• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impulsive Control for One Class of the Incommensurate Conformable Fractional Order System with Discontinuous Right Side

    2021-01-07 01:24:36GAOYang高揚(yáng)
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:高揚(yáng)

    GAO Yang(高揚(yáng))

    (Department of Teaching Education,Daqing Normal University,Daqing 163712,China)

    Abstract: In this paper,one class of the incommensurate conformable fractional order system with discontinuous right side (DICFS) is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.

    Key words: Fractionally exponentially stable; Filippov solution; Impulsive control;Conformable fractional-order derivative

    1.Introduction

    In recent years,the fractional order system has attracted many researches.Due to it can be applied in the fields of physics and engineering extensively,see the literatures [1-16].

    Both Riemann-Liouville (RL) and Caputo fractional order derivative are used generally .While,two kinds of fractional order definitions share some weaknesses.For example,the monotonicity of a function f cannot be determined from the RL or Caputo fractional derivative of f.Recently,Khalil[6]gave a new fractional derivative definition named as conformable fractional derivative.Abdeljawad[7]developed the conformable fractional derivative.The stability and asymptotic stability of conformable fractional-order nonlinear systems by using Lyapunov function were obtained in [9].In comparison with the RL and Caputo fractional derivative,the conformable fractional derivative maybe suitable choice,because the conformable fractional derivative can be seen as a natural extension of the usual derivative.

    The study about stability and stabilization for the incommensurate fractional-order system is an interesting topic.[10-15]Stability results about the commensurate fractional-order system maybe not valid for the incommensurate fractional-order system.Therefore,it is important to study the incommensurate fractional-order system.

    In [12],an impulsive incommensurate fractional order system was considered as follows:

    where x=(x1,·,xn)Twas the state variable,0 <α1≤α2≤···≤αn≤1 were the orders of Caputo fractianal derivatives.fi(x(t),t)(i=1,2,··· ,n)were λ-Lipschtiz nonlinear functions.Δxi(tk)=xi()-xi(tk).The stability of impulsive incommensurate fractional order chaotic systems with Caputo derivative was investigated in [12].Some novel stability criteria for impulsive incommensurate fractional order systems were proposed.

    As far as we know,most of researchers are interested in the commensurate fractional-order system.To the best of authors’ knowledge,there are less results about the incommensurate fractional-order discontinuous system.In this paper,the incommensurate conformable fractional order system with discontinuous right side is considered.Firstly,the existence of the Filippov solution for DICFS is obtained.Secondly,the comparison theorem is constructed for DICFS.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.Main results can be regarded as the generalization of [12].

    Our innovation points are listed as follows.Firstly,the incommensurate fractional-order discontinuous system with the Filippov solution and conformable fractional derivative is modeled.Secondly,New comparison theorem for the incommensurate conformable fractional discontinuous system is showed and used to study stability for the new system.Finally,the Lyapunov theory is applied to the incommensurate conformable fractional order discontinuous system’s impulsive stabilization.

    This paper is organized as follows.Preliminary results are introduced in Section 2.In Section 3,main results are obtained.In the sequel,an example is presented in Section 4.Finally,the conclusions and outlooks are drawn in Section 5.

    2.Preliminaries

    In this section,we will list some definitions and Lemmas which will be used in the later sections.

    Definition 2.1[1]The Caputo fractional derivative of order α ∈(n-1,n) for a continuous function f :R+→R is given by

    Definition 2.2[6]Given a function h defined on an [a,∞),the conformable fractional derivative starting from a of a function h of order α is defined by

    for all t >a,α ∈(0,1].

    Lemma 2.1[9]Let h : [a,∞) →R be a continuous function such that(t) exists on (a,∞).If(t) ≥0 (respectivelyt) ≤0),for all t ∈(a,∞) then the graph of h is increasing (respectively decreasing).

    Definition 2.3[9]The fractional conformable exponential function is defined for every s ≥0 by

    where α ∈(0,1) and λ ∈R.

    Lemma 2.2[9]The origin of system

    is said to be fractionally exponentially stable if

    where λ,K >0.

    Lemma 2.3If α ∈(0,1],x >0,b >0,then (x+b)α≤xα+bαholds.

    ProofLet

    Therefore,we obtain

    In the sequel,f(x) is decreasing in the interval (0,+∞).Note f(x) is continuous about 0,we have f(x)≤f(0).Hence f(x)≤0 holds.

    Then the inequality’s proof is completed.

    Lemma 2.4If α ∈(0,1],λ >0,a >0,b >0,then

    holds.

    ProofBy Lemma 2.3,we have

    Furthermore,

    Therefore,the proof is completed.

    Lemma 2.5If α,β ∈(0,1],α ≤β,λ >0,a ∈(0,1],b >0,then

    holds.

    ProofLet

    Thus,we obtain

    In the sequel,f(x) is decreasing in the interval (0,1].Noting α ≤β,we have

    So

    holds.

    Then we get

    By Lemma 2.4,we have

    Furthermore,we obtain

    So the inequality’s proof is completed.

    Lemma 2.6If α,β ∈(0,1],α ≤β,λ >0,a ∈(0,1],then

    and Eβ(λ,a)≤Eα(λ,a) hold.

    ProofBy Lemma 2.5,we obtain

    holds.

    Therefore,the inequalities hold.The proof is completed.

    Lemma 2.7Suppose x(t)is absolutely continuous on any compact interval of[0,+∞),then for any i=1,2,··· ,n,

    holds for almost every t ∈[0,+∞) with 0 <α1≤α2≤···≤αn≤1.

    ProofBecause x(t) is absolutely continuous on any compact interval of [0,+∞),we obtain that |x(t)| is absolutely continuous on any compact interval of [0,+∞).Furthermore,|x(t)| is differentiable almost everywhere with respect to t ∈[0,+∞).Assume that |x(t)|′exists at time t.In the sequel,we have

    Then we obtain

    holds for almost every t ∈[0,+∞) .Similarly,

    holds for almost every t ∈[0,+∞).

    The proof is completed.

    3.Main Results

    An incommensurate conformable fractional order system with discontinuous right side is constructed as follows:

    where x = (x1,·,xn)Tis the state variable,0 <α1≤α2≤··· ≤αn≤1 are orders of Conformable fractianal derivatives.fi(x(t),t)(i=1,2,··· ,n)are λ-Lipschtiz nonlinear functions.

    Remark 3.1Ii(xi)(i = 1,2,··· ,n) can be seen as the threshold policy in the ecology system.Because it is natural and reasonable to adopt the threshold policy in order to control the population density of species.Moreover,Ii(xi)(i=1,2,··· ,n) can be seen as the discontinuous activation function of the ith neuron in Hopfield neural networks,such as hard comparator.Therefore,the new discontinuous system is reasonable.

    Let

    The incommensurate conformable fractional order discontinuous system (3.1) is equivalent to the system as follows:

    Based on the Filippov solution of integer order system,the concept of Filippov solution for the incommensurate conformable fractional order discontinuous system is given as follow.

    The set-valued maps can be denoted as

    Definition 3.1A function x(t) is called as a Filippov solution of system (3.1) on interval [0,T) with the initial condition x(0) = x0,if x(t) is absolutely continuous on any compact interval of [0,T) and

    for almost every t ∈[0,T).Or there exists a measurable function(measurable selection of the function I ) γ =(γ1,γ2,··· ,γn),such that γ(t)∈I(x(t)) and

    for almost every t ∈[0,T).

    Now we will discuss the existence of the solution for incommensurate conformable fractional order discontinuous system (3.1) by the fractional-order differential inclusion.

    Theorem 3.1In the sense of (3.3) ,there exists at least one solution of system (3.1)in the interval [0,+∞) for any initial value x(0).

    ProofBecause the set-valued map Tαx(t)F(x(t),t) is upper-semi-continuous with nonempty compact convex values,the local existence of a solution x(t) of (3.1) can be guaranteed.

    Indeed,we obtain |Fi(xi)|=supξ∈Fi(xi)|ξ|≤(λ+1)|xi|.

    Firstly,?t ∈[0,1],the integral equation is obtained as follows:

    Furthermore,we obtain

    According to the Gronwall inequality,we obtain

    So x(t) remains bounded for t ∈[0,1],which ensures that the solution of system (3.1) exists in the interval [0,1].

    Secondly,?t ∈[1,+∞),we have

    According to the Gronwall inequality,we obtain

    So x(t) remains bounded for t ∈[1,+∞),which ensures that the solution of system (3.1)exists in the interval [1,+∞).

    Finally,x(t) remains bounded for t ∈[0,+∞),which ensures that the solution of system(3.1) exists in the interval [0,+∞).

    In order to research impulsive control for the incommensurate conformable fractional order discontinuous system (3.1),new comparison theorems are constructed as follows.We introduce another system which is defined as:

    New comparison theorems are constructed as follows.

    Theorem 3.2For the systems (3.2) and (3.4),if fi(x(t),t)+γi(t)xi(t)≤gi(y(t)) hold almost everywhere and xi0≤yi0,then xi(t)≤yi(t)(i=1,2,··· ,n).

    ProofAccording to the definition of the Filippov solution,we obtain that x(t),y(t)are absolutely continuous on any compact interval of [0,T).In the sequel,x(t),y(t) are locally absolutely continuous.Furthermore,x(t),y(t) are differentiable almost everywhere with respect to t.

    By the condition of this theorem,we obtain that

    hold for almost every t ≥0.

    Choose the time t such that both x(t) and y(t) exist.Therefore,

    The proof is completed.

    Based on Theorem 3.2,the following corollary is obtained naturally.

    Corollary 3.1For the systems (3.2) and (3.4),if |fi(x(t),t)+γi(t)xi(t)| ≤gi(y(t))and |xi0|≤yi0,then |xi(t)|≤yi(t)(i=1,2,··· ,n).

    Consider the impulsive discontinuous system as follows:

    Therefore,the following corollary is obtained naturally.

    Corollary 3.2For the systems (3.5) and (3.6),if |fi(x(t),t)+γi(t)xi(t)| ≤gi(y(t))(a.e.t) andthen |xi(t)|≤yi(t)(i=1,2,··· ,n).

    ProofRepeating using Theorem 3.2 in the interval [tk,tk+1] and the factwe can obtain Corollary 3.2.

    Note that fi(x(t),t) are λ-Lipschitz,|γ(t)|≤1 and

    New comparison system for the system (3.6) is obtained as follows.

    where

    Let an orthogonal matrix

    and y(t)=Mz(t).The equivalent system of (3.7) is obtained as follows:

    where

    For the system (3.8),the following theorem is given.

    Theorem 3.3If τk= tk-tk-1<1 and dik= Eαi(-2(nλ+1),τk) ,then the trivial solution zi=0 of system (3.8) is fractionally exponentially stable with=dikzi(tk) .

    ProofFor any t ∈[0,t1],we obtain

    and

    In the sequel,for any i=1,2,··· ,n ,we have

    Moreover,we get

    In general,for t ∈(tk-1,tk],we have

    This means the trivial solution zi=0 of system(3.8)is fractionally exponentially stable.The proof is completed.

    Then the impulsive control of the incommensurate conformable fractional order discontinuous system can be realized as follows:

    Theorem 3.4If τk=tk-tk-1<1,dik=Eαi(-2(nλ+1),τk),then impulsive control can stabilized the system (3.1) withThis means that the trivial solution xi=0 of system (3.5) is fractionally exponentially stable.

    ProofBy Theorem 3.3 and y(t)=Mz(t),we obtain

    This demonstrates that the systems (3.7) and (3.8) are fractionally exponentially stable.We can choose

    With the help of new comparison theorem(Theorem 3.2),we obtain the trivial solution xi=0 of system(3.5)is fractionally exponentially stable.Then impulsive control can stabilize system (3.1).

    In the next part,we will design a new comparison system for the incommensurate conformable fractional order discontinuous system (3.5) based on (3.6).Using Lemma 2.7,for any t ∈[0,1],we have tαi-α1≤1,and Tαiyi(t)=tα1-αiTα1yi(t)=gi(y(t)).

    Hence,Tα1yi(t)=tαi-α1Tαiyi(t)≤gi(y(t)).

    While,for any t ∈[1,+∞),tαi-αn≤1,and

    Hence,

    The new comparison system is constructed as follows:

    Therefore,the following corollary is obtained naturally.

    Corollary 3.3For the systems (3.6) and (3.9),if gi(y(t)) ≤gi(z(t)) (a.e.t) andthen yi(t)≤zi(t)(i=1,2,··· ,n).

    Hence the impulsive control of the incommensurate conformable fractional order discontinuous system can be realized as follows:

    Theorem 3.5If

    holds for almost everywhere with respect to t and τk= tk-tk-1<1,λ >0 ,dik= dk=Eα1(-λ,τk),then the trivial solution zi=0 of system(3.9)is fractionally exponentially stable.This means that impulsive control can stabilize system (3.1) with xi(=dikxi(tk).

    ProofNotice the condition (3.10),for z(t)(t ∈[0,1]),we obtain that

    Therefore,for any t ∈[tk-1,tk]?[0,1] ,we get

    Moreover,

    and

    Using Lemma 2.4,2.5,2.6,for t ∈(tk-1,tk]?[0,1],we have

    and

    Similarly,for t ∈(tk-1,tk]?(1,+∞),we have

    Therefore,we have

    This means that the trivial solution zi=0 of system(3.9)is fractionally exponentially stable.With the help of Theorem 3.2,Corollary 3.2 and Corollary 3.3,impulsive control can stabilize the system (3.1) with xi)=dikxi(tk).

    4.An Example

    In this section,an example is presented to illustrate Theorem 3.4 and Theorem 3.5.

    Consider the following system of incommensurate conformable fractional discontinuous equation:

    where α1=0.2,α2=0.5,β12=-β21=9,ε1=ε2=2 .

    Model (4.1) comes from [2].In [2],LI investigated a coupled system of fractional-order differential equations on network with feedback controls.Model (4.1) can be seen as coupled system of incommensurate fractional-order differential equations on network with Threshold Policy.

    A comparison system is constructed as follows.

    Therefore,we have

    Here,λ=22.Choose τk=tk-tk-1<1 ,dik=Eαi(-90,τk) and

    Then the impulsive control can be designed to stabilize system (4.1) by Theorem 3.4 with

    After calculating,we obtain

    τk= tk-tk-1<1,dik= dk= Eα1(-13,τk).Then the impulsive control can be designed to stabilize the system (4.1) by Theorem 3.5 with xi=dikxi(tk).

    Remark 4.1From the example,we can see that Theorem 3.5 is more convenient than Theorem 3.4 in application.While,Theorem 3.4 and Theorem 3.5 are equally effective when softwares for calculation are used by us.

    5.Conclusions and Outlooks

    In this paper,the incommensurate conformable fractional order system with discontinuous right side is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the new incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,an example is given to illustrate applications of main results.

    Further studies on this subject are being carried out by the presenting authors in the two aspects: one is to study the model with time delay; the other is to apply the method to suitable discontinuous system.

    猜你喜歡
    高揚(yáng)
    忽如一夜春風(fēng)來
    Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
    欺騙干擾對GNSS/INS系統(tǒng)定位性能的影響
    守護(hù)“舌尖上的安全”
    如日方升
    安邸AD(2022年5期)2022-05-24 12:38:14
    高揚(yáng)開放共享之帆 開啟合作共贏之航
    深度學(xué)習(xí)在冠心病診療中的發(fā)展與應(yīng)用
    期末測試題一
    高揚(yáng)“科技興糧”和“人才興糧”的風(fēng)帆
    打造核心“重器” 磨煉“關(guān)鍵一招”——金華日報(bào)高揚(yáng)主旋律打開新局面
    傳媒評論(2018年9期)2018-12-07 00:37:28
    内地一区二区视频在线| av一本久久久久| 全区人妻精品视频| 人体艺术视频欧美日本| 亚洲欧美成人精品一区二区| 欧美变态另类bdsm刘玥| 国产精品99久久久久久久久| 特级一级黄色大片| 亚洲国产日韩一区二区| 欧美激情国产日韩精品一区| 天天一区二区日本电影三级| 国产欧美亚洲国产| av天堂中文字幕网| 一级毛片黄色毛片免费观看视频| 亚洲国产高清在线一区二区三| 欧美三级亚洲精品| 欧美三级亚洲精品| 亚洲av欧美aⅴ国产| 日日啪夜夜撸| 精品人妻视频免费看| 少妇人妻一区二区三区视频| 国产伦精品一区二区三区视频9| 久久精品久久久久久噜噜老黄| 精华霜和精华液先用哪个| 搡女人真爽免费视频火全软件| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av福利一区| 97在线视频观看| 精品一区在线观看国产| 亚洲av一区综合| 免费观看无遮挡的男女| 丰满少妇做爰视频| 午夜激情福利司机影院| 国产乱来视频区| 成人二区视频| 高清毛片免费看| 国产精品麻豆人妻色哟哟久久| 可以在线观看毛片的网站| 免费人成在线观看视频色| 成人一区二区视频在线观看| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 国产成人精品一,二区| 在线观看人妻少妇| 97在线人人人人妻| 夜夜爽夜夜爽视频| 日韩电影二区| 亚洲av中文字字幕乱码综合| 日韩在线高清观看一区二区三区| 国产在线男女| 亚洲精品一二三| 国产一区二区三区综合在线观看 | 久久99热这里只有精品18| 久久久久精品久久久久真实原创| 又大又黄又爽视频免费| 日韩不卡一区二区三区视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色吧在线观看| 在线观看一区二区三区| 国产极品天堂在线| 亚洲真实伦在线观看| 成人黄色视频免费在线看| 日韩中字成人| 九九久久精品国产亚洲av麻豆| 国产亚洲91精品色在线| 有码 亚洲区| 亚洲精品久久午夜乱码| 午夜老司机福利剧场| 狂野欧美激情性bbbbbb| 亚洲精品456在线播放app| 国产精品麻豆人妻色哟哟久久| 中文资源天堂在线| av福利片在线观看| 亚洲欧洲国产日韩| 中文资源天堂在线| 黄色一级大片看看| 两个人的视频大全免费| 亚洲真实伦在线观看| 我的女老师完整版在线观看| 麻豆国产97在线/欧美| 在线观看美女被高潮喷水网站| 欧美xxxx黑人xx丫x性爽| 国产淫片久久久久久久久| 成人二区视频| tube8黄色片| 国产毛片在线视频| 国产熟女欧美一区二区| 欧美最新免费一区二区三区| av福利片在线观看| 汤姆久久久久久久影院中文字幕| 26uuu在线亚洲综合色| 一区二区av电影网| 国产精品人妻久久久影院| 欧美另类一区| 综合色丁香网| 久久午夜福利片| 午夜爱爱视频在线播放| 亚洲精品中文字幕在线视频 | 国产有黄有色有爽视频| 2022亚洲国产成人精品| 久久精品国产自在天天线| 亚洲国产欧美在线一区| 亚洲最大成人av| 日本av手机在线免费观看| 在现免费观看毛片| 男人狂女人下面高潮的视频| av在线老鸭窝| 精品少妇黑人巨大在线播放| 成年版毛片免费区| 日日啪夜夜撸| av又黄又爽大尺度在线免费看| 久久精品久久精品一区二区三区| 免费观看的影片在线观看| 久久久久性生活片| 亚洲不卡免费看| 亚洲丝袜综合中文字幕| 亚洲国产日韩一区二区| 日韩人妻高清精品专区| 精华霜和精华液先用哪个| 国产黄a三级三级三级人| 国产黄片视频在线免费观看| 久久久久九九精品影院| 亚洲欧美日韩另类电影网站 | 亚洲欧美清纯卡通| 国产中年淑女户外野战色| 18禁动态无遮挡网站| 亚洲人成网站在线观看播放| 国产av码专区亚洲av| 亚洲天堂av无毛| 夫妻午夜视频| 婷婷色综合www| 晚上一个人看的免费电影| 精品久久久噜噜| 欧美激情久久久久久爽电影| 交换朋友夫妻互换小说| 日韩中字成人| 国产精品三级大全| av在线播放精品| 美女cb高潮喷水在线观看| 香蕉精品网在线| 国产欧美日韩精品一区二区| av天堂中文字幕网| 蜜臀久久99精品久久宅男| 日本wwww免费看| 成人漫画全彩无遮挡| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级国产专区5o| 国产色爽女视频免费观看| 日韩在线高清观看一区二区三区| 成人亚洲精品一区在线观看 | 午夜免费男女啪啪视频观看| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 日韩大片免费观看网站| 欧美zozozo另类| 下体分泌物呈黄色| 内地一区二区视频在线| 久久久精品免费免费高清| 看十八女毛片水多多多| 国产永久视频网站| 亚洲一级一片aⅴ在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻一区二区| 精品亚洲乱码少妇综合久久| 欧美激情国产日韩精品一区| 亚洲精品视频女| 大片电影免费在线观看免费| 久久午夜福利片| 欧美 日韩 精品 国产| 亚洲av中文字字幕乱码综合| 精品国产一区二区三区久久久樱花 | 大码成人一级视频| 日本一二三区视频观看| 亚洲图色成人| av福利片在线观看| 九九久久精品国产亚洲av麻豆| 久久人人爽av亚洲精品天堂 | 久久久色成人| 观看免费一级毛片| 人妻制服诱惑在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| 少妇猛男粗大的猛烈进出视频 | 午夜福利网站1000一区二区三区| 日本wwww免费看| 精品少妇久久久久久888优播| 亚洲va在线va天堂va国产| 色视频www国产| 99久久精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 深夜a级毛片| 国产av不卡久久| 久久久久九九精品影院| 亚洲国产精品国产精品| 如何舔出高潮| 中文字幕制服av| 赤兔流量卡办理| 不卡视频在线观看欧美| a级片在线免费高清观看视频| 久久精品国产亚洲av涩爱| 亚洲视频免费观看视频| av.在线天堂| 99热国产这里只有精品6| 久久久久精品国产欧美久久久 | videos熟女内射| 国产成人午夜福利电影在线观看| 国产精品av久久久久免费| 中文欧美无线码| 国产片内射在线| 五月天丁香电影| 欧美日韩亚洲高清精品| 在线观看免费视频网站a站| 午夜福利在线免费观看网站| 国产极品天堂在线| 亚洲精品乱久久久久久| 毛片一级片免费看久久久久| 老汉色∧v一级毛片| 黄片小视频在线播放| 麻豆av在线久日| 国产亚洲欧美精品永久| 国产精品久久久久成人av| 中文字幕亚洲精品专区| 赤兔流量卡办理| 亚洲av日韩在线播放| 极品人妻少妇av视频| 亚洲色图综合在线观看| 亚洲欧美一区二区三区国产| 欧美精品高潮呻吟av久久| 国产精品.久久久| 男人操女人黄网站| 国产成人啪精品午夜网站| 亚洲综合精品二区| 韩国精品一区二区三区| 国产精品二区激情视频| 男女免费视频国产| 最近最新中文字幕免费大全7| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三区在线| 深夜精品福利| 欧美人与性动交α欧美精品济南到| 综合色丁香网| 超碰97精品在线观看| 亚洲精华国产精华液的使用体验| 欧美亚洲 丝袜 人妻 在线| 人人澡人人妻人| 国产精品蜜桃在线观看| 亚洲精品一二三| 国产精品偷伦视频观看了| 我的亚洲天堂| 婷婷色av中文字幕| 成人免费观看视频高清| 精品国产乱码久久久久久小说| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 色婷婷av一区二区三区视频| 最近手机中文字幕大全| av在线app专区| 黄频高清免费视频| 最新在线观看一区二区三区 | 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 久热这里只有精品99| 国产免费福利视频在线观看| 夫妻午夜视频| 久久久精品区二区三区| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 在线观看国产h片| 建设人人有责人人尽责人人享有的| 国产一卡二卡三卡精品 | 精品第一国产精品| 国产亚洲一区二区精品| av有码第一页| 色婷婷av一区二区三区视频| 亚洲精品国产av成人精品| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| 国产成人91sexporn| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成77777在线视频| 一级毛片 在线播放| 国产 精品1| 久久天堂一区二区三区四区| 这个男人来自地球电影免费观看 | 亚洲国产精品999| 超色免费av| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 日本猛色少妇xxxxx猛交久久| 丝袜脚勾引网站| 中文字幕人妻丝袜一区二区 | 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| 国产精品熟女久久久久浪| 久热这里只有精品99| 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| 老汉色av国产亚洲站长工具| 亚洲av成人精品一二三区| 无限看片的www在线观看| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 人人澡人人妻人| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| 精品久久久久久电影网| 丝袜美足系列| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 日本黄色日本黄色录像| 最黄视频免费看| 国产1区2区3区精品| 99久国产av精品国产电影| 丁香六月欧美| xxx大片免费视频| 久久人妻熟女aⅴ| 久久久久国产精品人妻一区二区| 亚洲一码二码三码区别大吗| 免费观看人在逋| 色综合欧美亚洲国产小说| 秋霞在线观看毛片| 国产一区二区三区综合在线观看| 极品人妻少妇av视频| 美女国产高潮福利片在线看| 国产午夜精品一二区理论片| 亚洲一卡2卡3卡4卡5卡精品中文| av卡一久久| 免费看不卡的av| 欧美日韩一级在线毛片| 美国免费a级毛片| 一区二区日韩欧美中文字幕| 久久99精品国语久久久| 国产成人a∨麻豆精品| 精品视频人人做人人爽| 青草久久国产| netflix在线观看网站| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 亚洲成人手机| h视频一区二区三区| 国产精品无大码| 亚洲自偷自拍图片 自拍| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 国语对白做爰xxxⅹ性视频网站| 在线观看免费视频网站a站| 国产黄频视频在线观看| 男男h啪啪无遮挡| 久热这里只有精品99| 欧美精品一区二区免费开放| 精品久久久精品久久久| 考比视频在线观看| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 视频区图区小说| 久久久久精品性色| 亚洲精品美女久久久久99蜜臀 | 久久久久精品久久久久真实原创| 亚洲四区av| 久久久久精品人妻al黑| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 国产av码专区亚洲av| 久久久久人妻精品一区果冻| www.自偷自拍.com| 母亲3免费完整高清在线观看| 高清不卡的av网站| 少妇精品久久久久久久| 久久99精品国语久久久| 一区二区三区乱码不卡18| 成年动漫av网址| 制服诱惑二区| 亚洲精品中文字幕在线视频| 亚洲情色 制服丝袜| 国产 精品1| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| 蜜桃国产av成人99| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲精品一区二区精品久久久 | av国产久精品久网站免费入址| kizo精华| 国产成人欧美在线观看 | 亚洲欧洲精品一区二区精品久久久 | 老汉色∧v一级毛片| 国产福利在线免费观看视频| 黄色怎么调成土黄色| 午夜福利乱码中文字幕| 欧美精品一区二区免费开放| 国产亚洲最大av| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 国产1区2区3区精品| 一区福利在线观看| 午夜老司机福利片| 久热爱精品视频在线9| 一级毛片黄色毛片免费观看视频| 国产精品女同一区二区软件| 亚洲国产毛片av蜜桃av| 香蕉国产在线看| 亚洲一区中文字幕在线| 日韩熟女老妇一区二区性免费视频| av一本久久久久| 午夜福利视频在线观看免费| 最新的欧美精品一区二区| 超碰成人久久| 十八禁网站网址无遮挡| 久久久久视频综合| 悠悠久久av| 欧美日韩一区二区视频在线观看视频在线| 国产成人av激情在线播放| 亚洲精品一区蜜桃| 色精品久久人妻99蜜桃| 9191精品国产免费久久| 亚洲,欧美,日韩| 爱豆传媒免费全集在线观看| 婷婷成人精品国产| 美女大奶头黄色视频| 国精品久久久久久国模美| 另类亚洲欧美激情| 一本—道久久a久久精品蜜桃钙片| 精品少妇一区二区三区视频日本电影 | kizo精华| 可以免费在线观看a视频的电影网站 | 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 久久久精品94久久精品| 亚洲少妇的诱惑av| 国产精品一国产av| 一级a爱视频在线免费观看| 亚洲成人av在线免费| 久久久久人妻精品一区果冻| 日韩av在线免费看完整版不卡| 男女国产视频网站| 男女午夜视频在线观看| 精品国产乱码久久久久久小说| 亚洲五月色婷婷综合| 男的添女的下面高潮视频| 丰满少妇做爰视频| 亚洲精品美女久久av网站| 欧美精品av麻豆av| 精品一品国产午夜福利视频| 七月丁香在线播放| 老熟女久久久| 最黄视频免费看| 国产精品国产三级国产专区5o| 国产伦人伦偷精品视频| 一区二区三区四区激情视频| 欧美黄色片欧美黄色片| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 极品人妻少妇av视频| 女的被弄到高潮叫床怎么办| 欧美日韩视频精品一区| 国产精品国产三级国产专区5o| 久久人妻熟女aⅴ| 日本爱情动作片www.在线观看| 午夜福利一区二区在线看| 日韩中文字幕视频在线看片| 亚洲美女搞黄在线观看| 观看av在线不卡| 一边摸一边做爽爽视频免费| 纵有疾风起免费观看全集完整版| 亚洲综合精品二区| 国产免费现黄频在线看| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 夫妻午夜视频| 搡老岳熟女国产| 日韩大片免费观看网站| 嫩草影视91久久| 国产精品一国产av| 久久人人爽人人片av| 母亲3免费完整高清在线观看| 久久久久精品性色| 亚洲第一区二区三区不卡| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 啦啦啦在线免费观看视频4| 十八禁网站网址无遮挡| 人人妻人人添人人爽欧美一区卜| 欧美激情 高清一区二区三区| 多毛熟女@视频| 青春草视频在线免费观看| 七月丁香在线播放| 女人高潮潮喷娇喘18禁视频| 视频区图区小说| 纯流量卡能插随身wifi吗| 欧美日韩一级在线毛片| 婷婷成人精品国产| 国产精品无大码| 亚洲熟女毛片儿| 婷婷色麻豆天堂久久| 侵犯人妻中文字幕一二三四区| av网站免费在线观看视频| 国产精品久久久久久精品电影小说| 欧美激情高清一区二区三区 | 午夜福利在线免费观看网站| 中文字幕高清在线视频| 看十八女毛片水多多多| 看免费av毛片| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 两个人免费观看高清视频| 精品午夜福利在线看| 波多野结衣av一区二区av| 免费不卡黄色视频| 人人妻,人人澡人人爽秒播 | 国产伦人伦偷精品视频| 一本久久精品| 夫妻性生交免费视频一级片| 亚洲成人手机| 伦理电影大哥的女人| 亚洲 欧美一区二区三区| 欧美黑人欧美精品刺激| 黄片播放在线免费| 1024香蕉在线观看| 中国国产av一级| 亚洲国产精品999| 黄片播放在线免费| 亚洲国产精品999| www.熟女人妻精品国产| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美在线一区| 精品亚洲成国产av| 亚洲av成人精品一二三区| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 中文字幕制服av| 亚洲美女视频黄频| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 在线观看人妻少妇| 国产男人的电影天堂91| 久久狼人影院| 亚洲欧洲日产国产| 久热这里只有精品99| 国产视频首页在线观看| 欧美国产精品一级二级三级| 日本欧美视频一区| 久久久国产一区二区| 考比视频在线观看| av一本久久久久| 亚洲精品一二三| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 高清不卡的av网站| 色94色欧美一区二区| 国产免费一区二区三区四区乱码| 欧美日韩综合久久久久久| 午夜福利视频精品| 亚洲成人av在线免费| 午夜福利影视在线免费观看| 亚洲七黄色美女视频| 午夜激情av网站| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| 亚洲熟女精品中文字幕| 国产成人欧美| 日本wwww免费看| 一区二区三区激情视频| 亚洲第一区二区三区不卡| 久久精品亚洲熟妇少妇任你| 一级片免费观看大全| 在线免费观看不下载黄p国产| 街头女战士在线观看网站| 国产欧美日韩一区二区三区在线| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 18禁裸乳无遮挡动漫免费视频| 午夜免费观看性视频| 亚洲国产精品一区三区| 欧美激情极品国产一区二区三区| 99九九在线精品视频| 亚洲av日韩在线播放| 亚洲欧美精品综合一区二区三区| 青草久久国产| 亚洲av成人不卡在线观看播放网 | 少妇精品久久久久久久| 大片电影免费在线观看免费| 国产av一区二区精品久久| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| av不卡在线播放| 日韩人妻精品一区2区三区| 老司机靠b影院| 亚洲欧美成人综合另类久久久| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 成人免费观看视频高清| 免费日韩欧美在线观看| 汤姆久久久久久久影院中文字幕| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 1024香蕉在线观看| 嫩草影院入口| 午夜福利网站1000一区二区三区|