜夜撸| 日韩中字成人| 一级a做视频免费观看| av国产精品久久久久影院| 老司机影院成人| 国产乱人偷精品视频| 日韩视频在线欧美| h视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 久久久a久久爽久久v久久| 成年av动漫网址| 中文在线观看免费www的网站| 国产精品不卡视频一区二区| 这个男人来自地球电影免费观看 | 亚洲av福利一区| 99视频精品全部免费 在线| 国产在线视频一区二区| 伦理电影大哥的女人| 丝瓜视频免费看黄片| 日韩一区二区视频免费看| 你懂的网址亚洲精品在线观看| 亚洲综合色惰| 亚洲欧美日韩卡通动漫| 亚洲精品第二区| tube8黄色片| 一个人看视频在线观看www免费| 网址你懂的国产日韩在线| 街头女战士在线观看网站| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲人成网站高清观看| 中文字幕久久专区| 男人添女人高潮全过程视频| 少妇精品久久久久久久| 日韩在线高清观看一区二区三区| 免费观看av网站的网址| 久久久久久伊人网av| 日本爱情动作片www.在线观看| 欧美日韩视频高清一区二区三区二| 最近中文字幕高清免费大全6| 一区二区三区四区激情视频| 国产av国产精品国产| 日本欧美国产在线视频| 麻豆精品久久久久久蜜桃| 亚洲不卡免费看| 欧美一级a爱片免费观看看| 97超碰精品成人国产| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 欧美国产精品一级二级三级 | 亚洲电影在线观看av| 新久久久久国产一级毛片| 青春草视频在线免费观看| 国产精品人妻久久久久久| 日韩,欧美,国产一区二区三区| 国产白丝娇喘喷水9色精品| 精品国产一区二区三区久久久樱花 | 国产深夜福利视频在线观看| 青春草视频在线免费观看| 久久久久久久久久成人| 人体艺术视频欧美日本| 亚洲精品亚洲一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品色激情综合| 久久久久人妻精品一区果冻| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 亚洲久久久国产精品| 久久99蜜桃精品久久| 91久久精品国产一区二区三区| 精品久久久精品久久久| 丰满少妇做爰视频| 国产精品熟女久久久久浪| 国产精品99久久99久久久不卡 | 日韩在线高清观看一区二区三区| 国产女主播在线喷水免费视频网站| 少妇丰满av| 国产精品免费大片| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 欧美精品人与动牲交sv欧美| 精品久久国产蜜桃| 国产人妻一区二区三区在| 日韩一区二区视频免费看| 国产精品.久久久| 看十八女毛片水多多多| 九九在线视频观看精品| 亚洲av中文av极速乱| 大码成人一级视频| 日韩亚洲欧美综合| 久久婷婷青草| 成人毛片a级毛片在线播放| 啦啦啦在线观看免费高清www| 国产精品99久久99久久久不卡 | 高清欧美精品videossex| 国产精品伦人一区二区| 又黄又爽又刺激的免费视频.| 肉色欧美久久久久久久蜜桃| 日本vs欧美在线观看视频 | 97热精品久久久久久| 极品少妇高潮喷水抽搐| 国产精品一区二区性色av| 午夜激情久久久久久久| 日本欧美国产在线视频| 最近最新中文字幕大全电影3| 国产av码专区亚洲av| 国产真实伦视频高清在线观看| 国产精品爽爽va在线观看网站| 建设人人有责人人尽责人人享有的 | 熟女av电影| 男女免费视频国产| 草草在线视频免费看| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 日本黄色日本黄色录像| av在线观看视频网站免费| 久久久精品94久久精品| 日日摸夜夜添夜夜爱| 婷婷色综合www| 精品人妻熟女av久视频| av线在线观看网站| 人人妻人人澡人人爽人人夜夜| 日本黄大片高清| 黑人高潮一二区| 男人和女人高潮做爰伦理| 51国产日韩欧美| 狠狠精品人妻久久久久久综合| 久久av网站| 亚洲精品亚洲一区二区| 日韩三级伦理在线观看| 国模一区二区三区四区视频| 久久久久久久大尺度免费视频| 中国美白少妇内射xxxbb| av网站免费在线观看视频| www.色视频.com| 深爱激情五月婷婷| 丝瓜视频免费看黄片| 九九在线视频观看精品| 黑人猛操日本美女一级片| 乱系列少妇在线播放| 欧美成人精品欧美一级黄| 一级毛片aaaaaa免费看小| 欧美最新免费一区二区三区| 国产一区二区三区av在线| 97在线视频观看| 免费观看的影片在线观看| 国产91av在线免费观看| 中国美白少妇内射xxxbb| 91久久精品电影网| 黑人高潮一二区| 偷拍熟女少妇极品色| 大片免费播放器 马上看| 丝袜喷水一区| 日日啪夜夜撸| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 精品国产露脸久久av麻豆| 观看av在线不卡| 大码成人一级视频| 国产成人a∨麻豆精品| 日日啪夜夜爽| 中国三级夫妇交换| 中文天堂在线官网| 91在线精品国自产拍蜜月| 丝瓜视频免费看黄片| 成人毛片a级毛片在线播放| 久久精品久久精品一区二区三区| 亚洲人成网站高清观看| 日本免费在线观看一区| 国产精品人妻久久久影院| 男人爽女人下面视频在线观看| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 国产成人aa在线观看| 岛国毛片在线播放| 亚洲一级一片aⅴ在线观看| 午夜激情福利司机影院| 欧美日本视频| 色吧在线观看| 久久久久性生活片| 成人午夜精彩视频在线观看| 老司机影院毛片| 亚洲一区二区三区欧美精品| 日本猛色少妇xxxxx猛交久久| 久久久久国产精品人妻一区二区| 中文资源天堂在线| 一本色道久久久久久精品综合| 精品人妻熟女av久视频| 亚洲在久久综合| av又黄又爽大尺度在线免费看| 欧美日韩亚洲高清精品| 久久久久久久久久人人人人人人| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 久久精品国产亚洲网站| 午夜免费男女啪啪视频观看| 高清午夜精品一区二区三区| 国产成人91sexporn| 国产美女午夜福利| 中文资源天堂在线| 久久久久精品久久久久真实原创| 国产精品久久久久成人av| 蜜桃在线观看..| 亚洲熟女精品中文字幕| 一二三四中文在线观看免费高清| av线在线观看网站| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 中文字幕久久专区| 国产高潮美女av| xxx大片免费视频| 青春草国产在线视频| 欧美日韩综合久久久久久| 男女边吃奶边做爰视频| 91精品国产九色| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 欧美zozozo另类| 欧美成人精品欧美一级黄| 国产又色又爽无遮挡免| 久久久久久九九精品二区国产| 亚洲国产精品一区三区| 亚洲国产精品国产精品| 精品人妻偷拍中文字幕| 亚洲,一卡二卡三卡| 成人美女网站在线观看视频| 成人毛片60女人毛片免费| 欧美精品国产亚洲| 中文乱码字字幕精品一区二区三区| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 欧美精品国产亚洲| 少妇熟女欧美另类| 中文字幕久久专区| 色综合色国产| 亚洲av成人精品一二三区| 韩国av在线不卡| 小蜜桃在线观看免费完整版高清| 91午夜精品亚洲一区二区三区| 我要看日韩黄色一级片| 免费在线观看成人毛片| 国产av一区二区精品久久 | 在线观看免费日韩欧美大片 | 在线亚洲精品国产二区图片欧美 | 少妇丰满av| 一级片'在线观看视频| 久久精品夜色国产| 狂野欧美白嫩少妇大欣赏| 自拍欧美九色日韩亚洲蝌蚪91 | 国产高潮美女av| 啦啦啦视频在线资源免费观看| 国产免费又黄又爽又色| 精品久久久久久久久亚洲| 一本一本综合久久| 亚洲欧美日韩东京热| av免费在线看不卡| 亚洲国产精品成人久久小说| 成人午夜精彩视频在线观看| 国产黄色免费在线视频| 免费大片18禁| 51国产日韩欧美| 三级经典国产精品| 大片电影免费在线观看免费| 国产精品蜜桃在线观看| 国产免费福利视频在线观看| 久久ye,这里只有精品| 国产精品久久久久成人av| 国产成人精品福利久久| 有码 亚洲区| 久久久久精品性色| 中国美白少妇内射xxxbb| 高清黄色对白视频在线免费看 | 亚洲精品,欧美精品| 色婷婷av一区二区三区视频| 亚洲欧美日韩卡通动漫| 成年av动漫网址| 国产黄色免费在线视频| 国产精品福利在线免费观看| 国产视频首页在线观看| 高清毛片免费看| 亚洲av中文av极速乱| 一本一本综合久久| 久久鲁丝午夜福利片| 久久99精品国语久久久| 99久久综合免费| 91精品一卡2卡3卡4卡| 97超视频在线观看视频| 香蕉精品网在线| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 久久久久久久久久成人| 久久久久久伊人网av| 免费在线观看成人毛片| 精品酒店卫生间| 久久人人爽av亚洲精品天堂 | 国产精品福利在线免费观看| 最后的刺客免费高清国语| 色5月婷婷丁香| 国产亚洲最大av| 国产日韩欧美在线精品| 日本av免费视频播放| 老司机影院成人| 国产成人精品福利久久| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 精华霜和精华液先用哪个| 亚洲国产精品成人久久小说| 国产av码专区亚洲av| 18禁在线无遮挡免费观看视频| 亚洲在久久综合| a级毛片免费高清观看在线播放| 新久久久久国产一级毛片| 午夜福利在线在线| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 大码成人一级视频| 亚洲av在线观看美女高潮| 街头女战士在线观看网站| 日韩亚洲欧美综合| 黄色日韩在线| 我要看日韩黄色一级片| 丝袜喷水一区| 国内揄拍国产精品人妻在线| 国产人妻一区二区三区在| 国产av精品麻豆| 久久久久久久精品精品| 国产高清三级在线| 亚洲av男天堂| 亚洲不卡免费看| 精华霜和精华液先用哪个| 人妻少妇偷人精品九色| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| videos熟女内射| 哪个播放器可以免费观看大片| 18禁裸乳无遮挡免费网站照片| 亚洲久久久国产精品| 精品午夜福利在线看| 国产91av在线免费观看| 2022亚洲国产成人精品| 美女福利国产在线 | 亚洲av二区三区四区| 欧美一区二区亚洲| 精品一品国产午夜福利视频| 美女国产视频在线观看| 嘟嘟电影网在线观看| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| 五月开心婷婷网| 激情五月婷婷亚洲| 精品久久久噜噜| 国产精品av视频在线免费观看| 在线观看美女被高潮喷水网站| 尤物成人国产欧美一区二区三区| 成人黄色视频免费在线看| 97精品久久久久久久久久精品| 日本-黄色视频高清免费观看| 国产视频首页在线观看| 中文字幕久久专区| 久久99热这里只有精品18| 国产一级毛片在线| 我的老师免费观看完整版| 国内精品宾馆在线| 99视频精品全部免费 在线| 丰满乱子伦码专区| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 高清在线视频一区二区三区| 精品久久久久久久久亚洲| 91精品国产九色| 亚洲av中文av极速乱| 99热全是精品| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 91狼人影院| 免费大片18禁| 九草在线视频观看| 嫩草影院新地址| 国产精品一区二区三区四区免费观看| 噜噜噜噜噜久久久久久91| 青春草视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩亚洲高清精品| 少妇被粗大猛烈的视频| 精品亚洲成a人片在线观看 | 国产精品麻豆人妻色哟哟久久| 黑人高潮一二区| 日韩一区二区视频免费看| 激情五月婷婷亚洲| 97超碰精品成人国产| 一级a做视频免费观看| 午夜免费观看性视频| 多毛熟女@视频| 成人午夜精彩视频在线观看| 一级a做视频免费观看| 小蜜桃在线观看免费完整版高清| 搡老乐熟女国产| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 国产男女超爽视频在线观看| 中文字幕精品免费在线观看视频 | 日本黄大片高清| 男人爽女人下面视频在线观看| 成人毛片60女人毛片免费| 亚洲欧美中文字幕日韩二区| av网站免费在线观看视频| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 久久人人爽人人片av| 免费人妻精品一区二区三区视频|