• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamic Characteristics in an External Loop Airlift Slurry Reactor

    2016-03-22 08:05:01BianQingTangXiaojinHuLifengWangShaobingZhangZhanzhu
    中國(guó)煉油與石油化工 2016年3期

    Bian Qing; Tang Xiaojin; Hu Lifeng; Wang Shaobing; Zhang Zhanzhu

    (1. SINOPEC Research Institute of Petroleum Processing, Beijing 100083; 2. SINOPEC Qilu Branch Company, Zibo 255400)

    Hydrodynamic Characteristics in an External Loop Airlift Slurry Reactor

    Bian Qing1,2; Tang Xiaojin1; Hu Lifeng1; Wang Shaobing1; Zhang Zhanzhu1

    (1. SINOPEC Research Institute of Petroleum Processing, Beijing 100083; 2. SINOPEC Qilu Branch Company, Zibo 255400)

    Three different types of gas distributors were used in an external loop airlift slurry reactor to investigate the hydrodynamic characteristics. To predict the important hydrodynamic parameters, such as the total gas holdup, the slurry circulating velocity, the bubble size distribution, and the slip velocity between the gas phase and the slurry phase, the correlations are developed. The calculated results ft the experimental data very well. According to the infuence of the solid holdup on the bubble size, the fuid fow in the reactor can be divided into two regimes, while a 10% value is regarded as the critical solid holdup value. Whenεsis≤10%, the bubble size is determined by both the gas phase and the slurry phase. Whenεsis ≥10%, the bubble size is determined mainly by the slurry phase. By analyzing the relationship between the slip velocity and the gas holdup, the bubble coalescence plays a key role in the slurry reactor.

    hydrodynamics, slurry bed, bubble size distribution, slip velocity

    1 Introduction

    To date, the investigation of the conversion of natural gas or coal to liquid fuels by the Fischer-Tropsch synthesis in slurry reactors have become a hot topic. But the design of large scale slurry reactors is still difficult because of the complexity of three-phase fow systems. Krishna and Sie suggested that the combination of small “hot” pilot plants and larger “cold-fow” engineering test maybe an acceptable approach to the design of large scale slurry reactors[1]. For larger scale “cold-fow” slurry reactors, the bubble hydrodynamics are evoking great interest in the fundamental research of gas-liquid-solid systems. Yang, et al.[2]reviewed the bubble measurement techniques and bubble dynamics in slurry reactors under the elevated temperature and pressurized conditions. Generally, the lognormal distribution can be used to describe the bubble size distribution in slurry reactors[3-4], and the population balance model can be used to calculate bubble breakage and bubble coalescence[5-7]. Behkish, et al.[8]found that increasing solid concentration could signifcantly increase the Sauter mean diameter of bubbles. For bubble swarms, the balance between the hydrodynamic force in the liquid and the surface tension can be used to calculate the maximum stable bubbles size,[9]but Luo, et al.[10]found that the gas inertia took the place of the liquid phase in the balance at high pressure.

    By using the bubble size,d, the gas holdup,εg, and the slip velocity between the gas phase and the slurry phase,Vs, the drag coeffcient,CD, can be obtained by Equation 1[11]. In the literature[11-12], the relationship between the slip velocity and the dispersed phase holdup provides a criterion to divide the hydrodynamic regimes. When the slip velocity increases with the increase of the gas holdup, the fow in the slurry reactors is in the bubble coalescence regime. When the slip velocity decreases with the increase of the gas holdup, the fow in the slurry reactors is in the bubble dispersion regime.

    In this study, three types of gas distributors were used, respectively, in an external loop airlift slurry reactor at room temperature and under pressure. The influence of the superficial gas velocity and the solid holdup on the hydrodynamic characteristics was investigated.

    2 Experimental

    The experimental setup is shown in Figure 1. The external loop airlift slurry reactor is made of Plexiglass, and the total height of the reactor is 5 m. The riser is 3.4 m in height and 280 mm in diameter. The gas/slurry separator is 1.2 m in height and 420 mm in diameter. The diameter of the downcomer is 80 mm.

    Figure 1 Experimental setup

    Inside the slurry reactors the liquid phase and the solid phase are mixed so well that they can be taken as a uniform slurry phase. In the external loop of the airlift slurry reactor, the gas phase enters the riser from the gas distributor and is dispersed into bubbles. The bubbles go through the riser upwards and leave the reactor at top of the gas/slurry separator. In the downcomer, there are few bubbles so the density of the fluid in the riser is much lower than in the downcomer. Because of the density difference of fuids in the riser and the downcomer, the circulating fow of the slurry is formed.

    Three types of gas distributors were used in the slurry reactor, including two types of pipe ring distributors and one sintered metal plate distributor. Distributor Ⅰ contains two pipe rings with 93 mm in inner pipe ring diameter and 186 mm in outer pipe ring diameter. The diameter of the pipe is 18 mm. At the top of the pipe rings, there are 40 holes, 2 mm in diameter. There are 10 holes on the inner pipe ring and 30 holes on the outer pipe ring, respectively, and the holes are uniformly located. By the DistributorⅠ, the gas phase can directly fow upwards in the reactor. The geometry of the Distributor Ⅱ is the same with that of the Distributor Ⅰ but its holes are at the bottom of the pipe rings. So the gas phase flows downwards from the Distributor Ⅱ in the reactor, and then turns up and goes through the reactor. The distributor Ⅲ is a sintered metal plate distributor, 3 mm in thickness and 10 μm in average hole diameter. There are 12 pieces of plates in the Distributor Ⅲ which are placed at regular intervals in an equilateral triangle. The diameter of each piece of plate is 20 mm.

    The experimental system is filled with air-water-glass beads. The medium diameter of glass beads is 48.34 μm and the packing density is 1 402 kg/m3. The density of the slurry can be obtained by Equation 2. The viscosity of the slurry can be obtained by Equation 3[13].

    The slurry circulating velocity is measured by the electrolyte tracer method[14]. The bubble size is measured by the dual conductivity probe based on the conductivity difference between the gas phase and the liquid phase[15-17]. Also, the conductivity probe method can measure the local gas holdup. By averaging the local gas holdup, the total gas holdup can be obtained. Then, the total gas holdup values are corrected by the manometric method (as shown in Equation 4).

    3 Results and Discussion

    3.1 Total gas holdup

    As an example, Figure 2 shows the infuence of the solid holdup,εs, and the superficial gas velocity,ug, on the total gas holdup,εg, by studying the DistributorⅠ. It can be found thatεgincreases with the increase ofugand decreases with the increase ofεs. Equation 5 can be used to calculateεgwith an average deviation of less than 10%, and Figure 3 shows the comparison ofεgbetween the experimental data and the calculated results. Table 1 shows the correlations for calculatingεgapplicable to three dis-tributors.

    Figure 2 In fl uence ofεs, andug, onεg(in Distributor Ⅰ)

    Figure 3 Comparison ofεg,expandεg,cal(in Distributor Ⅱ)

    Table 1 Correlations for calculatingεg

    3.2 Super fi cial slurry velocity

    Figure 4 shows the infuence of the solid holdup,εs, and the superficial gas velocity,ug, on the superficial slurry velocity in the riser,usl, by taking the Distributor Ⅱ as an example. It can be found thatuslincreases with the increase ofugand decreases with the increase ofεs. Equation 6 can be used to calculateuslwith an average deviation of less than 10%, and Figure 5 shows the comparison between the experimental data and the calculated results ofusl. Table 2 shows the correlation with the calculateduslfor three distributors.

    Figure 4 In fl uence ofεs, andug, onusl(in Distributor Ⅱ)

    Figure 5 Comparison ofusl,expandusl,cal(in Distributor Ⅱ)

    Table 2 Correlation with the calculatedusl

    3.3 Bubble size distribution

    Figure 6 shows the probability of number density function (DPF) of bubbles in the Distributor Ⅰ. The lognormal distribution is used to ft the experimental data. It can be found from Figure 6 that the bubble size distribution is a lognormal distribution as shown by Equations 6—8.

    Figure 6 Bubble size distribution (in Distributor Ⅰ)

    For the lognormal distribution, the two parametersdavandβshould be known to estimate the bubble size distribution. As an example, Figure 7 shows the infuence ofugandεsondavfor the Distributor Ⅲ. It can be found thatdavdecreases with the increase ofug. Whenεs≤10%,davdecreases with the increase ofεs. On the other hand, whenεs≥10%,davincreases with the increase ofεs. In this sense, a 10% value is the critical solid holdup. Whenεs≤10%, the viscosity of the slurry phase is relatively low and the size of bubbles are determined by both of the gas phase and the slurry phase. Whenεsis ≥10%, the viscosity of the slurry phase is high enough to enhance the effect of bubble coalescence. Therefore, the sizes of bubbles are mainly determined by the slurry phase.

    Figure 7 In fl uences ofugandεsondav(in Distributor Ⅲ)

    For the case ofεsbeing less than 10%, the influence of the gas phase and the slurry phase should be considered to predict the bubble size. Based on the theory of energy balance, the turbulent energy exerted on a bubble should be equal to the surface energy of the bubble so the Weber number is constant as depicted in Equation 10.

    Based on Equation 9,davcan be obtained by Equation 11.

    Thenucan be calculated by Equation 12[18].

    By combining Equations 10 and 11, Equation 12 is obtained to calculatedavwhenεs<10%. Based on Equation 12, the energy dissipation,E, can be obtained by Equation 13.

    By ftting the experimental data of three distributors, the parameterK1is 35 723. Figure 8 is the comparison between the experimental data and the calculated results ofdav.

    Ifεsis more than 10%, the bubble size is mainly determined by the slurry phase. Based on Kolmogorov’s isotropic turbulence theory, the bubble size is proportional to the characteristic turbulent lengthlk, as shown in Equation 14.

    Thenlkcan be obtained by Equation 15[19].

    Equation 16 can be obtained by combining Equations 14 and 15.

    By ftting the experimental data of three distributors, the parameterK2is 1.098×106. Figure 9 is the comparison between the experimental data and the calculated results ofdav.

    It can be seen from Figures 8 and 9 that the average deviation is less than 15%, which means that Equations 12 and 16 can be used to calculatedavwith good accuracy.

    As an example, Figure 10 shows the comparison between the experimental data and the calculated results ofdavfor the Distributor Ⅲ. Equation 12 was used to calculatedavwhenεswas 0, and Equation 16 was used to calculatedavwhenεswas equal to 20%. Because 10% is the critical point, Equations 12 and 16 are both suitable for calculatingdavat this point, and then Equation 12 is used in this study. It can be found from Figure 10 that the calculated results ft the experimental data very well.

    Figure 8 Comparison between experimental data and calculated results ofdav(atεs≤10%)

    Figure 9 Comparison between experimental data and calculated results ofdav(atεs≥10%)

    Figure 10 Comparison between experimental data and calculated results ofdav(in Distributor Ⅲ)

    It is assumed that the relationship betweendavandβcan be expressed by Equation 17. By ftting the experimental data, Table 3 is obtained. For each value ofεs, Equation 17 is suitable for three distributors. As an example, Figure 11 shows the comparison of the bubble size distribution between the experimental data and the calculated results for the Distributor Ⅲ. It can be seen from Figure 11 that Equations 12, 13, 16 and 17 are good enough to calculate the bubble size distribution.

    Table 3 Correlations betweendavandβ

    Figure 11 Comparison between experimental data and calculated results of the bubble size distribution (in Distributor Ⅲ)

    3.4 Slip velocity

    The slip velocity,Vs, between the gas phase and the slurry phase can be obtained by Equation 18. As an example, Figure 12 shows the relationship betweenVsandεgin the Distributor II. It can be found thatVsincreases with the increase ofεg. From this point of view, the fuid fow in the slurry reactor is in the bubble coalescence regime[11].

    Equation 19 is used to calculateVs. In Equation 19,u∞is the characteristic velocity of bubbles, which refers to the bubble terminal velocity in the quiescent liquid (or slurry) with the gas holdup being close to zero. The item (1-εg) is the effect of bubble dispersion and the item (1+nεg) is theeffect of bubble coalescence. By ftting the experimental data, Table 4 is then obtained.

    Figure 12 RelationshipVsbetween andεg(in Distributor Ⅱ)

    Table 4 Correlation forVs(in Distributor Ⅱ)

    Figure 13 shows the comparison ofVsbetween the experimental data and calculated results in logarithmic coordinates for the Distributor II. It can be found that Equation 18 can predictVswith good accuracy.

    Figure 13 Comparison between experimental data and calculated results ofVs(in Distributor II)

    u∞can be calculated by Equations 20—22[20-11]. Becauseub1is much greater thanub2in this study, Equation 23 is obtained. By combining Equation 23 and Table 4,d0can be obtained.d0refers to the bubble diameter in the quiescent liquid (or slurry) with the gas holdup being close to zero, and then the bubble’s terminal velocity is equal tou∞. As an example, Table 5 shows the values ofd0and the experimental Sauter mean diameter,d32,expfor the Distributor II. It can be found thatd0is much smaller thand32,expunder the sameεs. So the fuid fow in the slurry reactor, which is in the bubble coalescence regime, is reasonable.

    Table 5 Comparison betweend0andd32,exp(Distributor Ⅱ)

    4 Conclusions

    The hydrodynamic characteristics in an external loop airlift slurry reactor are investigated with three different types of gas distributors. The correlations are developed to calculate the hydrodynamic parameters, including the total gas holdup, the slurry circulating velocity, the bubble size distribution, and the slip velocity between the gas phase and slurry phase, which are obtained with good accuracy.

    Based on the influence of the solid holdup,εs, on the average bubble size,dav, the fuid fow in the reactor can be divided into two regimes and 10% is the critical solid holdup value. Whenεsis ≤ 10%,davdecreases with the increase ofεsand the bubble size is determined by both the gas phase and the slurry phase. Whenεsis ≥ 10%,davincreases with the increase ofεs, and the bubble size is determined mainly by the slurry phase.

    Upon analyzing the relationship between the slip velocity and the gas holdup, the bubble coalescence plays a key role in the slurry reactor.

    Nomenclature

    CD—drag coeffcient

    Dr—riser diameter, m

    d—bubble diameter, mm

    d0—bubble diameter referring to u∞, mm

    d32—Sauter mean bubble diameter, mm

    dav—average bubble diameter in Equation 6, mm

    δd—bubble diameter differential in Equation 8, mm

    E—energy dissipation, m2/s3

    f—number density function

    g—acceleration due to gravity, m/s2

    Δh—height difference, m

    lk—characteristic turbulent length, mm

    n—parameter in Equation 18

    PDF—probability of number density function

    Δp—pressure difference, Pa

    Re—Reynolds number

    u—velocity, m/s

    Vs—slip velocity between the gas phase and the slurry phase, m/s

    We—Weber number

    Z—parameter in Equation 16

    Greek letters

    β—parameter in Equation 6

    ε—phase holdup

    ρ—density, kg/m3

    μ— viscosity, Pa·s

    σ— surface tension, N/m

    Subscripts

    cal—calculated

    exp—experimental

    g—gas phase

    l—liquid phase

    s—solid phase

    sl—slurry phase

    ∞— refers to quiescent liquid (or slurry) with gas holdup being close to 0

    Reference

    [1] Krishna R, Sie S T. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor[J]. Fuel Proc Tech, 2000, 64(1/3): 73-105

    [2] Yang G Q, Du B, Fan L S. Bubble formation and dynamics in gas-liquid-solid fluidization—A review[J]. Chem Eng Sci, 2007, 62(1/2): 2-27

    [3] Miyahara T, Hamaguchi M, Sukeda Y, et al. Size of bubbles and liquid circulation in a bubble column with a draught tube and sieve plate[J]. Can J Chem Eng, 1986, 64(5): 718-725

    [4] Lage P L C, Esposito R O. Experimental determination of bubble size distribution in bubble columns: Prediction of mean bubble diameter and gas holdup[J]. Powder Tech, 1999, 101(2): 142-150

    [5] Luo H, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersion[J]. AIChE J, 1996, 42(5): 1225-1233

    [6] Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AICHE J, 2002, 48(11): 2426-2443

    [7] Wang T, Wang J, Jin Y. Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chem Eng Sci, 2005, 60(22): 6199-6209

    [8] Behkish A, Lemoine R, Sehabiague L, et al. Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures[J]. Chem Eng J, 2007, 128(2/3): 69-84

    [9] Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion process[J]. AIChE J, 1955, 1(3): 289-295

    [10] Luo X, Lee D J, Lau R, et al. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns[J]. AIChE J, 1999, 45(4): 665-680

    [11] Simonnet M, Gentric C, Olmos E, et al. Experimental determination of the drag coefficient in a swarm of bubbles[J]. Chem Eng Sci, 2007, 62(3): 858-866

    [12] Tang X, Luo G, Wang J. Mechanism analysis on the twophase flow characteristics in coalescence-dispersion pulsed-sieve-plate extraction columns[J]. Ind Eng Chem Res, 2008, 47(23): 744-754

    [13] Thomas G D. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles[J]. J Colloid Sci, 1965, 20(3): 267-277

    [14] Vial Ch, Poncin S, Wild G, et al. Experimental and theoretical analysis of axial dispersion in the liquid phase in external-loop airlift reactors[J]. Chem Eng Sci, 2005, 60(22): 5945-5954

    [15] Boyer C, Duquenne A M, Wild G. Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chem EngSci, 2002, 34(16): 3185-3215

    [16] Lo C S, Hwang S J. Local hydrodynamic properties of gas phase in an internal-loop airlift reactor[J]. Chem Eng J, 2003, 91(1): 3-22

    [17] Zhang T, Wang J, Luo Z, et al. Multiphase fow characteristics of a novel internal-loop airlift reactor[J]. Chem Eng J, 2005, 109(1): 115-122

    [18] Zhu S, Zhang B, Shen Z, et al. A study on two-phase fow characteristics in pulsed sieve plate column for liquid-liquid extraction[J]. Chinese Journal of Chemical Engineering, 1984, 3: 12-25

    [19] Militaru R. Dimensional characterizations for homogeneous and isotropic turbulence[J]. Comput Methods Appl Mech Eng, 2001, 190(18-19): 2369-237

    [20] Jamialahmadi M, Branch C, Müller-Steinhagen H. Terminal bubble rise velocity in liquids[J]. Chem Eng Res Des, 1994, 72(1): 119-122

    [21] Tang Xiaojin, Hou Shuandi, Zhang Zhanzhu. Influence of gas density on hydrodynamics in a bubble column[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(1): 66-70

    [22] Lü Chao, Zhang Zimu, Zhao Qiuyue, et al. Numerical simulation of enhanced oil-water separation in a threestage double-stirring extraction tank[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(4): 121-126

    Received date: 2016-07-06; Accepted date: 2016-08-05.

    Dr. Tang Xiaojin, Telephone: +86-10-82369270, E-mail: tangxj.ripp@sinopec.com.

    久久精品国产亚洲av天美| 美女国产视频在线观看| 一区二区三区四区激情视频| 青青草视频在线视频观看| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 久久亚洲国产成人精品v| 女人久久www免费人成看片| 边亲边吃奶的免费视频| 国产免费一级a男人的天堂| 亚洲av二区三区四区| 九草在线视频观看| 高清午夜精品一区二区三区| 国内精品美女久久久久久| freevideosex欧美| 国产成人福利小说| 黄色视频在线播放观看不卡| 国产一区有黄有色的免费视频| 女人久久www免费人成看片| av免费观看日本| 国产亚洲最大av| 亚洲国产色片| 国产成人午夜福利电影在线观看| 22中文网久久字幕| 亚洲欧洲日产国产| 熟女人妻精品中文字幕| 波多野结衣巨乳人妻| 欧美精品一区二区大全| 一本色道久久久久久精品综合| 免费观看无遮挡的男女| 亚洲精品一区蜜桃| 欧美日韩一区二区视频在线观看视频在线 | 男的添女的下面高潮视频| 精品人妻视频免费看| 国产欧美另类精品又又久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 午夜视频国产福利| 国产毛片a区久久久久| 永久网站在线| 亚洲精品视频女| 日本与韩国留学比较| 日日撸夜夜添| 有码 亚洲区| 在线观看免费高清a一片| 国产精品一二三区在线看| 免费黄网站久久成人精品| 久久久久久久大尺度免费视频| 色婷婷久久久亚洲欧美| 三级国产精品片| 成人美女网站在线观看视频| 亚洲,欧美,日韩| av.在线天堂| 亚洲精品成人久久久久久| 欧美国产精品一级二级三级 | 天天躁夜夜躁狠狠久久av| 免费电影在线观看免费观看| 青春草亚洲视频在线观看| 亚洲国产最新在线播放| 亚洲精品成人av观看孕妇| 国内精品宾馆在线| 青春草国产在线视频| 黄色欧美视频在线观看| 2022亚洲国产成人精品| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 黄色一级大片看看| 99久久精品热视频| 极品少妇高潮喷水抽搐| 看十八女毛片水多多多| 色吧在线观看| 精品人妻熟女av久视频| 少妇的逼水好多| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 最近2019中文字幕mv第一页| 亚洲精品一二三| 自拍偷自拍亚洲精品老妇| 久久ye,这里只有精品| 少妇 在线观看| 小蜜桃在线观看免费完整版高清| 国产黄频视频在线观看| 在线观看国产h片| 久久人人爽人人片av| 97超碰精品成人国产| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 黄色一级大片看看| 亚洲国产精品专区欧美| 久久久色成人| 亚洲丝袜综合中文字幕| 日韩欧美精品v在线| av国产精品久久久久影院| 狠狠精品人妻久久久久久综合| 三级经典国产精品| 有码 亚洲区| 韩国av在线不卡| 欧美人与善性xxx| 精品久久久久久久久亚洲| 午夜福利视频精品| 欧美一级a爱片免费观看看| 91久久精品电影网| 亚洲精品久久午夜乱码| videos熟女内射| 熟女电影av网| 日韩强制内射视频| 国产欧美日韩一区二区三区在线 | 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 亚洲激情五月婷婷啪啪| 视频中文字幕在线观看| 国产 一区 欧美 日韩| 寂寞人妻少妇视频99o| 精品久久国产蜜桃| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| 狠狠精品人妻久久久久久综合| 最近中文字幕2019免费版| 国产欧美另类精品又又久久亚洲欧美| 建设人人有责人人尽责人人享有的 | 日日啪夜夜爽| 国内精品美女久久久久久| 男女国产视频网站| 久热久热在线精品观看| 欧美xxⅹ黑人| 青青草视频在线视频观看| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 国产 精品1| 国产毛片在线视频| 亚洲av男天堂| 丝袜脚勾引网站| 日韩欧美一区视频在线观看 | 久久久久久久久久人人人人人人| 国产一区二区亚洲精品在线观看| 亚洲久久久久久中文字幕| 在线天堂最新版资源| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看| 一级a做视频免费观看| 麻豆精品久久久久久蜜桃| 国产成人精品福利久久| 国产一区二区亚洲精品在线观看| 香蕉精品网在线| 亚洲av二区三区四区| 欧美精品国产亚洲| 亚洲成人一二三区av| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 在线免费十八禁| 久久精品国产亚洲av涩爱| 99久久精品热视频| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 噜噜噜噜噜久久久久久91| 如何舔出高潮| 制服丝袜香蕉在线| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 日韩av在线免费看完整版不卡| av在线播放精品| 国产一区有黄有色的免费视频| 久久久亚洲精品成人影院| 午夜免费鲁丝| 青春草视频在线免费观看| 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| www.色视频.com| 51国产日韩欧美| 国产欧美亚洲国产| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 啦啦啦在线观看免费高清www| 日韩一区二区三区影片| 日本-黄色视频高清免费观看| 亚洲最大成人av| 免费黄网站久久成人精品| 国产精品一区二区性色av| 天美传媒精品一区二区| 中文字幕久久专区| 亚洲欧洲国产日韩| 久久久久性生活片| 美女脱内裤让男人舔精品视频| av一本久久久久| 国产91av在线免费观看| 日韩av在线免费看完整版不卡| 色播亚洲综合网| 真实男女啪啪啪动态图| 免费看a级黄色片| 在线观看免费高清a一片| 天堂网av新在线| 免费高清在线观看视频在线观看| 男插女下体视频免费在线播放| 免费av观看视频| 亚洲av成人精品一二三区| 男人爽女人下面视频在线观看| 一个人看视频在线观看www免费| 高清日韩中文字幕在线| 干丝袜人妻中文字幕| 人体艺术视频欧美日本| 日韩成人av中文字幕在线观看| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 激情五月婷婷亚洲| 国产亚洲av片在线观看秒播厂| 日本与韩国留学比较| 日本一二三区视频观看| 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| 国产探花在线观看一区二区| 久久99热这里只有精品18| 国产中年淑女户外野战色| 欧美日韩综合久久久久久| av又黄又爽大尺度在线免费看| 亚洲精品456在线播放app| 大话2 男鬼变身卡| 久久午夜福利片| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 欧美极品一区二区三区四区| 国产精品偷伦视频观看了| 一级毛片我不卡| 亚洲国产精品999| 中国三级夫妇交换| 国产爽快片一区二区三区| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 日韩成人伦理影院| 色哟哟·www| 又爽又黄a免费视频| av播播在线观看一区| 免费观看的影片在线观看| 午夜视频国产福利| 亚洲一区二区三区欧美精品 | 三级男女做爰猛烈吃奶摸视频| 亚洲成人中文字幕在线播放| 精品久久久精品久久久| 国产毛片a区久久久久| 久久精品综合一区二区三区| 高清在线视频一区二区三区| 又大又黄又爽视频免费| 嘟嘟电影网在线观看| 大话2 男鬼变身卡| 午夜福利视频1000在线观看| 看十八女毛片水多多多| av在线播放精品| 波多野结衣巨乳人妻| 日韩大片免费观看网站| 亚洲不卡免费看| 欧美亚洲 丝袜 人妻 在线| 最近手机中文字幕大全| 成人亚洲精品一区在线观看 | av卡一久久| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 最近最新中文字幕大全电影3| 精品人妻视频免费看| 精品人妻熟女av久视频| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 免费观看在线日韩| 午夜老司机福利剧场| 伦精品一区二区三区| 有码 亚洲区| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 久久精品久久久久久久性| 1000部很黄的大片| 禁无遮挡网站| 欧美日韩综合久久久久久| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 免费av毛片视频| 亚洲av不卡在线观看| 亚洲av国产av综合av卡| 少妇 在线观看| 国产免费福利视频在线观看| 国产亚洲精品久久久com| 三级经典国产精品| 久久韩国三级中文字幕| 五月开心婷婷网| 成人漫画全彩无遮挡| 美女被艹到高潮喷水动态| www.色视频.com| 18禁动态无遮挡网站| 日产精品乱码卡一卡2卡三| 在线免费十八禁| 精品熟女少妇av免费看| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 国精品久久久久久国模美| 亚洲精品一二三| 国产亚洲午夜精品一区二区久久 | 中国国产av一级| av专区在线播放| 日韩三级伦理在线观看| 国产亚洲av片在线观看秒播厂| 又大又黄又爽视频免费| 亚洲久久久久久中文字幕| 欧美日韩视频精品一区| 啦啦啦啦在线视频资源| 一区二区三区精品91| 简卡轻食公司| 交换朋友夫妻互换小说| av女优亚洲男人天堂| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 99久久九九国产精品国产免费| 色视频在线一区二区三区| 国产精品国产av在线观看| 国产成人精品婷婷| 黄色欧美视频在线观看| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 欧美日韩精品成人综合77777| 国产乱来视频区| 在线观看av片永久免费下载| 精品一区二区三区视频在线| av网站免费在线观看视频| 国内精品宾馆在线| 两个人的视频大全免费| 中文乱码字字幕精品一区二区三区| 欧美日韩综合久久久久久| 国产成人a∨麻豆精品| 久久久久国产网址| 日日摸夜夜添夜夜爱| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区 | 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人精品一二三区| 欧美极品一区二区三区四区| 日韩不卡一区二区三区视频在线| 内地一区二区视频在线| 国产成人91sexporn| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲网站| 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 亚洲精品亚洲一区二区| 三级国产精品片| 国产精品国产三级专区第一集| 午夜爱爱视频在线播放| 中文字幕av成人在线电影| 在线免费十八禁| 91久久精品电影网| 99热6这里只有精品| 男人舔奶头视频| 少妇人妻精品综合一区二区| 男人舔奶头视频| 亚洲精品第二区| 日韩欧美 国产精品| 久久久色成人| 男女啪啪激烈高潮av片| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 国产极品天堂在线| 国产69精品久久久久777片| 国产精品偷伦视频观看了| 久久99热6这里只有精品| 日本与韩国留学比较| 色视频www国产| 黄片无遮挡物在线观看| 日本黄色片子视频| av国产免费在线观看| 欧美成人精品欧美一级黄| 少妇人妻一区二区三区视频| 午夜精品国产一区二区电影 | 国产亚洲一区二区精品| 婷婷色综合大香蕉| 18禁动态无遮挡网站| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 亚洲伊人久久精品综合| 久久久久久久亚洲中文字幕| 国产黄a三级三级三级人| 久久精品熟女亚洲av麻豆精品| 国产国拍精品亚洲av在线观看| 国产淫语在线视频| 精品午夜福利在线看| 亚洲在线观看片| 啦啦啦在线观看免费高清www| 大又大粗又爽又黄少妇毛片口| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 校园人妻丝袜中文字幕| 黄色日韩在线| 热99国产精品久久久久久7| 国产女主播在线喷水免费视频网站| 精品人妻熟女av久视频| av播播在线观看一区| 亚洲精品456在线播放app| 3wmmmm亚洲av在线观看| 极品少妇高潮喷水抽搐| 大片电影免费在线观看免费| 国产午夜精品一二区理论片| 午夜免费鲁丝| av福利片在线观看| 在线 av 中文字幕| freevideosex欧美| 亚洲av不卡在线观看| 国产精品秋霞免费鲁丝片| 国产亚洲av片在线观看秒播厂| xxx大片免费视频| 男女无遮挡免费网站观看| 国产精品三级大全| 欧美+日韩+精品| 免费观看无遮挡的男女| 国产熟女欧美一区二区| 乱系列少妇在线播放| 亚洲av国产av综合av卡| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 免费黄频网站在线观看国产| 一级a做视频免费观看| 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 能在线免费看毛片的网站| 欧美三级亚洲精品| 秋霞在线观看毛片| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 少妇的逼好多水| 熟女av电影| 欧美激情在线99| 国产高清不卡午夜福利| 下体分泌物呈黄色| 久久99蜜桃精品久久| 狠狠精品人妻久久久久久综合| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 简卡轻食公司| 国产精品国产三级专区第一集| 蜜桃亚洲精品一区二区三区| 少妇人妻久久综合中文| 国产探花在线观看一区二区| 国产精品女同一区二区软件| 成人亚洲精品一区在线观看 | 99热6这里只有精品| 国产 一区精品| 国产在线一区二区三区精| 爱豆传媒免费全集在线观看| 免费av观看视频| 亚洲色图综合在线观看| 精品国产露脸久久av麻豆| 男人爽女人下面视频在线观看| 国产精品国产三级专区第一集| 中文字幕制服av| 成人国产av品久久久| eeuss影院久久| 别揉我奶头 嗯啊视频| 五月玫瑰六月丁香| 免费av观看视频| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 欧美3d第一页| av免费在线看不卡| 另类亚洲欧美激情| 免费观看无遮挡的男女| 国产精品一区二区性色av| 国产视频内射| 九九久久精品国产亚洲av麻豆| 男人添女人高潮全过程视频| 午夜亚洲福利在线播放| 肉色欧美久久久久久久蜜桃 | 精品国产乱码久久久久久小说| 观看免费一级毛片| 国产高清国产精品国产三级 | 少妇人妻 视频| 国产免费又黄又爽又色| 青青草视频在线视频观看| 久久久久久久久久人人人人人人| 狂野欧美激情性bbbbbb| 精品久久久久久久久亚洲| 亚洲人成网站高清观看| 亚洲av电影在线观看一区二区三区 | 久久ye,这里只有精品| 黄色一级大片看看| 国产淫片久久久久久久久| 只有这里有精品99| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久午夜电影| 国产毛片a区久久久久| 99久国产av精品国产电影| 亚洲精品久久久久久婷婷小说| 午夜精品国产一区二区电影 | 极品少妇高潮喷水抽搐| 国产视频首页在线观看| 国产精品.久久久| 毛片女人毛片| 久久99蜜桃精品久久| 新久久久久国产一级毛片| 男女国产视频网站| 欧美最新免费一区二区三区| 国产精品一区www在线观看| 精华霜和精华液先用哪个| 国产一区有黄有色的免费视频| 欧美性感艳星| 国产有黄有色有爽视频| 少妇 在线观看| 亚洲美女视频黄频| 秋霞伦理黄片| 女人十人毛片免费观看3o分钟| 大话2 男鬼变身卡| 国产精品蜜桃在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久这里有精品视频免费| 国精品久久久久久国模美| 我的老师免费观看完整版| 91精品国产九色| 精品午夜福利在线看| 99re6热这里在线精品视频| 禁无遮挡网站| 国产 一区精品| 亚洲在线观看片| 黄色怎么调成土黄色| 免费观看在线日韩| 美女视频免费永久观看网站| 亚洲精品色激情综合| 99re6热这里在线精品视频| 大香蕉97超碰在线| 亚洲成人精品中文字幕电影| 亚洲在线观看片| 国产黄片视频在线免费观看| 1000部很黄的大片| 国产爽快片一区二区三区| 夫妻午夜视频| 网址你懂的国产日韩在线| 国产人妻一区二区三区在| 婷婷色综合大香蕉| 久久这里有精品视频免费| 91精品伊人久久大香线蕉| 国产乱人视频| 久久久久久久久久久丰满| 噜噜噜噜噜久久久久久91| 人体艺术视频欧美日本| 啦啦啦啦在线视频资源| 国产男人的电影天堂91| 国产一区二区三区综合在线观看 | 欧美变态另类bdsm刘玥| 美女内射精品一级片tv| 日日啪夜夜撸| 老女人水多毛片| 日韩成人av中文字幕在线观看| 国内精品美女久久久久久| 亚洲av不卡在线观看| 国产亚洲午夜精品一区二区久久 | 国产美女午夜福利| 亚洲av成人精品一二三区| 欧美高清成人免费视频www| 插阴视频在线观看视频| 少妇人妻一区二区三区视频| 免费人成在线观看视频色| 毛片一级片免费看久久久久| 午夜福利在线在线| 国产精品麻豆人妻色哟哟久久| 日本爱情动作片www.在线观看| 欧美精品一区二区大全| 别揉我奶头 嗯啊视频| 我要看日韩黄色一级片| 国产精品久久久久久久电影| 国产精品伦人一区二区| 国产av不卡久久| 波野结衣二区三区在线| 日韩一区二区三区影片| 大码成人一级视频| 成人高潮视频无遮挡免费网站| 国产 精品1| 亚洲av男天堂| 免费看光身美女| 最近2019中文字幕mv第一页| 国产精品一及| 国产精品99久久久久久久久| 简卡轻食公司| 日日撸夜夜添| 亚洲最大成人中文| 欧美xxxx性猛交bbbb| 免费av毛片视频| 内射极品少妇av片p| 黄色视频在线播放观看不卡| 日日撸夜夜添| 久久鲁丝午夜福利片| 最近2019中文字幕mv第一页| 免费电影在线观看免费观看| 久久久久国产网址| 99热全是精品| 国产成人精品婷婷| 国产男女超爽视频在线观看| 成人二区视频| a级毛片免费高清观看在线播放| 欧美日韩一区二区视频在线观看视频在线 | 蜜桃亚洲精品一区二区三区| 精品久久国产蜜桃| 插逼视频在线观看| 如何舔出高潮| 国产视频首页在线观看| 国产成人精品久久久久久| 欧美极品一区二区三区四区| 我要看日韩黄色一级片| 成人毛片60女人毛片免费| 国产久久久一区二区三区|