• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on(111)Si

    2023-03-13 09:20:12ZhenZhuoZhang張臻琢JingYang楊靜DeGangZhao趙德剛FengLiang梁鋒PingChen陳平andZongShunLiu劉宗順
    Chinese Physics B 2023年2期
    關(guān)鍵詞:楊靜陳平

    Zhen-Zhuo Zhang(張臻琢) Jing Yang(楊靜) De-Gang Zhao(趙德剛) Feng Liang(梁鋒)Ping Chen(陳平) and Zong-Shun Liu(劉宗順)

    1State Key Laboratory of Integrated Optoelectronics,Institute of Semiconductor,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: GaN,Si substrate,AlN buffer layer,stress control

    1.Introduction

    As a wide band gap semiconductor,GaN is attracting increasing attention in microelectronics and optoelectronics devices, such as high electron mobility transistors (HEMT),[1]light emitting diodes(LED),[2]and laser diodes(LD).[3]Compared to sapphire, SiC and GaN, using Si as the substrate is expected to reduce costs and achieve integration.Unfortunately, the reaction between Ga and Si, namely, the meltback etching effect, and the large mismatch in lattice constants (17%) and thermal expansion coefficients (56%) between Si and GaN severely restrict the development of GaNon-Si growth technology.[4]Choosing AlN instead of GaN as the material of the buffer layer is an effective way to isolate Ga atoms from Si and thus avoid melt-back etching.[5]To solve the mismatch in the coefficient of thermal expansion (CTE)and reduce the high density of threading dislocations (TDD)causing by the large lattice mismatch, several methods were used to enhance compressive stress to compensate the tensile stress generated during the cooling process and also to reduce the threading dislocations during the growth process, such as using a multiple AlGaN intermediate layer,[6]low temperature AlN (LT-AlN) insert layer,[7]AlGaN/GaN superlattice buffer layer[8]and so on.Nevertheless,these techniques have to introduce additional layers into the system,and the complicated techniques would reduce device reliability and would not be conducive to cost reduction,[9]which is one of the original purposes of GaN-on-Si growth technology.

    A GaN/AlN heterostructure interface can introduce a theoretically large enough compressive stress in both the growth process and cooling process due to the smaller lattice parameter and smaller thermal expansion coefficient of AlN compared to GaN.[10]However,it is known that the growth mode of the AlN buffer layer on Si is normally the Vollmer-Weber mode and its initial stage is nucleation and island coalescence.[11]A high TDD will be unavoidably formed in the AlN buffer layer during the coalescence of island boundaries.[12]Due to the high TDD in the AlN buffer layer, the compressive stress relaxes and transforms to tensile stress due to the low quality AlN buffer layer[13,14]and thus an ideal result cannot be achieved.

    Nowadays, with deepening understanding of AlN crystal growth, a higher quality AlN buffer layer can be achieved.[15,16]Therefore, the hope of using a simple buffer layer structure to realize crack-free GaN-on-Si has been rekindled again in recent years.[16-24]In this field, some teams focus on optimizing TMA[20,21]or ammonia[22,23]preflow conditions or AlN buffer layer design by modifying the temperature[12,16,25]to further improve the quality of the AlN buffer layer, and thus increase the compressive stress applied to GaN and achieve thicker crack-free GaN-on-Si with a low density of threading dislocations.However, due to the huge lattice mismatch between AlN and Si(19%),the thickness of AlN is limited to several hundred nanometers,[16]which also limits the further improvement of the quality of the AlN buffer layer.[26]Thus, improving the quality of the AlN buffer layer is not easy,and additional measures need to be found.

    In this work,it is found that the in-plane stress at the initial stage of GaN growth is sensitive to the lattice parameter of the AlN buffer layer.The results of further orthogonal experiments show that the most important factor affecting the lattice parameter of the AlN buffer layer is its growth rate.By optimizing the lattice parameter of the AlN buffer layer,a 0.8μm thick GaN film without cracks(except the edge zone)and with full widths at half maximum(FWHM)for(002)and(102) x-ray diffraction (XRD) rocking curves of 717 arcsec and 838 arcsec,respectively,are achieved.

    2.Experiment

    AlN and GaN were all grown on a 2-inch (111) Si substrate by an Aixtron 6×2 inch close-coupled showerhead reactor metal-organic chemical vapor deposition (MOCVD)system.The (111) Si substrate wafer used in the MOCVD growth was prepared by the floating-zone technique and was epi-ready.The resistivity of the substrate was higher than 1000 Ω·cm.Due to the vacuum package and the N2atmosphere in the glove box,no additional cleaning procedure was needed before the Si wafer was moved into the reaction chamber.Trimethygallium(TMG),trimethylaluminum(TMA),and ammonia (NH3) were used as the Ga, Al and N sources, and H2and N2were used as carrier gases.The Si substrate was baked at~1050°C in a H2atmosphere for 5 min to remove the native surface oxidation layer.Then,TMA was introduced in the reactor to prevent the formation of amorphous SixNydue to the possible reaction between the Si substrate and residual ammonia in the reactor.Subsequently, ammonia was introduced into the reactor and an AlN buffer layer with a thickness of 200 nm was grown.The main growth parameter variables of these three samples are listed in Table 1.Other parameters except those listed in Table 1,such as the thickness of the AlN buffer layer, V/III mole ratio and so on, were kept constant(the growth rate was controlled by modifying the flow rates of MO sources and ammonia).After the growth of AlN,0.8μm GaN films were grown at 1050°C on the AlN buffer layer under the same condition.The reactor pressures of AlN and GaN growth were 100 mbar and 260 mbar,respectively.

    Table 1.Main growth conditions of the AlN buffer layers for samples A,B,and C.

    Thein-situcurvature of the samples was monitored during MOCVD growth by Lay-tec EpiCurve?TT software.The Raman spectra of the three samples were measured at room temperature by 532 nm laser excitation.The FWHM of the rocking curves were measured by triple-axis high resolution x-ray diffraction(HRXRD).HRXRD was performed employing a CuKα1line of wavelengthλ=0.15406 nm.The surface morphology was examined by a Normaski microscope and atomic force microscope(AFM).

    3.Results and discussion

    Thein-situcurvature curves measured during the GaN layer growth of samples A, B and C are plotted in Fig.1.The mean stress during the epitaxy process at growth temperature can be deduced from the slope of the curve according to Stoney’s formula[14]

    whereσmis the mean stress applied to the film,Esis the Young modulus of the substrate and equals 1.85×1011N/m2for Si,[27]νsis the Poisson ratio of the substrate and equals 0.26,[27]hsis the thickness of the Si substrate and equals 430 μm,hfis the thickness of the grown film, andκis the measured curvature.

    Fig.1. In-situ curvature value versus time for the growth of three GaN films on different AlN buffer layers.The solid curves are the ones recorded during the measurement where the additional undulations are a normal phenomenon caused by optical interference.The dotted curves are plotted after smoothing treatment of the original data.These curves show only their patterns but not the calibrated value of curvature.

    After a calibration treatment and differentiating, the initial stress of the interface between AlN and GaN is calculated as-0.432 GPa,-0.955 GPa, and-1.359 GPa, where the negative sign represents that the stress is compressive.The fact that the absolute value of the slope gradually decreases indicates the relaxation of compressive stress.It can be seen that the compressive stresses in the three samples do not completely transform to tensile stress during the growth of 0.8μm thick GaN film, indicating the high quality of the AlN buffer layers.[13,14]

    Figure 2 shows the HRXRDω-2θscan diffraction patterns of the samples.The typical results of triple-axisω-2θscans from Si(111), GaN(002),AlN(002),GaN(004), and AlN(004)reflection are marked in Fig.2(a).In order to confirm the lattice constant from theω-2θscans, scanning with high precision was done near the peak positions of GaN(004)and AlN(004).The lattice parameters can be calculated by Bragg’s law[28]

    whered⊥is thec-plane lattice parameter actually measured,nis the diffraction order,which equals 4 in this experiment,andλis the wavelength of the x-rays, which equals 0.15406 nm.The step length of the scanning is 0.0001°and the error can be obtained by differentiating Bragg’s law to give[28]

    where Δθis the step length of the scanning and the error in thec-plane lattice constant is calculated as±0.00006 nm.It can be seen in Fig.2(b) that the positions of the GaN peaks are nearly the same,which indicates that the lattice constants of the GaN film are very close.However,the positions of the AlN peaks are quite different in Fig.2(c),which indicates that thec-plane lattice parameters of the AlN buffer layer in these samples are modified.Using Eq.(2), thec-plane lattice parameters of AlN of sample A to sample C are calculated as 0.49655 nm,0.49690 nm,and 0.49727 nm,respectively.Due to the thin thickness and high TDD of the AlN buffer layer,the intensity of high-angle HRXRD asymmetric diffraction is too low.Hence, the in-plane lattice parameter of the AlN buffer layer cannot be accurately obtained by HRXRD for these samples.However, since there is an inverse correlation between thec-plane and in-plane lattice parameter, it can be inferred that the in-plane lattice parameter decreased sequentially from sample A to sample C.

    Fig.2.(a)Diffraction peaks of sample C are obtained from rapid ω-2θ scans of triple-axis XRD.Precise ω-2θ scans of(b)the peak of GaN(004)and(c)the peak of AlN(004).In order to better compare the three sample displacements in 2θ,the peak intensity is normalized in(b)and(c).

    Fig.3.Lattice parameter and FWHM value of XRD(002)rocking curve of the AlN buffer layer dependent on the initial compressive stress.

    As was suggested, improving the crystal quality of the AlN buffer layer could increase the compressive stress and reduce the stress relaxation in the subsequently grown GaN film.[9]However,sample B,which has a relatively lower crystal quality than sample A, has a stronger compressive stress than sample A.Therefore,it can be inferred that other factors may also influence the stress states.If we suppose that the GaN was coherently grown on the AlN buffer layer at the initial growth stage of GaN,the stress applied on GaN caused by lattice mismatch can be deduced by Hooke’s law

    whereσGaNis the stress applied to GaN film,andEGaNis the Young modulus of GaN and equals 466 GPa.[30]If we assume that in the three samples their stress difference is caused by the lattice mismatch,we can roughly estimate the in-plane lattice difference of the AlN buffer layer since the lattice constants of GaN are basically the same as we mentioned before.According toin-situmonitoring,the stress difference between sample A and sample C is 0.927 GPa and the in-plane lattice difference of the AlN buffer layer should be 0.00063 nm.For an ideal crystal of AlN film under biaxial stress,the difference in the in-plane lattice parameter mentioned above will change thec-plane lattice parameter by 0.00078 nm, which is comparable to the difference obtained by HRXRD (0.00072 nm).Hence,we speculate that the compressive stress applied to the GaN film was probably changed by the difference in the lattice parameter of AlN buffer layer.

    Raman spectra were also measured at room temperature by 532 nm laser beam excitation to show the final stress state of GaN films after the cooling process as shown in Fig.4.Since the E2(high) phonon peak is non-polar and sensitive to the biaxial stress,it is usually used to check the stress state in the sample[32]according to the formula shown below:[33]

    where Δωis the shift of the E2(high) peak compared to the valueωin the intrinsic condition,whereωis 567.6 cm-1[34]for GaN andKis 4.3 cm-1·GPa-1which represents the stress coefficient[35]for GaN.The residual stresses in the GaN films of samples A,B,and C at room temperature in the GaN film were calculated as 0.68 GPa,0.57 GPa,and 0.49 GPa respectively, and they were all tensile stress.The tensile stresses should be mainly generated during the cooling process and were not fully compensated by the compressive stress induced at the GaN/AlN heterostructure.The decreasing trend of residual tensile stress from sample A to sample C shows the increasing compressive stress applied to GaN during the growth.Herein from the result of Raman spectra the difference of stress between sample A and sample C is 0.19 GPa, which is far less than those estimated from thein-situcurvature monitor.This shows that there might be additional ways to relax the tensile stress from CTE mismatch during or after the cooling process.

    Fig.4.(a)Raman spectra of three GaN film samples which are grown with different AlN buffer layers on Si.(b)Details of the Raman shift of the GaN E2 (high)peak.

    In general, there are two ways in which the high strain energy in GaN film is released: one is crack formation and the another is surface roughening.[36-39]Figure 5 shows the GaN surface morphologies measured by the Normaski microscope.There are many cracks found in sample A.With the compressive stress increasing,the number of cracks in the central part of a 2-inch wafer decreases obviously and no crack was found in sample C in the central part of the wafer.It can also be found that the surface of sample C is more flattened with the help of the Normaski microscope.Figure 6 presents the AFM images of GaN films of samples A-C.The root mean square roughnesses(RMS)of the GaN surfaces are 2.78 nm, 0.514 nm, and 0.438 nm respectively and decrease from sample A to sample C.Many pits can be found in sample A and sample B and some protrusions can also be found in sample A.With the compressive stress increasing,no additional pathway such as pits,protrusions or crack formation for strain energy release was needed,as can be seen in Figs.5 and 6.Relief of strain energy by changing the surface morphology reduces the difference in residual stress between these samples and so the gap is apparently smaller (0.19 GPa).Theωscan FWHMs of the rocking curves of the GaN epitaxial layer of samples A-C are measured by HRXRD and the results are presented in Fig.7.Both the FWHM values of the(002)and(102)planes get narrower from sample A to sample C,which indicates that the TDD in sample C is the lowest.It can be proven in Figs.5-7 that a larger compressive stress is beneficial to form a more flattened surface morphology with fewer cracks and have a better crystal quality with a lower TDD in the GaN film.

    Fig.5.Normaski microscope images of GaN films deposited on an AlN buffer layer with different lattice parameters: (a)sample A,(b)sample B,(c)sample C.

    Fig.6.AFM images(5μm×5μm)of GaN films deposited on an AlN buffer layer with different lattice parameters.

    Table 2.Growth conditions of the AlN buffer layer in the orthogonal experiment and the result of lattice parameters measured by HRXRD,where K1, K2, and K3 represent the sum of the lattice parameters for the three levels of each factor and R is the range for each factor.The error in the c-plane lattice parameter is±0.00006 nm.

    Finally, we discuss how to better modify the lattice parameter of the AlN buffer layer during growth.A further orthogonal experiment based on samples A to C was done to find which is the key factor that affects the lattice parameter of the AlN buffer layer.The growth conditions and the results of measurement of experiments 1-9 are listed in Table 2,whereKrepresents the sum of the lattice parameter values for the same level of each factor, for example,K1for the TMA preflow time is the sum of lattice parameter values in Exp.1, Exp.2, and Exp.3 and the answer is 1.49055.Ris the range for each factor which is obtained by subtracting the minimum value from the maximum value ofKin the same column.The three variables, i.e., TMA preflow time (20 s,30 s, 60 s), growth rate of the AlN buffer layer (0.056 nm/s,0.067 nm/s, 0.083 nm/s) and growth temperature of the AlN buffer layer(1025°C,1050°C,1075°C)are set to three different levels in the experiments and the other conditions,such as the thickness of the AlN buffer layer, V/III mole ratio and so on,were kept constant.The calculated rangeRof different variables can be considered as the degree of correlation between the experimental result and the variables.It was shown that the influence of the growth rate of the AlN buffer layer on lattice parameter values is almost 3.5 times as large as that of TMA preflow time and 10 times as large as that of growth temperature.It is thought-provoking to further explore why the growth rate of the AlN buffer layer,in addition to the preflow condition and growth temperature which were often optimized during the AlN growth,[16,20-23,25]can have such a large influence in effectively affecting the lattice parameter and controlling the stress state.The relation between the lattice parameter and growth rate is presented in Fig.8.The lattice parameter was acquired by averaging the values in the orthogonal experiment.The largestc-plane lattice parameter(i.e.,the smallest in-plane lattice parameter)was obtained at the middle growth rate and the trend is the same as in samples A,B,and C.The exact mechanism of the relation between growth rate and the lattice parameter is still unknown.Here we speculate a possible mechanism as follows.When the growth rate decreases from 0.067 nm/s to 0.053 nm/s, AlN has more time to relax itself from the Si substrate;therefore,the in-plane lattice gets smaller gradually (the in-plane lattice parameter of (111) Si is larger than AlN) and results in a largerc-plane lattice parameter if we assume the process is realized by biaxial stress.As the growth rate increases from 0.067 nm/s to 0.083 nm/s,more TDs are generated in the AlN buffer layer and this process leads to a decrease in interplanar spacing.This is reflected in sample B which had the largest number of TDs as shown in Fig.3.

    Fig.7.FWHM of the GaN peak in XRD(002)and(102)rocking curves and the RMS of the GaN surface roughness dependent on initial compressive stress.

    Fig.8.Average c-plane lattice parameter of the AlN buffer layer in the orthogonal experiment at different growth rates.

    4.Conclusion

    In summary,in the growth of a GaN/AlN/Si heterostructure system,modulating the lattice parameter of the AlN buffer layer properly by changing the growth rate can help to achieve better stress control and increase the compressive stress at the GaN/AlN heterostructure interface.Meanwhile, a smoother surface morphology of GaN with no pits and lower density of threading dislocations can be obtained with a larger compressive stress.The growth rate of the AlN buffer layer should be an important factor that affects the lattice parameter of the AlN buffer layer as confirmed by an analysis based on a series of orthogonal experiments.

    Acknowledgments

    Project supported by Beijing Municipal Science&Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant Nos.Z211100007921022 and Z211100004821001), the National Natural Science Foundation of China (Grant Nos.62034008, 62074142, 62074140,61974162,61904172,61874175,62127807,and U21B2061),Key Research and Development Program of Jiangsu Province(Grant No.BE2021008-1), Beijing Nova Program (Grant No.202093),Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43030101),and Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115).

    猜你喜歡
    楊靜陳平
    與敵人“坦誠相見”\t
    張負(fù)的慧眼
    張負(fù)的慧眼
    傳統(tǒng)與現(xiàn)代的“吟唱者”
    參花(上)(2022年4期)2022-05-23 22:16:48
    Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating*
    The Center Problems and Time-Reversibility with Respect to a Linear Involution
    農(nóng) 忙
    美聯(lián)儲(chǔ)加息的產(chǎn)物研究
    陳平過河
    Ground-Based Observations of Unusual Atmospheric Light Emissions
    直男gayav资源| h日本视频在线播放| 国产熟女欧美一区二区| 五月伊人婷婷丁香| 日本免费a在线| 久99久视频精品免费| 久久久久久久亚洲中文字幕| 亚洲国产精品合色在线| 女的被弄到高潮叫床怎么办| 亚洲精品自拍成人| 一区二区三区高清视频在线| 亚洲最大成人中文| 欧美日韩国产亚洲二区| 国产探花极品一区二区| 亚洲精品自拍成人| 免费看美女性在线毛片视频| 国产精品一二三区在线看| 日韩一区二区视频免费看| 亚洲中文字幕日韩| 国产亚洲91精品色在线| 久久久久网色| 国产在线男女| 蜜臀久久99精品久久宅男| 国产黄a三级三级三级人| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 少妇高潮的动态图| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 亚洲国产精品合色在线| 日韩精品青青久久久久久| 久久精品人妻少妇| 夜夜看夜夜爽夜夜摸| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 18禁在线无遮挡免费观看视频| 中文字幕亚洲精品专区| 老司机影院毛片| 色噜噜av男人的天堂激情| 欧美性感艳星| 午夜精品国产一区二区电影 | 色吧在线观看| 97热精品久久久久久| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 97热精品久久久久久| 精品久久久久久久久久久久久| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 成人性生交大片免费视频hd| 免费av观看视频| 亚洲激情五月婷婷啪啪| 超碰av人人做人人爽久久| 99热这里只有是精品在线观看| 日韩欧美在线乱码| 日本午夜av视频| 日本av手机在线免费观看| 亚洲一区高清亚洲精品| 亚洲,欧美,日韩| 黄片无遮挡物在线观看| 六月丁香七月| 成人美女网站在线观看视频| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| 一级av片app| 国产伦在线观看视频一区| 日本与韩国留学比较| 欧美性感艳星| 国产亚洲一区二区精品| 国产淫语在线视频| 99久久成人亚洲精品观看| 国产免费男女视频| 3wmmmm亚洲av在线观看| av国产久精品久网站免费入址| av黄色大香蕉| 国产免费福利视频在线观看| or卡值多少钱| 午夜精品国产一区二区电影 | 免费在线观看成人毛片| 日日摸夜夜添夜夜添av毛片| 欧美日本亚洲视频在线播放| 激情 狠狠 欧美| 99热这里只有是精品在线观看| 亚洲,欧美,日韩| 日韩中字成人| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 简卡轻食公司| 老司机福利观看| 真实男女啪啪啪动态图| 日韩欧美在线乱码| 国产淫语在线视频| 18禁动态无遮挡网站| 乱码一卡2卡4卡精品| 久久久国产成人精品二区| 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 插逼视频在线观看| 人妻夜夜爽99麻豆av| 欧美又色又爽又黄视频| 亚洲精品日韩av片在线观看| 最新中文字幕久久久久| 亚洲精品乱久久久久久| 国产精品三级大全| 嫩草影院新地址| 国语对白做爰xxxⅹ性视频网站| 好男人在线观看高清免费视频| 男人狂女人下面高潮的视频| 国产在线一区二区三区精 | 波多野结衣巨乳人妻| 国产白丝娇喘喷水9色精品| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生 | 成人毛片60女人毛片免费| 精品久久国产蜜桃| 热99re8久久精品国产| 中国美白少妇内射xxxbb| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 日本av手机在线免费观看| 亚洲不卡免费看| 永久网站在线| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| 国产白丝娇喘喷水9色精品| 亚州av有码| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 免费不卡的大黄色大毛片视频在线观看 | 麻豆成人午夜福利视频| 国产亚洲精品av在线| 黄片wwwwww| 男插女下体视频免费在线播放| 99热精品在线国产| 欧美日韩一区二区视频在线观看视频在线 | av视频在线观看入口| 六月丁香七月| 91精品国产九色| 国产成人午夜福利电影在线观看| 老司机影院毛片| 亚洲激情五月婷婷啪啪| 黑人高潮一二区| 91精品伊人久久大香线蕉| 亚洲va在线va天堂va国产| 欧美成人精品欧美一级黄| 久久这里有精品视频免费| 国产精品国产三级专区第一集| 爱豆传媒免费全集在线观看| 久久久久久国产a免费观看| 欧美一区二区国产精品久久精品| 国产 一区精品| 欧美一区二区国产精品久久精品| 插阴视频在线观看视频| 男人和女人高潮做爰伦理| 色播亚洲综合网| 亚洲av一区综合| 国产精品熟女久久久久浪| 国产v大片淫在线免费观看| 秋霞伦理黄片| 看十八女毛片水多多多| 午夜日本视频在线| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久精品一区二区三区| 水蜜桃什么品种好| 亚洲天堂国产精品一区在线| 看黄色毛片网站| 精品久久久噜噜| 国产成人福利小说| 精品免费久久久久久久清纯| 91久久精品国产一区二区成人| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 久久精品国产亚洲av天美| 欧美+日韩+精品| 中文字幕av成人在线电影| 日本wwww免费看| 天美传媒精品一区二区| 三级毛片av免费| 欧美一级a爱片免费观看看| 亚洲经典国产精华液单| 精品久久久久久久人妻蜜臀av| 女人久久www免费人成看片 | 嫩草影院精品99| 亚洲国产精品成人久久小说| 国产日韩欧美在线精品| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 亚洲人成网站在线观看播放| 日韩大片免费观看网站 | 天堂中文最新版在线下载 | 精品人妻视频免费看| 性色avwww在线观看| 日韩欧美在线乱码| 又粗又硬又长又爽又黄的视频| 欧美丝袜亚洲另类| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| 高清在线视频一区二区三区 | 男插女下体视频免费在线播放| 日韩成人伦理影院| 亚州av有码| 婷婷色av中文字幕| 国产乱人视频| 日本一二三区视频观看| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 美女高潮的动态| 免费观看在线日韩| av在线播放精品| 亚洲在线观看片| 97人妻精品一区二区三区麻豆| 一本一本综合久久| av天堂中文字幕网| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 亚洲av男天堂| 成年av动漫网址| 久久久亚洲精品成人影院| 六月丁香七月| 亚洲欧美日韩东京热| 国产av不卡久久| 精品99又大又爽又粗少妇毛片| 亚洲精品aⅴ在线观看| 91在线精品国自产拍蜜月| 精品国内亚洲2022精品成人| 久久久久久久久大av| 麻豆精品久久久久久蜜桃| 九九在线视频观看精品| 日韩av在线大香蕉| 国产伦在线观看视频一区| 国产精品人妻久久久影院| 18禁动态无遮挡网站| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 亚洲成av人片在线播放无| 日韩大片免费观看网站 | 国产三级中文精品| 1024手机看黄色片| 欧美最新免费一区二区三区| 嫩草影院新地址| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 亚洲图色成人| 黄片无遮挡物在线观看| 一级黄片播放器| 亚洲国产高清在线一区二区三| 一夜夜www| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 99久久成人亚洲精品观看| 亚洲乱码一区二区免费版| 亚洲欧美日韩高清专用| 大香蕉久久网| 听说在线观看完整版免费高清| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 99久久人妻综合| 亚洲自拍偷在线| 国产淫片久久久久久久久| 久久久久久久久久久免费av| 成人午夜高清在线视频| 国产午夜精品论理片| 少妇的逼好多水| 久久精品国产鲁丝片午夜精品| 国产三级在线视频| 日韩一区二区三区影片| 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看| 亚洲欧美日韩东京热| 欧美性猛交黑人性爽| 国产成人a区在线观看| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 亚洲精品日韩在线中文字幕| 国产成人aa在线观看| 国产高清不卡午夜福利| 国产精品久久久久久av不卡| 女人久久www免费人成看片 | 精品一区二区三区人妻视频| 春色校园在线视频观看| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 欧美潮喷喷水| 亚洲av福利一区| 亚洲国产精品久久男人天堂| 亚洲成人精品中文字幕电影| a级毛色黄片| 男的添女的下面高潮视频| 亚洲精品国产av成人精品| 岛国毛片在线播放| 日日摸夜夜添夜夜爱| 欧美日韩国产亚洲二区| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 蜜桃亚洲精品一区二区三区| 成人三级黄色视频| 成人鲁丝片一二三区免费| 日韩一本色道免费dvd| 在现免费观看毛片| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡免费网站照片| 女人久久www免费人成看片 | 国产高清不卡午夜福利| 国产一区二区亚洲精品在线观看| av女优亚洲男人天堂| 日本一本二区三区精品| 亚洲av日韩在线播放| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| av福利片在线观看| 亚洲av福利一区| 国产一级毛片在线| 欧美日韩综合久久久久久| 国产av不卡久久| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花 | 成人亚洲欧美一区二区av| 精品久久国产蜜桃| 18禁动态无遮挡网站| 身体一侧抽搐| 91在线精品国自产拍蜜月| 成人综合一区亚洲| 久久国产乱子免费精品| 亚洲av免费高清在线观看| 白带黄色成豆腐渣| 亚洲高清免费不卡视频| 欧美不卡视频在线免费观看| 免费搜索国产男女视频| 亚洲成色77777| 69av精品久久久久久| 欧美+日韩+精品| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 国产精品一区二区三区四区免费观看| 一二三四中文在线观看免费高清| 大香蕉久久网| 久久午夜福利片| 波野结衣二区三区在线| 好男人视频免费观看在线| 三级经典国产精品| 一区二区三区免费毛片| 国产老妇女一区| 美女内射精品一级片tv| 国产av码专区亚洲av| 成人无遮挡网站| av天堂中文字幕网| 午夜福利视频1000在线观看| 午夜福利在线观看免费完整高清在| 男人的好看免费观看在线视频| 插逼视频在线观看| 一本一本综合久久| 久久热精品热| 少妇熟女欧美另类| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 国产精品无大码| 成人鲁丝片一二三区免费| 中文欧美无线码| 又爽又黄无遮挡网站| 深夜a级毛片| 国产一级毛片在线| 久久亚洲精品不卡| 国产 一区 欧美 日韩| 国产精品国产三级国产av玫瑰| 久久人妻av系列| 亚洲精品色激情综合| 丝袜喷水一区| 国产av不卡久久| av专区在线播放| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 成年女人永久免费观看视频| 亚洲成av人片在线播放无| 青春草亚洲视频在线观看| 91狼人影院| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频| 夫妻性生交免费视频一级片| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 老司机影院成人| 我的老师免费观看完整版| 国产精品一区www在线观看| 亚洲精品亚洲一区二区| 美女高潮的动态| av免费观看日本| 精品99又大又爽又粗少妇毛片| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 美女被艹到高潮喷水动态| 国产一区二区在线av高清观看| 久久久久久久久中文| 最近视频中文字幕2019在线8| 国产午夜精品论理片| 日本爱情动作片www.在线观看| 国产精品一区二区三区四区免费观看| 性色avwww在线观看| 国产免费福利视频在线观看| 热99re8久久精品国产| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| 国产精品av视频在线免费观看| 国产av一区在线观看免费| 97超视频在线观看视频| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 日韩国内少妇激情av| 69av精品久久久久久| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 久久久午夜欧美精品| 啦啦啦啦在线视频资源| 日本wwww免费看| av在线老鸭窝| 亚洲精品国产成人久久av| 国产成人一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 国产高清不卡午夜福利| 在线免费十八禁| 欧美又色又爽又黄视频| 中文字幕亚洲精品专区| 国产精品国产三级国产av玫瑰| 久久精品熟女亚洲av麻豆精品 | 一个人观看的视频www高清免费观看| av天堂中文字幕网| 简卡轻食公司| 亚洲国产精品sss在线观看| 成年av动漫网址| 日韩大片免费观看网站 | 丰满人妻一区二区三区视频av| 精品国内亚洲2022精品成人| 久久综合国产亚洲精品| 欧美最新免费一区二区三区| av女优亚洲男人天堂| 亚洲真实伦在线观看| 极品教师在线视频| 亚洲av.av天堂| 国产精品电影一区二区三区| 一级二级三级毛片免费看| 国内精品一区二区在线观看| 亚洲精品国产av成人精品| 日本免费一区二区三区高清不卡| 91aial.com中文字幕在线观看| 如何舔出高潮| 国产私拍福利视频在线观看| 国产激情偷乱视频一区二区| 日日干狠狠操夜夜爽| 亚洲成色77777| 国产精品熟女久久久久浪| 亚洲精品日韩在线中文字幕| 99热这里只有精品一区| 国产亚洲91精品色在线| 欧美人与善性xxx| 好男人视频免费观看在线| 国产精品一区二区性色av| 在线免费观看不下载黄p国产| av免费观看日本| 国产亚洲av片在线观看秒播厂 | 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久| 成人性生交大片免费视频hd| 日本色播在线视频| 老师上课跳d突然被开到最大视频| 天堂√8在线中文| 国产伦理片在线播放av一区| 美女内射精品一级片tv| 22中文网久久字幕| 特大巨黑吊av在线直播| 黑人高潮一二区| 欧美日本视频| 午夜福利在线观看吧| 精品一区二区三区人妻视频| 干丝袜人妻中文字幕| 日本wwww免费看| 国产精品电影一区二区三区| 国产高清有码在线观看视频| 国产免费福利视频在线观看| 又爽又黄无遮挡网站| 国产成人免费观看mmmm| kizo精华| videossex国产| 天天躁夜夜躁狠狠久久av| 女的被弄到高潮叫床怎么办| 国产男人的电影天堂91| 精品少妇黑人巨大在线播放 | 欧美又色又爽又黄视频| 秋霞在线观看毛片| 亚洲av中文av极速乱| 热99re8久久精品国产| 日韩欧美 国产精品| 亚洲最大成人手机在线| 小说图片视频综合网站| av卡一久久| 一个人看的www免费观看视频| 欧美zozozo另类| 亚洲在久久综合| 搡老妇女老女人老熟妇| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 国内精品一区二区在线观看| 日日摸夜夜添夜夜爱| 久久久久久久久久久免费av| 美女内射精品一级片tv| 老司机影院毛片| 一本久久精品| 国产一级毛片七仙女欲春2| 2021少妇久久久久久久久久久| 国产一级毛片七仙女欲春2| 99在线视频只有这里精品首页| 纵有疾风起免费观看全集完整版 | 国产高清有码在线观看视频| 免费无遮挡裸体视频| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 干丝袜人妻中文字幕| 爱豆传媒免费全集在线观看| 特级一级黄色大片| 国产精品熟女久久久久浪| 国产 一区精品| 天堂网av新在线| 超碰av人人做人人爽久久| 久久精品91蜜桃| 国产69精品久久久久777片| 国产精品,欧美在线| 亚洲性久久影院| 大香蕉97超碰在线| 亚洲成人中文字幕在线播放| 免费人成在线观看视频色| 日韩av在线大香蕉| 又粗又爽又猛毛片免费看| 亚洲国产精品国产精品| 亚洲av电影在线观看一区二区三区 | 尾随美女入室| 99国产精品一区二区蜜桃av| 纵有疾风起免费观看全集完整版 | 欧美97在线视频| av视频在线观看入口| 欧美一区二区精品小视频在线| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看| 日韩欧美三级三区| 免费看光身美女| 麻豆成人午夜福利视频| 亚洲欧洲国产日韩| 麻豆一二三区av精品| 午夜福利在线观看吧| 2021天堂中文幕一二区在线观| 国产又黄又爽又无遮挡在线| 日本av手机在线免费观看| 一区二区三区高清视频在线| 亚洲图色成人| 欧美性感艳星| 国产精品一区二区性色av| 久久久久久久国产电影| 九九热线精品视视频播放| 国产av码专区亚洲av| 久久精品国产99精品国产亚洲性色| 亚洲av成人av| h日本视频在线播放| 国产乱来视频区| 亚洲自偷自拍三级| 欧美不卡视频在线免费观看| 秋霞在线观看毛片| 亚洲精品色激情综合| 岛国毛片在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲一级一片aⅴ在线观看| 天天一区二区日本电影三级| 久99久视频精品免费| 亚洲综合色惰| 国产探花极品一区二区| 国产精品美女特级片免费视频播放器| 亚洲国产精品专区欧美| 国产伦一二天堂av在线观看| 男人和女人高潮做爰伦理| 成人国产麻豆网| 亚洲无线观看免费| av女优亚洲男人天堂| 亚洲国产精品专区欧美| 一个人看视频在线观看www免费| 简卡轻食公司| 国产成人免费观看mmmm| 国产精品乱码一区二三区的特点| 欧美xxxx性猛交bbbb| 日韩精品有码人妻一区| 亚洲人成网站高清观看| 我要看日韩黄色一级片| 人体艺术视频欧美日本| 国产视频内射| 日日撸夜夜添| kizo精华| 亚洲婷婷狠狠爱综合网| 男的添女的下面高潮视频| 中文在线观看免费www的网站| 狠狠狠狠99中文字幕| 男女啪啪激烈高潮av片|