• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    先定形 后定量
    ——例析解三角形結(jié)構(gòu)不良問題的高效解題策略

    2020-12-28 02:37:30陳基耿
    高中數(shù)學(xué)教與學(xué) 2020年23期
    關(guān)鍵詞:定形外接圓邊長

    陳基耿

    (廣東省佛山市南海區(qū)石門高級中學(xué),528225)

    一、問題呈現(xiàn)

    教育部考試中心今年考前就已明確了新高考將會有新題型,比如多選題、多空題和結(jié)構(gòu)不良問題,并且從理論和實踐都進行過深入研究[1][2][3].結(jié)構(gòu)不良問題很可能成為新高考題的新常態(tài)題型,而三角函數(shù)的豐富實際背景和廣泛的應(yīng)用價值[4]決定了其成為新題型的良好載體.由于結(jié)構(gòu)不良問題中各備選條件對于問題解答的角度和難易程度有很大影響,所以快速鎖定最適合自己的解答方案是解題的關(guān)鍵.2020年新高考全國卷揭開神秘的面紗,其中山東、海南卷第17題共同考查了如下的解三角形結(jié)構(gòu)不良問題.

    (注:如果選擇多個條件分別解答,按第一解答計分)

    本文通過對此真題的分析,探尋解三角形結(jié)構(gòu)不良問題的高效解題方法.

    二、解法探究

    筆者擬定“先定形后定量”的解題策略,快速鎖定最優(yōu)解.所謂“先定形”,是指根據(jù)問題的條件確定三角形的形狀,選擇三角形的外接圓為定形的最佳工具;所謂“后定量”,是根據(jù)題設(shè)給定的待選條件,確定三角形的具體大?。?/p>

    1.用外接圓定形分析

    2.用長度定量分析

    在三角形外接圓中定形之后,?ABC的大小(外接圓半徑)并未確定.若要唯一確定該三角形的大小,則需補充有關(guān)確定邊長的條件.

    方案1補充邊長的條件定量分析

    方案2補充高的條件定量分析

    若選擇條件②csinA=3,如圖3,即邊b上的高BD=3.

    其實,由以上分析知道該三角形形狀已經(jīng)由題干中已有條件唯一確定.再補充定形條件很可能產(chǎn)生矛盾,使得滿足條件的三角形不存在;或者是添加了一個重復(fù)定形條件,三角形邊長未確定,三角形不唯一.

    文[3]指出,無論選擇哪個條件,只要進行正確解答,都能得分.而且文[3]還對無解的方案作出表態(tài):“這個解答性價比最高,這樣也給善于思考的學(xué)生提供了展示的機會,更好地發(fā)揮考試的區(qū)分鑒別功能”.

    三、策略應(yīng)用舉例

    (1)求A的大小;

    問題:若______,______,求?ABC的面積.

    評注本題由排列組合知識及題設(shè)要求,只要將四個論斷之一為結(jié)論且其余三個為條件,即可組成一個命題,但命題正確與否把握不易準確.采用“先定形后定量”的解題策略,可幫助我們明確解題方向,達到高效解題的目的.

    猜你喜歡
    定形外接圓邊長
    三點定形找對應(yīng)點
    大正方形的邊長是多少
    歐拉不等式一個加強的再改進
    將相等線段轉(zhuǎn)化為外接圓半徑解題
    僅與邊有關(guān)的Euler不等式的加強
    巧比邊長與轉(zhuǎn)化思想——以人教版三年級上冊為例
    一個關(guān)于三角形邊長的不等式鏈
    一道IMO試題的另解與探究
    繞來繞去
    興趣英語(2013年6期)2013-08-29 07:45:26
    蟲蟲總動員
    九龙坡区| 汉中市| 达日县| 桂平市| 含山县| 临潭县| 连平县| 故城县| 水城县| 马尔康县| 牟定县| 额尔古纳市| 南宫市| 射洪县| 扶风县| 茶陵县| 恩平市| 金寨县| 武功县| 富裕县| 府谷县| 安乡县| 温泉县| 吕梁市| 谢通门县| 上虞市| 博乐市| 肥东县| 陇南市| 临洮县| 安化县| 新巴尔虎右旗| 长治市| 江华| 宁武县| 黎平县| 开平市| 无锡市| 刚察县| 平利县| 卫辉市|