• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Magnetic Field on Tribological Properties of Lubricating Oils with and without Tricresyl Phosphate

    2016-03-22 08:05:07
    中國煉油與石油化工 2016年3期

    (Logistical Engineering University, Chongqing 401311)

    Effect of Magnetic Field on Tribological Properties of Lubricating Oils with and without Tricresyl Phosphate

    Jiang Zeqi; Fang Jianhua; Chen Boshui; Zheng Zhe; Li Hao; Xu Lai

    (Logistical Engineering University, Chongqing 401311)

    Tribological properties of neat 150 SN mineral base oil and the oils doped with different contents of tricresyl phosphate (TCP) under magnetic feld or non-magnetic feld were evaluated on a four-ball tribotester, on which an external magnetic feld was applied. Furthermore, the morphology and the tribochemical characteristics of the worn surfaces were examined with a scanning electron microscope (SEM) and an X-ray photoelectron spectrograph (XPS). The tribological test results showed that the magnetic feld improved anti-wear properties but impaired the friction-reducing properties of neat base oil and the TCP-doped oils. The worn surfaces tested in magnetic feld were characterized by a slighter wear than those tested in normal condition, especially for the surfaces lubricated with the TCP-doped oils. Furthermore, the results of XPS analysis indicated that tribochemical flms on the surfaces tested with TCP-doped oils were mainly composed of ferriccontaining compounds such as Fe2O3, Fe3O4and FePO4. Under the infuence of a magnetic feld, the atomic concentrations of oxygen and phosphorous in the frictional sub-surfaces were higher than those without magnetic impact. Thus it can be inferred that the improved anti-wear properties and impaired friction-reducing capabilities of lubricating oils with TCP under a magnetic feld were related to the diffusion of phosphorus and oxygen into the substrate induced by magnetism.

    magnetic feld; tricresyl phosphate; tribological properties; mechanisms

    1 Introduction

    In industrial tribological systems, many sliding units work in electric and magnetic surroundings such as the magnetic cutting, the motor brush, the carbon brush of excitation machine, the contact wire of high speed skater, the switch contactor of high power electric transmission[1-4]. It has been known that electromagnetic-induced physico-chemical effect will certainly infuence tribological properties of lubricants[5-7]. On the other hand, the self generated voltage (SGV) induced by friction will produce electric felds which, when varying, will excite magnetic felds[8]. Studies have shown that tribomates under magnetic conditions can produce dynamic magnetization thus affecting the hardness of frictional materials[9-11]. Tang[12]pointed out that the electron clouds inside molecules would deform temporarily under magnetic felds, resulting in changes of intermolecular forces that could influence the physical and chemical properties of a substance such as viscosity. Zhai, et al.[13]demonstrated that the friction coefficients were related to tribochemical reaction on the worn surfaces under electromagnetic condition. Unfortunately, the infuence of electromagnetic effect on the molecular design of traditional lubricant additives is usually not taken into consideration. It is thus of great significance to understand the electromagnetic effect on tribological performance of lubricants to realize the reasonable application and design of lubricants and additives for tribological contacts involved in electromagnetic conditions.

    Tricresyl phosphate (TCP), a phosphorus-containing extreme pressure and anti-wear additive, has been widely used in many lubrication applications[14]. In the present paper, the tribological properties of lubricating oils with different contents of TCP were tested and compared with those of neat mineral base oil under magnetic conditions. Furthermore, the possible mechanisms of magnetic feld on infuencing the tribological performance of lubricating oils were also analyzed.

    2 Experimental

    2.1 Base oil and additive

    150 SN base oil: a non-polarized paraffinic base oil obtained from the Shenzhen Lubricating Oil Industry Company, with its kinematic viscosity at 40 ℃ being equating to 31.85 mm2/s.

    Additive: Tricresyl phosphate (TCP) was obtained from the Beijing Benzene Ring Fine Chemicals Co., Ltd. The chemical structure and some physicochemical indices of TCP are shown in Figure 1 and Table 1, respectively.

    Table 1 The physicochemical properties of TCP

    2.2 Friction and wear test

    To evaluate the effect of magnetic field on tribological properties of lubricating oils with and without TCP, different mass fraction values of TCP, viz.: 0, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%, respectively, were incorporated into the 150 SN base oil. The tribological tests were performed on a MMW-1 universal four-ball tribotester following the procedures of SH/T 0189—1992, a Chinese standard method for testing friction and wear properties of lubricants. To investigate the effect of magnetic feld on tribological performance of the lubricants, a copper loop of 800 windings was wrapped on an aluminium alloy sleeve and then placed around the friction region as shown in Figure 2(a). During the friction testing, the loop was electrifed to produce a specifc intensity of magnetic field by controlling the current intensity, with magnetic induction lines being mostly perpendicular to the frictional contact surfaces, as shown in Figure 2(b). The friction and wear tests were conducted under a magnetic feld intensity of 0.1 Tesla (0.1 T) and a load of 392 N, at a rotary speed of 1 200 r/min for 30 minutes. After each test run, the wear scar diameters (WSD) and the friction coeffcients were measured to evaluate the anti-wear and friction-reducing ability of the tested lubricants. The balls used in the tests are GCr15 standard steel balls, 12.7 mm in diameter and 59—61 HRC in hardness. The magnetic intensity was measured by a HT201 portable digital Tesla meter.

    Figure 2 Assembly of tribotester

    2.3 Surface analysis

    Prior to the analysis, the steel balls lubricated with 150 SN base oil and oils formulated with 2.0% of TCP, respectively, under magnetic or non-magnetic fields were ultrasonically cleansed with petroleum ether for 10 minutes, respectively. Then the morphology of the worn surfaces was observed by a TESCAN Vega 3 LMH scanning electron microscope (SEM). The chemical characteristics of typical elements on the worn surfaces were analyzed on a Thermo ESCALab250 X-ray photoelectron spectroscope (XPS), with the Al Kα radiation used as the exciting source and a binding energy of contaminated carbon (C1s: 284.80 eV) used as the reference.

    3 Results and Discussion

    3.1 Anti-wear capacity

    Figure 3 shows the variation of wear scar diameters with the change in mass fraction of TCP under different magnetic fields. It can clearly be observed from Figure 3 that WSDs of the worn surfaces under magnetic felds were much smaller than those under non-magnetic feld, demonstrating that magnetic field could contribute to the improvement of the anti-wear property of lubricating oils.

    Figure 3 Variation of WSD with TCP contents under magnetic or non-magnetic fi eld

    3.2 Friction-reducing ability

    Figure 4 Friction coef fi cient against mass fraction of TCP under magnetic or non-magnetic fi eld

    Figure 5 Variation of friction coef fi cient with test duration under magnetic or non-magnetic fi eld conditions

    Figure 4 shows the variation of friction coeffcients with the mass fraction of TCP under different magnetic felds. Also shown in Figure 5 is the variation of friction coefficient versus test duration of lubricant oil containing 2.0% of TCP. It can be seen from Figure 4 and Figure 5 that the friction coefficients of the tested oils increased with an increasing content of TCP. In addition, the friction coefficients under magnetic conditions were higher than those under non-magnetic conditions. Furthermore, in the whole test process of 30 minutes, the friction coeffcient of oil containing 2.0% of TCP under the magnetic feld condition fuctuated more obviously than that under non-magnetic feld condition as shown in Figure 5. The results indicated that the magnetic impact could impair the friction-reducing ability of lubricants.

    3.3 Morphology of worn surfaces

    The SEM morphology of worn surfaces lubricated with 150 SN mineral oil and the oils formulated with 2.0% of TCP under a load of 392 N for 30 minutes in the presence of different magnetic felds are shown in Figure 6. It can be seen from Figure 6(a) and Figure 6(b) that smoother wear scar could be observed on surfaces lubricated with base oil under magnetic condition, a similar situation of surfaces lubricated with TCP-doped oils could be observed from Figure 6(c) and Figure 6(d), indicating the positive effect of magnetic feld on anti-wear property of tested oils. The results are well correlated with the antiwear test results shown in Figure 3.

    3.4 Tribochemical characteristics

    Figure 7 shows the XPS spectra of worn surface lubricated with oil samples containing 2.0% of TCP under the influence of magnetic or non-magnetic field. The XPS spectrum of C1s (Figure 7a) showed a peak in the binding energy range of 284.7—288.4 eV, which was assigned to organic species of C—C bonds, indicating that the lubricant molecules were adsorbed on the metal surfaces. In Figure 7b, the peak of Fe2p at a binding energy of 710.5 eV indicated that iron was oxidized to Fe3O4or Fe2O3. In the spectrum of P2p (Figure 7c), the peak at a binding energy of 133.4 eV might be attributed to the chemical species of FePO4. The peak of O1s (Figure 7d) around a binding energy of 531.4 eV might be attributed to P=O or iron oxide, in combination with the peak of Fe2p and P2p. It can be inferred from the results of XPS that a composite boundary lubrication film was mainly composed of FePO4, Fe2O3, and Fe3O4.

    Figure 6 SEM images of worn surfaces lubricated with base oil and TCP-doped oil.

    Figure 7 XPS spectra of worn surfaces lubricated by oil containing 2% of TCP under magnetic or non-magnetic fi eld

    Table 2 Atomic percentage of typical elements on the worn surfaces

    To further explore the magnetic effect on tribological property of lubricating oils formulated with TCP, the elemental compositions of worn surfaces obtained during testing in different magnetic felds were also determined by XPS analysis. The atomic concentrations of typical elements in the worn surfaces are listed in Table 2. As it can be seen from Table 2, the atomic contents of oxygen and phosphorus contained in the surface film under a magnetic feld of 0.1 T were higher than those under nonmagnetic feld. After sputtering for 5 minutes, higher concentrations of oxygen and phosphorus were detected in the sub-surface, indicating that tribo-diffusion of oxygen and phosphorus was promoted by magnetic affection. The higher content of oxygen obtained under magnetism quite well complied with the phenomenon that oxygen tends to gather around the magnetic feld because of its paramagnetic property[15]. Tribo-diffusion of oxygen and phosphorus into the sub-surface under magnetic condition can be an attribute of TCP to fortify anti-wear performance and impair friction-reducing ability of lubricating oils. Zhou[16]reported that the π bond structure of graphite exhibited good magnetization performance under the infuence of magnetic felds. Higher concentrations of oxygen and phosphorus on the surface and in the sub-surface of metal under magnetic condition can also be explained on the basis of the structural characteristics of TCP. The molecule of TCP contains a conjugated π bond structure because of three benzene rings (as can be seen from Figure 1), which can be a positive factor for TCP to exhibit good magnetization performance in the perpendicular direction of molecular plane with magnetic affection to improve the adsorption of TCP on the metal surfaces.

    4 Conclusions

    Based on the results given above, the following conclusions can be drawn.

    (1) The wear scar diameters of steel balls lubricated with 150 SN mineral oil or oils formulated with TCP under magnetic fields were smaller than those obtained under non-magnetic condition, while the friction coefficients of the tested oils under magnetic field were higher than those under non-magnetic field condition. Magnetic field to some extent improved the anti-wear properties but impaired the friction-reducing properties of 150 SN mineral oil and TCP-doped oils.

    (2) Composite boundary flms mainly were composed of FePO4, Fe2O3, and Fe3O4generated on the worn surfaces, and tribo-diffusion of phosphorus and oxygen into the sub-surfaces of metal under magnetic field might be an attribute for the improved anti-wear performance and impaired friction-reducing ability of TCP-doped oils with magnetic affection.

    Acknowledgements: The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Project No. 51375491), the Natural Science Foundation of Chongqing (Project No. CSTC, 2014JCYJAA50021) and the Innovation Fund of Logistical Engineering University of PLA (Project No. YZ13-43703).

    [1] Zhang M, Feng Y. Effect of electric current on the friction and wear behavior of carbon nanotubes-silver-graphite composite[J]. Tribology, 2005, 25(4): 328-332

    [2] Hu B, Meng Y G, Wen S Z. A preliminary experimental study on voltage-controlled friction clutch[J]. Tribology, 2004, 24(1): 46-49

    [3] Senouci A, Zaidi H, Frene J, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144: 287-291

    [4] Jiang Z Q, Zheng Z, Fang J H, et al. Effect of magnetic field on frictional and wearing properties[J]. Synthetic Lubricants, 2016, 43(1): 23-25 (in Chinese)

    [5] Muju M K, Radhakrishna A. Wear of non-magnetic materials in the presence of a magnetic feld[J]. Wear, 1980, 58(1): 49-58

    [6] Dong X L, Chen J R, Jian X G. Research situation and prospects for effect of a magnetic feld on friction and wear of metals[J]. Materials Science and Engineering, 2000, 18(1): 116-120 (in Chinese)

    [7] Wei Y H, Zhang Z Y, Chen Y. Dry sliding friction and wearof high-speed steel/45 steel tribo-pair under direct current steady magnetic feld[J]. Tribology, 2010, 30(4): 399-403 (in Chinese)

    [8] Zhou Q, Li J P, Long H S. The friction and wear of sleevering pair lubricated by active lubricants in the presence of magnetic field[J]. Journal of Wuhan University of Technology, 2004(11): 69-71 (in Chinese)

    [9] Han H B, Gao Y K, Zhang Y Z, et al. The magnetic flux density and magnetic attraction force on the contact surface of pin-disk friction pair under DC magnetic feld[J]. Chinese Mechanical Engineering, 2015, 26(4): 503-507 (in Chinese)

    [10] Han H B, Liu H, Zhang Y Z, et al. The electromagnetic induction phenomena in friction contact area of pin and disk under DC magnetic feld[J]. Tribology, 2015, 35(5): 557-562 (in Chinese)

    [11] Zhou Z Z, Xiao J J, Zheng W. Recent research of the triboelectrifcation mechanism between the friction surfaces[J]. Journal of Wenzhou Vocational and Technical College, 2005, 5(1): 28-30 (in Chinese)

    [12] Tang H B, Zhang M Q. Effect of magnetic felds on viscosity of alkane and alcohol[J]. Journal of Shenyang University of Technology, 2000, 22(5): 448-449 (in Chinese)

    [13] Zhai W J, Hao G P. Influence of externally applied electrical factors on friction coefficient of steel/steel pair with boundary oil lubrication[J]. Journal of Harbin Institute of Technology, 2003, 35(8): 946-949 (in Chinese)

    [14] Fang C M, Li M S, Liu X Q, et al. Research progress in synthesis and application situation of P-containing antiwear and extreme pressure additives[J]. Lubricating Oil, 2007, 22(1): 35-38 (in Chinese)

    [15] Hu H, Gao H, Jia S Y. Effect of magnetic feld on physical and chemical properties of matter[J]. J Magn Mater Devices, 2000, 6: 36-38 (in Chinese)

    [16] Zhou Q, Zheng Y J. Magnetizing friction and its boosting action on lubrication[J]. Tribology, 2002, 22(4): 479-482 (in Chinese)

    Received date: 2016-04-20; Accepted date: 2016-06-17.

    Prof. Fang Jianhua, Telephone: +86-23-86731410; E-mail: fangjianhua71225@sina.com.

    少妇高潮的动态图| 久99久视频精品免费| 欧美性猛交黑人性爽| 五月玫瑰六月丁香| 欧美日韩在线观看h| 插逼视频在线观看| 99热精品在线国产| 午夜精品国产一区二区电影 | 特大巨黑吊av在线直播| 一级毛片久久久久久久久女| 亚洲精品日韩av片在线观看| 精品人妻偷拍中文字幕| 日韩国内少妇激情av| 最近最新中文字幕大全电影3| 国产视频内射| 免费搜索国产男女视频| 18禁黄网站禁片免费观看直播| 啦啦啦韩国在线观看视频| 综合色丁香网| 欧美日韩在线观看h| 在线播放无遮挡| 久久精品久久久久久久性| 久99久视频精品免费| 美女xxoo啪啪120秒动态图| 草草在线视频免费看| 天天躁夜夜躁狠狠久久av| av福利片在线观看| 国产又黄又爽又无遮挡在线| 一进一出抽搐动态| 欧美一区二区国产精品久久精品| 国产极品精品免费视频能看的| 午夜精品一区二区三区免费看| 午夜精品在线福利| 黄色视频,在线免费观看| 久久精品国产自在天天线| 亚洲电影在线观看av| av专区在线播放| 久久99热6这里只有精品| 亚洲欧美日韩卡通动漫| www.色视频.com| 色哟哟哟哟哟哟| 欧美日韩国产亚洲二区| 联通29元200g的流量卡| 观看美女的网站| 午夜福利在线观看免费完整高清在 | 天堂中文最新版在线下载 | 久久亚洲国产成人精品v| 狂野欧美白嫩少妇大欣赏| 亚洲精品色激情综合| 国产一级毛片七仙女欲春2| 十八禁国产超污无遮挡网站| 国产亚洲av嫩草精品影院| 国产精品,欧美在线| 熟女电影av网| 国内精品久久久久精免费| 亚洲av免费高清在线观看| 国产亚洲91精品色在线| 12—13女人毛片做爰片一| 99精品在免费线老司机午夜| 国产麻豆成人av免费视频| 久久久精品94久久精品| 蜜臀久久99精品久久宅男| 亚洲国产精品合色在线| 国产在线男女| 日韩在线高清观看一区二区三区| 国产精品久久久久久av不卡| 村上凉子中文字幕在线| av福利片在线观看| 91精品一卡2卡3卡4卡| 国内久久婷婷六月综合欲色啪| 少妇熟女欧美另类| 中国美女看黄片| 中文字幕熟女人妻在线| 丰满的人妻完整版| 国产极品天堂在线| 一级黄色大片毛片| 亚洲国产精品久久男人天堂| 欧美xxxx性猛交bbbb| 免费搜索国产男女视频| 狂野欧美激情性xxxx在线观看| 97人妻精品一区二区三区麻豆| 欧美最新免费一区二区三区| 在线观看免费视频日本深夜| 欧美区成人在线视频| 日本一本二区三区精品| 内地一区二区视频在线| 插阴视频在线观看视频| 亚洲av第一区精品v没综合| 久久精品国产清高在天天线| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩东京热| av专区在线播放| 国内久久婷婷六月综合欲色啪| 亚洲最大成人手机在线| 亚洲精品国产成人久久av| 久久精品国产自在天天线| 国产亚洲精品久久久久久毛片| 成人午夜精彩视频在线观看| 欧美成人精品欧美一级黄| 男插女下体视频免费在线播放| 国产av不卡久久| 亚洲欧美精品专区久久| 色综合色国产| 欧美人与善性xxx| 欧美日韩综合久久久久久| 欧美最黄视频在线播放免费| 嘟嘟电影网在线观看| 亚洲精品久久国产高清桃花| 久久久久久久午夜电影| 26uuu在线亚洲综合色| 国内精品美女久久久久久| 亚洲欧美成人精品一区二区| 日本在线视频免费播放| 久久久国产成人免费| 国产黄色小视频在线观看| 亚洲av免费在线观看| 亚洲精品日韩在线中文字幕 | 国产高清视频在线观看网站| 免费看a级黄色片| 成人亚洲欧美一区二区av| 一进一出抽搐gif免费好疼| 少妇人妻一区二区三区视频| 日韩精品青青久久久久久| 熟妇人妻久久中文字幕3abv| 免费观看精品视频网站| 老司机福利观看| 国产亚洲欧美98| 亚洲国产精品成人久久小说 | 日韩国内少妇激情av| 人人妻人人看人人澡| 国产探花在线观看一区二区| 国产 一区 欧美 日韩| 亚洲不卡免费看| 嘟嘟电影网在线观看| 久久精品国产亚洲网站| 亚洲成人久久爱视频| 午夜精品在线福利| 欧美xxxx黑人xx丫x性爽| 一级毛片久久久久久久久女| 亚洲精品粉嫩美女一区| 免费不卡的大黄色大毛片视频在线观看 | 国产私拍福利视频在线观看| 欧美bdsm另类| 午夜福利在线在线| 亚洲电影在线观看av| av福利片在线观看| www.av在线官网国产| 18+在线观看网站| 中文字幕免费在线视频6| 国产亚洲欧美98| 三级毛片av免费| 亚洲av免费高清在线观看| 国产成人福利小说| 人体艺术视频欧美日本| 晚上一个人看的免费电影| 91久久精品国产一区二区三区| 全区人妻精品视频| 晚上一个人看的免费电影| 中文字幕熟女人妻在线| 一区二区三区高清视频在线| 女同久久另类99精品国产91| 亚洲四区av| 毛片一级片免费看久久久久| 男女边吃奶边做爰视频| 亚洲av免费在线观看| 国产精品av视频在线免费观看| 又粗又爽又猛毛片免费看| 国产精品久久久久久久电影| 婷婷亚洲欧美| 亚洲无线观看免费| 天堂网av新在线| 久久精品国产亚洲av天美| 桃色一区二区三区在线观看| 成人性生交大片免费视频hd| 99久久无色码亚洲精品果冻| 一级毛片久久久久久久久女| 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 黄色日韩在线| 看片在线看免费视频| 日本三级黄在线观看| 成人鲁丝片一二三区免费| av女优亚洲男人天堂| 精品一区二区三区视频在线| 最近手机中文字幕大全| 欧美zozozo另类| 少妇被粗大猛烈的视频| www日本黄色视频网| 少妇丰满av| 草草在线视频免费看| av免费在线看不卡| 国产私拍福利视频在线观看| 亚洲av免费在线观看| 国产av不卡久久| 伦理电影免费视频| 久久久精品94久久精品| 18禁在线播放成人免费| 国精品久久久久久国模美| 国产成人a∨麻豆精品| 一本久久精品| 久久久久精品性色| 少妇熟女欧美另类| 亚洲精品456在线播放app| 免费黄网站久久成人精品| 欧美97在线视频| 日韩欧美一区视频在线观看| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 免费黄频网站在线观看国产| 欧美激情国产日韩精品一区| 国产熟女欧美一区二区| 免费高清在线观看视频在线观看| 亚州av有码| 热re99久久国产66热| 精品一区二区三区视频在线| 精品人妻一区二区三区麻豆| 亚洲精品一区蜜桃| 午夜福利视频在线观看免费| 中文字幕久久专区| 精品一品国产午夜福利视频| 久久这里有精品视频免费| 80岁老熟妇乱子伦牲交| 中国美白少妇内射xxxbb| 午夜福利,免费看| 人妻制服诱惑在线中文字幕| 免费大片黄手机在线观看| 亚洲成色77777| 免费观看在线日韩| 欧美精品人与动牲交sv欧美| 蜜臀久久99精品久久宅男| 欧美人与性动交α欧美精品济南到 | 亚洲av二区三区四区| 国产av精品麻豆| 国产女主播在线喷水免费视频网站| 在线天堂最新版资源| 狠狠婷婷综合久久久久久88av| 国产成人精品久久久久久| 91午夜精品亚洲一区二区三区| 亚洲精品自拍成人| 国产一区二区三区av在线| 国产欧美日韩综合在线一区二区| 一级毛片电影观看| 少妇人妻精品综合一区二区| 午夜精品国产一区二区电影| 涩涩av久久男人的天堂| 国产免费又黄又爽又色| 赤兔流量卡办理| 久久毛片免费看一区二区三区| 91精品三级在线观看| 老司机影院毛片| 国产熟女欧美一区二区| 女人久久www免费人成看片| 久久精品人人爽人人爽视色| 免费观看av网站的网址| 男女边摸边吃奶| 3wmmmm亚洲av在线观看| 亚洲av男天堂| 国产亚洲午夜精品一区二区久久| 欧美日韩视频高清一区二区三区二| 国产高清有码在线观看视频| 一级毛片我不卡| 曰老女人黄片| 国产精品一二三区在线看| 亚洲av在线观看美女高潮| 青春草视频在线免费观看| 国产精品人妻久久久久久| 在线精品无人区一区二区三| 国产男女超爽视频在线观看| 纵有疾风起免费观看全集完整版| 国产黄色免费在线视频| 国产国语露脸激情在线看| 中文精品一卡2卡3卡4更新| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品成人av观看孕妇| 中文字幕免费在线视频6| 久久狼人影院| 免费大片黄手机在线观看| 亚洲欧美一区二区三区黑人 | 亚洲欧美中文字幕日韩二区| 丰满饥渴人妻一区二区三| 在线观看人妻少妇| 亚洲精品一二三| 免费高清在线观看日韩| 午夜日本视频在线| 亚洲美女视频黄频| √禁漫天堂资源中文www| 啦啦啦中文免费视频观看日本| av不卡在线播放| 婷婷成人精品国产| 亚洲欧美色中文字幕在线| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 街头女战士在线观看网站| 日韩大片免费观看网站| 亚洲av电影在线观看一区二区三区| 精品国产国语对白av| 少妇熟女欧美另类| 涩涩av久久男人的天堂| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 午夜91福利影院| 国产色爽女视频免费观看| 久久99精品国语久久久| 最后的刺客免费高清国语| 蜜桃在线观看..| 草草在线视频免费看| 夜夜骑夜夜射夜夜干| 久热这里只有精品99| 五月伊人婷婷丁香| 精品人妻熟女av久视频| 国产有黄有色有爽视频| 欧美性感艳星| av专区在线播放| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 99国产综合亚洲精品| 免费大片18禁| 精品视频人人做人人爽| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 亚洲欧美一区二区三区黑人 | 国产一区亚洲一区在线观看| 性色av一级| 制服丝袜香蕉在线| 一区二区三区四区激情视频| 久久这里有精品视频免费| 亚洲怡红院男人天堂| 亚洲精品第二区| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图 | av在线观看视频网站免费| av电影中文网址| 一个人免费看片子| 久久99精品国语久久久| 在线免费观看不下载黄p国产| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站| 另类精品久久| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 熟女av电影| xxx大片免费视频| 国产欧美日韩一区二区三区在线 | 丝瓜视频免费看黄片| 91国产中文字幕| 丝袜脚勾引网站| 久久国产精品大桥未久av| 日本av手机在线免费观看| 午夜视频国产福利| 国产男女内射视频| 在线观看一区二区三区激情| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 街头女战士在线观看网站| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区黑人 | 国精品久久久久久国模美| 97超碰精品成人国产| 午夜激情久久久久久久| 一级爰片在线观看| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线 | 新久久久久国产一级毛片| 日韩精品有码人妻一区| 亚洲精品456在线播放app| 91午夜精品亚洲一区二区三区| 午夜老司机福利剧场| 亚洲国产日韩一区二区| 99精国产麻豆久久婷婷| 成人午夜精彩视频在线观看| 美女国产高潮福利片在线看| 日韩成人av中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 午夜免费鲁丝| 亚洲国产色片| 欧美成人精品欧美一级黄| 亚洲三级黄色毛片| 亚洲人成77777在线视频| 91午夜精品亚洲一区二区三区| 草草在线视频免费看| 天美传媒精品一区二区| 美女内射精品一级片tv| 国产69精品久久久久777片| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 欧美激情 高清一区二区三区| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 中文欧美无线码| 中国国产av一级| 亚洲精品一区蜜桃| 欧美人与善性xxx| 99热国产这里只有精品6| 国产av国产精品国产| 亚洲国产精品国产精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产av影院在线观看| 久久综合国产亚洲精品| 国产色爽女视频免费观看| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| 人妻系列 视频| 美女中出高潮动态图| 国产有黄有色有爽视频| 少妇人妻久久综合中文| 亚洲精品第二区| 欧美+日韩+精品| 日韩伦理黄色片| 精品久久久精品久久久| 夜夜爽夜夜爽视频| 国产黄频视频在线观看| 毛片一级片免费看久久久久| 男女无遮挡免费网站观看| 大香蕉久久成人网| 国模一区二区三区四区视频| 国产免费又黄又爽又色| 国产成人精品福利久久| 亚洲国产日韩一区二区| 久久久久久久久久成人| 欧美日韩视频精品一区| 在线观看三级黄色| 99久国产av精品国产电影| 成年av动漫网址| 赤兔流量卡办理| 国产av码专区亚洲av| 男人操女人黄网站| 欧美另类一区| 欧美日韩国产mv在线观看视频| 青春草国产在线视频| 久热这里只有精品99| 欧美xxⅹ黑人| 男女国产视频网站| 在线观看人妻少妇| 精品国产乱码久久久久久小说| 久久精品夜色国产| 性高湖久久久久久久久免费观看| 一级片'在线观看视频| 国产爽快片一区二区三区| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 黑人猛操日本美女一级片| a级毛片黄视频| 亚洲精品一区蜜桃| 黄色配什么色好看| 欧美日韩成人在线一区二区| 老女人水多毛片| 2018国产大陆天天弄谢| 亚洲精品色激情综合| 亚洲国产av影院在线观看| 日韩欧美精品免费久久| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 国产av一区二区精品久久| 少妇被粗大猛烈的视频| 亚洲成人一二三区av| 永久网站在线| 少妇猛男粗大的猛烈进出视频| 国产精品麻豆人妻色哟哟久久| 18在线观看网站| 国产成人av激情在线播放 | 精品酒店卫生间| av一本久久久久| 少妇熟女欧美另类| 欧美精品高潮呻吟av久久| 精品久久久久久久久亚洲| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 久久久久久久久久久免费av| 国产片内射在线| 如何舔出高潮| 国产欧美亚洲国产| 久久99精品国语久久久| 欧美日韩视频精品一区| 男男h啪啪无遮挡| 午夜视频国产福利| 街头女战士在线观看网站| 国产综合精华液| 欧美成人午夜免费资源| 日本与韩国留学比较| 亚洲国产av新网站| 午夜老司机福利剧场| 成人午夜精彩视频在线观看| 日本色播在线视频| 91精品国产九色| videosex国产| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 久久精品国产自在天天线| 久久久久国产精品人妻一区二区| 伊人亚洲综合成人网| 一二三四中文在线观看免费高清| 18禁观看日本| 欧美最新免费一区二区三区| 色吧在线观看| 亚洲欧美日韩另类电影网站| 99re6热这里在线精品视频| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 日本免费在线观看一区| 永久网站在线| 国产日韩一区二区三区精品不卡 | 亚洲精品日韩在线中文字幕| 在线观看免费高清a一片| 啦啦啦视频在线资源免费观看| 久久久a久久爽久久v久久| 亚洲精品视频女| 最近中文字幕高清免费大全6| 中文字幕制服av| 18在线观看网站| 精品国产国语对白av| 国产午夜精品一二区理论片| 久久久久久久久大av| 在线免费观看不下载黄p国产| 亚洲经典国产精华液单| 亚洲欧洲精品一区二区精品久久久 | 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 国产熟女午夜一区二区三区 | 91久久精品电影网| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 国产av国产精品国产| 国产免费福利视频在线观看| 老司机亚洲免费影院| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 亚洲av男天堂| 日本91视频免费播放| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 插阴视频在线观看视频| 国产av精品麻豆| 99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 国产在视频线精品| 日本黄大片高清| 国产免费视频播放在线视频| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| 亚洲天堂av无毛| 性色av一级| 精品久久蜜臀av无| 丁香六月天网| 精品久久蜜臀av无| 成人综合一区亚洲| 一区二区三区四区激情视频| 国产在线免费精品| 午夜激情av网站| 91午夜精品亚洲一区二区三区| 久久精品国产a三级三级三级| 亚洲av成人精品一二三区| 日韩欧美一区视频在线观看| 日本猛色少妇xxxxx猛交久久| 久久久国产精品麻豆| 午夜免费鲁丝| 高清黄色对白视频在线免费看| 在线亚洲精品国产二区图片欧美 | 亚洲精品一区蜜桃| 99热网站在线观看| 亚洲,欧美,日韩| 国产高清国产精品国产三级| 99国产综合亚洲精品| 亚洲欧美清纯卡通| 制服诱惑二区| 久热久热在线精品观看| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| videossex国产| 久久热精品热| 一级黄片播放器| 久久久久视频综合| 男人添女人高潮全过程视频| 毛片一级片免费看久久久久| 精品国产一区二区三区久久久樱花| 欧美3d第一页| 亚洲精品日韩av片在线观看| 久久这里有精品视频免费| 亚洲av电影在线观看一区二区三区| 国产有黄有色有爽视频| 亚洲国产精品成人久久小说| 久久久久精品久久久久真实原创| 亚洲精品乱码久久久v下载方式| 国产视频首页在线观看| 女性生殖器流出的白浆| 亚洲国产最新在线播放| 亚洲精品视频女| 亚洲精品456在线播放app| 男女边吃奶边做爰视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 亚洲欧美一区二区三区黑人 | 精品久久蜜臀av无| 一个人免费看片子| 久久影院123| 国产免费一级a男人的天堂| 国产爽快片一区二区三区| 国产精品一国产av| 久久久精品免费免费高清| 最近手机中文字幕大全| 五月伊人婷婷丁香| 九色亚洲精品在线播放| 亚洲av.av天堂| 色5月婷婷丁香| 毛片一级片免费看久久久久| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 制服人妻中文乱码|