陳聰 周鹍 林謙
摘要 高血壓是心臟病和中風(fēng)的主要危險(xiǎn)因素,因發(fā)病率偏高,已嚴(yán)重威脅人們的身心健康。一般認(rèn)為,高血壓是受到調(diào)節(jié)鹽-水平衡和心血管功能系統(tǒng)影響的疾患:由腎素-血管緊張素-醛固酮系統(tǒng)(RAAS)和交感神經(jīng)系統(tǒng)(SNS)調(diào)節(jié)。然而,臨床上通過限制RAAS系統(tǒng)或SNS系統(tǒng)調(diào)節(jié)血壓的常規(guī)治療方法治療仍有約40%的患者療效不佳,表明高血壓發(fā)病機(jī)制中應(yīng)涉及其他機(jī)制,如免疫機(jī)制,等?,F(xiàn)代中醫(yī)研究表明中醫(yī)藥具有調(diào)節(jié)免疫的功能,中醫(yī)藥在臨床上常用于控制高血壓,并獲得良效。本篇綜述總結(jié)了高血壓的非免疫和免疫機(jī)制,探討中醫(yī)通過調(diào)節(jié)免疫系統(tǒng)的功能發(fā)揮控制血壓的功能。從而,較好地解釋了應(yīng)用中藥降壓時(shí),中藥在常規(guī)應(yīng)用西藥的基礎(chǔ)上可以使高血壓的控制效果更好,而單用西藥則不夠理想。
關(guān)鍵詞 高血壓;中醫(yī);分子機(jī)制;免疫細(xì)胞;RAAs系統(tǒng);交感神經(jīng)系統(tǒng)
Abstract Hypertension is the leading risk factor for heart attack and stroke, which seriously threatens the physical and mental health of our people. Generally, hypertension has been regarded as a disorder of the regulation of salt-water balance and cardiovascular function systems: regulated by the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, there are still about 40% of patients in the clinical treatment by restricting the RAAS system or the SNS system to regulate blood pressure, which shows that the pathogenesis mechanisms of hypertension involves in other mechanisms such as immune mechanisms. Modern traditional Chinese medicine research shows that the traditional Chinese medicine has the function of regulating immunity. Traditional Chinese medicine is often used clinically to control hypertension and has good results. This paper summarizes the non-immune and immune mechanisms of hypertension, and explores how traditional Chinese medicine can control blood pressure by regulating the function of the immune system. Therefore, that better explained that when using Chinese medicine to lower blood pressure, it can have better efficacy of hypertension control on the basis of conventional Western medicine, but it is not ideal when applied alone.
Keywords Hypertension; Traditional Chinese medicine; Molecular mechanism; Immune cells; RAAs system; Sympathetic nervous system
中圖分類號:R259文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2020.11.028
據(jù)報(bào)道全球約有30%的成年人受到高血壓的影響[1],高血壓已是常見的心血管疾病,其嚴(yán)重威脅人們的身心健康。高血壓的主要特征表現(xiàn)為體循環(huán)動(dòng)脈壓升高,是引發(fā)心血管事件(例如心臟病發(fā)作和中風(fēng))、慢性腎病、心力衰竭、認(rèn)知障礙和癡呆的主要風(fēng)險(xiǎn)因素[2]。據(jù)報(bào)道,臨床上高血壓患者接受常規(guī)治療后仍有40%降壓效果不佳[3],潛在反映了高血壓的發(fā)病受其他病因機(jī)制影響。當(dāng)前,高血壓的免疫機(jī)制正逐漸被研究確認(rèn),中醫(yī)藥較早被發(fā)現(xiàn)具有這樣的調(diào)節(jié)免疫功能[4]。作者認(rèn)為,中醫(yī)藥的免疫調(diào)節(jié)可能是中醫(yī)藥治療高血壓的內(nèi)在機(jī)制。
1 高血壓經(jīng)典發(fā)病機(jī)制
人體血壓是受3個(gè)關(guān)鍵器官組織所調(diào)節(jié):1)心臟:循環(huán)系統(tǒng)泵輸血量;2)血管:通過舒張收縮調(diào)節(jié)血流,并產(chǎn)生血管阻力;3)腎臟:通過調(diào)節(jié)體內(nèi)外水-鈉代謝,從而控制體內(nèi)血液總量。高血壓病因中研究較為完備的兩大調(diào)節(jié)系統(tǒng)包括,交感神經(jīng)系統(tǒng)(SNS)和腎素-血管緊張素-醛固酮系統(tǒng)(RAAS)。交感神經(jīng)系統(tǒng)接授大腦相應(yīng)區(qū)域的調(diào)節(jié),如下丘腦和延髓頭端腹外側(cè)區(qū),這一區(qū)域?qū)χ饕难獕赫{(diào)節(jié)器官(包括心臟,血管和腎臟)都有投射區(qū),以此提高心率和血管收縮,并且分別促進(jìn)水鈉的重吸收。SNS還刺激腎臟釋放腎素,腎臟與血管緊張素轉(zhuǎn)換酶(ACE)一起發(fā)揮作用,產(chǎn)生強(qiáng)大的血管收縮激素Ang II。Ang II則作用于腎上腺皮質(zhì)以產(chǎn)生鹽皮質(zhì)激素醛固酮,其進(jìn)一步促進(jìn)腎小管中鈉和水的再攝取。目前,高血壓的主要治療策略是限制SNS和RAAs系統(tǒng)對血壓的影響。然而,在這一治療策略指導(dǎo)下的藥物治療尤其聯(lián)合藥物的強(qiáng)化治療方案,仍存在40%的患者效果不理想[3]。由此可推測,仍存在其他機(jī)制作用于高血壓的發(fā)病。經(jīng)過近幾年的研究,發(fā)現(xiàn)免疫系統(tǒng)是高血壓發(fā)病的關(guān)鍵因素[5]。
2 高血壓免疫機(jī)制
高血壓的免疫調(diào)節(jié)是由各類免疫細(xì)胞及其細(xì)胞因子之間相互作用的綜合調(diào)節(jié)系統(tǒng),免疫細(xì)胞是作用的執(zhí)行單位,對高血壓個(gè)體血壓、組織炎性反應(yīng)及終末器官損傷產(chǎn)生影響。任何一個(gè)免疫途徑都是與其周圍細(xì)胞環(huán)境結(jié)合直接或間接影響血管,腎臟,心臟和自主神經(jīng)系統(tǒng)的血壓調(diào)節(jié)功能。
2.1 促進(jìn)和抑制高血壓的免疫細(xì)胞 免疫系統(tǒng)必須直接影響血管,腎臟,心臟和/或自主神經(jīng)系統(tǒng)實(shí)現(xiàn)對機(jī)體血壓的促進(jìn)作用。實(shí)驗(yàn)表明,高血壓期間有大量的免疫細(xì)胞亞群細(xì)胞浸潤心臟、血管和腎臟等終末器官,并且應(yīng)用特定方法靶向減少這些免疫細(xì)胞亞群的含量或抑制其功能可以防止高血壓的發(fā)生。
目前,已經(jīng)鑒定出的幾種對高血壓和終末器官損傷的發(fā)展具有保護(hù)作用的免疫細(xì)胞亞群。其中一些通過抑制對高血壓有促進(jìn)的免疫細(xì)胞亞群的功能起作用,而其他一些似乎產(chǎn)生直接抑制血管張力的因子。
具體的促進(jìn)和抑制高血壓的免疫細(xì)胞及其機(jī)制見表1、表2。
2.2 免疫系統(tǒng)和非免疫系統(tǒng)協(xié)調(diào) 免疫系統(tǒng)對高血壓的影響是與非免疫途徑協(xié)同作用的,首先是經(jīng)典的高血壓通路導(dǎo)致的血壓適度升高(如SNS活動(dòng)促進(jìn)血管收縮,或AngII和兒茶酚胺的血管收縮作用)對脈管系統(tǒng)、腎臟和其他末端器官造成機(jī)械和氧化損傷。而對細(xì)胞的損傷則產(chǎn)生對蛋白質(zhì)的化學(xué)修飾有利的環(huán)境,分別形成激活非特異性免疫和適應(yīng)性免疫的危險(xiǎn)相關(guān)模式分子(Danger-associated Molecular Patterns,DAMP)。由此,高血壓可能是一種從非免疫的經(jīng)典機(jī)制開始的病癥,例如RAAs和SNS的過度活化,但隨后的免疫系統(tǒng)加劇了高血壓的進(jìn)展[23]。
一方面,非特異性免疫機(jī)制中Toll樣受體(TLRs)和炎性體在高血壓的發(fā)病機(jī)制中起關(guān)鍵作用[24]。激活的TLRs和炎性體使循環(huán)中的IL-1β和IL-18的水平增加,并通過nAChR和IL-10介導(dǎo)的免疫調(diào)節(jié)抑制細(xì)胞因子的產(chǎn)生,使NO介導(dǎo)的血管舒張受抑制。另一方面,適應(yīng)性免疫途徑,抗原呈遞細(xì)胞在高血壓引起免疫應(yīng)答反應(yīng)中起支持作用[25]。免疫細(xì)胞如T細(xì)胞,可以表達(dá)RAAS系統(tǒng)的所有成分,其以自分泌,前饋方式起作用以進(jìn)一步增加這些組分的表達(dá)和作用,導(dǎo)致高血壓,心臟炎性反應(yīng)和纖維化和/或腎損傷[26-27]。對于神經(jīng)系統(tǒng)的影響,免疫細(xì)胞T細(xì)胞可以表達(dá)α-腎上腺素能和β-腎上腺素能受體,并交感神經(jīng)活動(dòng)與免疫激活有關(guān)[28]。見圖1。
3 中醫(yī)藥對免疫功能的調(diào)節(jié)
中醫(yī)理論中氣血陰陽的調(diào)節(jié)功能與免疫系統(tǒng)的功能類似,如《素問·痹論》中描述“衛(wèi)者,水谷之悍氣也,其氣慓疾滑利,不能入于脈也,故循皮膚之中,分肉之間,熏于肓膜,散于胸腹”,衛(wèi)氣具有保衛(wèi)、衛(wèi)護(hù)之意,可以抵御外邪。在《靈樞·本藏》中“衛(wèi)氣者,所以溫分肉、充皮膚、肥腠理、司開合者也”,陽氣可以調(diào)節(jié)人體皮膚肌表的防御和體溫調(diào)節(jié)功能。藥理研究也發(fā)現(xiàn)中藥對免疫功能的調(diào)節(jié)作用具有雙重性,即免疫激活和免疫抑制[29]。據(jù)研究報(bào)道,中藥對免疫反應(yīng)相關(guān)的免疫細(xì)胞和免疫因子產(chǎn)生影響,并且調(diào)節(jié)非特異性免疫系統(tǒng)活性和適應(yīng)性免疫細(xì)胞亞群[30]。
3.1 B淋巴細(xì)胞和T淋巴細(xì)胞的調(diào)節(jié)
研究發(fā)現(xiàn),中藥中的多糖成分具有對T淋巴細(xì)胞的調(diào)節(jié)作用,促進(jìn)其增殖和轉(zhuǎn)化,平衡TH1和TH2反應(yīng),從而對T細(xì)胞介導(dǎo)的免疫進(jìn)行調(diào)節(jié)[29]。人參皂苷是人參的有效成分,具有增加CD4+T細(xì)胞免疫活性的能力,人參皂苷以劑量依賴性方式激活抗CD3/抗CD28抗體,增強(qiáng)CD4+T細(xì)胞增殖,增強(qiáng)CD4+T細(xì)胞上活化表面標(biāo)志物CD69的表達(dá)。并且人參皂苷還能增加Th2特異性細(xì)胞因子分泌和抑制Th1特異性細(xì)胞因子的產(chǎn)生來增強(qiáng)CD4+T細(xì)胞活性并從幼稚CD4+T細(xì)胞誘導(dǎo)Th2譜系發(fā)育[31]。Kiyohara等,研究了補(bǔ)中益氣湯對體內(nèi)上呼吸道黏膜免疫系統(tǒng)抗體反應(yīng)的影響,對用流感血凝素疫苗進(jìn)行鼻腔致敏的年輕BALB/c小鼠口服給予中藥(每天100 mg/kg),分別顯著增強(qiáng)鼻腔和血清中的流感病毒特異性IgA和IgG抗體滴度。這些結(jié)果表明補(bǔ)中益氣湯可以刺激上呼吸道的黏膜免疫系統(tǒng),導(dǎo)致上呼吸道黏膜和系統(tǒng)免疫系統(tǒng)中抗原特異性抗體反應(yīng)的增強(qiáng)[32]。
3.2 非特異性免疫系統(tǒng)的影響
研究表明,中藥成份對免疫應(yīng)答的干預(yù)可通過最早階段的樹突細(xì)胞關(guān)鍵功能影響,包括對樹突細(xì)胞的分化,成熟,細(xì)胞因子產(chǎn)生,存活,抗原攝取和呈遞以及運(yùn)輸?shù)入A段的影響[33]。靈芝是常用的補(bǔ)益類中藥,靈芝中的多糖成分(PS-G)被證明對人單核細(xì)胞衍生的樹突細(xì)胞的活化和成熟有促進(jìn)作用,用PS-G處理樹突細(xì)胞使CD80,CD86,CD83,CD40,CD54和細(xì)胞表面人白細(xì)胞抗原-DR表達(dá)增強(qiáng);增加白細(xì)胞介素IL-12和IL-10的生成和刺激T細(xì)胞[34]。另據(jù)報(bào)道補(bǔ)腎方(BSR)對慢性乙型肝炎辨證陰虛和濕熱征(GSS)的患者的NK細(xì)胞免疫效應(yīng)分子有影響。結(jié)果顯示,經(jīng)BSR治療后,患者NK細(xì)胞中穿孔素(PF)和顆粒溶素(GNLY)的表達(dá)顯著降低,中醫(yī)藥治療患者的總癥狀評分也顯著降低[35]。
3.3 細(xì)胞因子生成的影響
細(xì)胞因子是可溶性細(xì)胞外蛋白質(zhì)或糖蛋白,是細(xì)胞內(nèi)關(guān)鍵調(diào)節(jié)因子和細(xì)胞動(dòng)員者,參與非特異性和特異性免疫。中藥對免疫相關(guān)的作用多與細(xì)胞因子的調(diào)節(jié)有關(guān),如IL-4,IL-6,IL-10,TNF和IFN-γ[36]。應(yīng)用RT-PCR方法測定小柴胡湯誘導(dǎo)人外周血淋巴細(xì)胞的細(xì)胞因子mRNA表達(dá)時(shí),顯示IL-12,IL-1β,IL-10,TNF-α,G-CSF和IFN-γ的mRNA表達(dá)增加,且黃芩根是誘導(dǎo)細(xì)胞因子的主要成分,而甘草根是次要成分。當(dāng)通過ELISA測量細(xì)胞培養(yǎng)物上清液中的細(xì)胞因子濃度時(shí),IL-12,IL-1β,IL-10的水平,TNF-α和G-CSF反映細(xì)胞部分中的mRNA表達(dá)水平[37]。
3.4 促進(jìn)免疫器官的促進(jìn)作用
免疫器官是免疫細(xì)胞發(fā)育,激活和增殖的重要場所。因此,免疫器官的狀態(tài)可以反映個(gè)體的免疫功能。黃芪對阻塞性黃疸大鼠的免疫器官(淋巴結(jié),脾臟和胸腺)具有保護(hù)作用,首先,黃芪可以降低阻塞性黃疸大鼠的死亡率,實(shí)驗(yàn)后對脾臟和淋巴結(jié)的病理學(xué)進(jìn)行嚴(yán)重性評分,并測定TNF-α水平,結(jié)果顯示:黃芪對OJ大鼠免疫器官的保護(hù)作用是通過減輕免疫器官的病理變化,降低TNF-α水平,抑制脾臟和胸腺中Bax的表達(dá)和凋亡。
3.5 免疫抑制作用
研究表明,中藥具有抗炎作用,減輕炎性細(xì)胞及細(xì)胞因子對組織的損傷[38]。溫脾湯是經(jīng)典的中藥方劑,現(xiàn)已被用于治療炎性反應(yīng)性疾病,并且具有良好的療效。溫脾湯的提取物在LPS刺激的RAW264.7細(xì)胞和原發(fā)性腹膜巨噬細(xì)胞中具有有效的抗炎作用。WHW提取物強(qiáng)烈抑制LPS刺激的巨噬細(xì)胞中炎性遞質(zhì),如一氧化氮(NO),TNF-α,IL-1β和IL-6的過量產(chǎn)生。誘導(dǎo)型一氧化氮合酶(iNOS)和這些細(xì)胞因子的抑制分別由iNOS和這些細(xì)胞因子的mRNA表達(dá)降低引起。WHW提取物減弱絲裂原活化蛋白激酶(MAPKs),細(xì)胞外信號調(diào)節(jié)激酶1和2(ERK1/2)和c-Jun N末端激酶(JNK)的磷酸化,以及核因子-κ的激活LPS刺激的RAW264.7細(xì)胞中的B(NF-κB)。中藥黃芩(Scutellaria Baicalensis Georgi)的有效成分提取物黃酮類化合物黃芩苷(BA),與趨化因子結(jié)合并限制其生物學(xué)功能從而表現(xiàn)出抗炎活性[39]。BA可以結(jié)合CXC(基質(zhì)細(xì)胞衍生因子-1α,IL-8),CC(巨噬細(xì)胞炎性反應(yīng)蛋白-1β,單核細(xì)胞趨化蛋白-2)和C(淋巴細(xì)胞趨化因子)亞家族的趨化因子;通過相互作用,BA降低了這些趨化因子誘導(dǎo)免疫細(xì)胞遷移和抑制炎性反應(yīng)的能力[40]。
4 中醫(yī)降壓
高血壓病毫無疑問與免疫系統(tǒng)的功能紊亂密切相關(guān),如報(bào)道的高血壓患者的中樞記憶CD8+T細(xì)胞,激活的CD8+T細(xì)胞產(chǎn)生IFNγ和TNF以及TH17細(xì)胞的數(shù)量增加[41]。原發(fā)性高血壓的患者體內(nèi)的單核細(xì)胞被預(yù)活化,而用血管緊張素II或脂多糖離體刺激后產(chǎn)生比來自健康對照的單核細(xì)胞更大量的IL-1β,TNF和IL-6[42]?;加懈哐獕旱娜说慕?jīng)典單核細(xì)胞(CD14+CD16-)的數(shù)量減少,而中間和非經(jīng)典單核細(xì)胞的百分比增加,這一變化的程度與高血壓的嚴(yán)重程度呈相關(guān)性[43]。來自全基因組關(guān)聯(lián)研究和人類高血壓基因表達(dá)特征的數(shù)據(jù)也特別指出,免疫系統(tǒng)和炎性反應(yīng)在高血壓發(fā)病中的作用,如:編碼SH2B銜接蛋白3(也稱為LNK)的基因是T細(xì)胞活化的調(diào)節(jié)劑,其被認(rèn)為是系統(tǒng)生物學(xué)分析中人類高血壓的關(guān)鍵驅(qū)動(dòng)因素[44]。盡管上述觀察結(jié)果和動(dòng)物研究實(shí)驗(yàn)都證明,免疫制劑對高血壓治療均有效果[45-46],但免疫靶向治療仍未被納入降壓的常規(guī)治療[47],原因是醫(yī)學(xué)界似乎普遍認(rèn)為,原發(fā)性高血壓免疫靶向治療的風(fēng)險(xiǎn)-效益比可能過高,無法保證降壓效果的收益優(yōu)于免疫治療的不良反應(yīng)[48]。而應(yīng)用中藥治療卻可帶來更好的效果,并且不良反應(yīng)較小。
楊萬勇等[49]采用中醫(yī)針灸配合丹參靜脈滴注在高血壓常規(guī)治療基礎(chǔ)上治療高血壓,結(jié)果顯示采用中醫(yī)治療的實(shí)驗(yàn)組患者的血壓控制效果優(yōu)于對照組,并且實(shí)驗(yàn)組患者的細(xì)胞免疫和體液免疫功能得到改善,經(jīng)中藥治療后的患者T細(xì)胞亞群較對照組有統(tǒng)計(jì)學(xué)意義,而體液免疫指標(biāo)中除IgM外均較對照組有統(tǒng)計(jì)學(xué)意義。高血壓患者的免疫功能較正?;颊叽嬖谖蓙y,中醫(yī)治療幫助患者恢復(fù)免疫功能的失衡。有研究表明,高血壓患者中醫(yī)辨證分型與紅細(xì)胞免疫有關(guān),虛證患者表現(xiàn)在RBC-C3bRR及SOD活性的降低,而實(shí)證患者表現(xiàn)在MDA含量增加,說明中醫(yī)辨證虛實(shí)證侯的表現(xiàn)與RBC-C3bRR、SOD活性的降低及MDA的增加有關(guān),說明免疫調(diào)節(jié)參與高血壓的發(fā)病機(jī)制,并且體現(xiàn)在中醫(yī)證侯上。
5 結(jié)論
中醫(yī)臨床研究表明,中藥對高血壓控制確實(shí)具有效果,其表現(xiàn)在以西藥為基礎(chǔ)加入中藥后,可獲得更好的降壓療效。因?qū)χ兴幗祲簷C(jī)制的傳統(tǒng)解釋多集中在對心臟、血管、腎臟等關(guān)鍵器官系統(tǒng)上,結(jié)果單獨(dú)應(yīng)用中藥治療高血壓反而缺乏依據(jù)支持;研究表明,高血壓發(fā)病確實(shí)有免疫機(jī)制參與,在高血壓經(jīng)RAAs和SNS的過度激活基礎(chǔ)上,免疫系統(tǒng)活化加劇了高血壓。由于中藥可發(fā)揮調(diào)節(jié)免疫功能,當(dāng)聯(lián)合常規(guī)西藥則可增加降壓療效,也改善患者的生命質(zhì)量。這就較好地解釋了單獨(dú)應(yīng)用中藥降壓時(shí)不理想,而在常規(guī)西藥基礎(chǔ)上加味中藥卻可使高血壓控制的更好。
參考文獻(xiàn)
[1]蘇秀蘭.高血壓易感基因的全基因組關(guān)聯(lián)分析研究進(jìn)展[J].中華醫(yī)學(xué)雜志,2010,90(42):3022-3024.
[2]Iadecola C,Yaffe K,Biller J,et al.Impact of hypertension on cognitive function:a scientific statement from the American Heart Association[J].Hypertension,2016,68(6):e67-e94.
[3]Cai A,Calhoun DA.Resistant hypertension:an update of experimental and clinical findings[J].Hypertension,2017,70(1):5-9.
[4]劉龍珠,賀熙,徐曼,等.高血壓免疫機(jī)制的研究進(jìn)展[J].生理科學(xué)進(jìn)展,2016,47(4):255-259.
[5]Norlander AE,Madhur MS,Harrison DG.The immunology of hypertension[J].J Exp Med,2018,215,21-33.
[6]葉小彤,張百霞,王慧慧,等.基于“中藥作用機(jī)理輔助解析系統(tǒng)”的杜仲抗高血壓作用機(jī)制研究[J].中國中藥雜志,2015,40(19):3718-3722.
[7]Chan CT,Sobey CG,Lieu M,et al.Obligatory role for B cells in the development of angiotensin II-dependent hypertension[J].Hypertension,2015,66(5):1023-1033.
[8]Tanigaki K,Sundgren N,Khera A,et al.Fcγreceptors and ligands and cardiovascular disease[J].Circ Res,2015,116(2):368-384.
[9]Sundgren NC,Vongpatanasin W,Boggan BM,et al.IgG receptor FcγRIIB plays a key role in obesity-induced hypertension[J].Hypertension,2015,65(2):456-462.
[10]Trott DW,Thabet SR,Kirabo A,et al.Oligoclonal CD8+T cells play a critical role in the development of hypertension[J].Hypertension,2014,64(5):1108-1115.
[11]Liu Y,Rafferty TM,Rhee SW,et al.CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension[J].Nat.Commun,2017,8:14037.
[12]Norlander AE,Saleh MA,Pandey AK,et al.A salt-sensing kinase in T lymphocytes,SGK1,drives hypertension and hypertensive end-organ damage[J].JCI Insight,2017,2(13):92801.
[13]Ye J,Ji Q,Liu J,et al.Interleukin 22 promotes blood pressure elevation and endothelial dysfunction in angiotensin II-treated mice[J].J Am Heart Assoc,2017,6(10):e005875.
[14]Wu YL,Ding YP,TanaKa Y,et al.Gamma delta T cells and their potential for immunotherapy[J].Int J Biol Sci,2014,10(2):119-135.
[15]Hulsmans M,Sager HB,Roh JD,et al.Cardiac macrophages promote diastolic dysfunction[J].J Exp Med,2018,215(2):423-440.
[16]Muller DN,Wilck N,Haase S,et al.Sodium in the microenvironment regulates immune responses and tissue homeostasis[J].Nat Rev Immunol,2019,19(4):243-254.
[17]Jahns R,Boivin V,Hein L,et al.Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy[J].J Clin Invest,2004,113(10):1419-1429.
[18]Zhao H,Li M,Wang L,et al.Angiotensin II induces TSLP via an AT1 receptor/NF-KappaB pathway,promoting Th17 differentiation[J].Cell Physiol Biochem,2012,30(6):1383-1397.
[19]Emmerson A,Trevelin SC,Mongue-Din H,et al.Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling[J].J Clin Invest,2018,128(7):3088-3101.
[20]Rosas-Ballina M,Olofsson PS,Ochani M,et al.Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit[J].Science,2011,334(6052):98-101.
[21]Olofsson PS,Steinberg BE,Sobbi R,et al.Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase[J].Nat Biotechnol,2016,34(10):1066-1071.
[22]Shah KH,Shi P,Giani JF,et al.Myeloid suppressor cells accumulate and regulate blood pressure in hypertension[J].Circ Res,2015,117(10):858-869.
[23]Harrison DG,Vinh A,Lob H,Madhur M.S.Role of the adaptive immune system in hypertension[J].Curr Opin Pharmacol,2010,10(2):203-207.
[24]Fanelli C,Arias SCA,Machado FG,et al.Innate and adaptive immunity are progressively activated in parallel with renal injury in the 5/6 renal ablation model[J].Sci Rep,2017,7(1):3192.
[25]Kirabo A,F(xiàn)ontana V,de Faria AP,et al.DC isoketal-modified proteins activate T cells and promote hypertension[J].J Clin Invest,2014,124(10):4642-4656.
[26]Hoch NE,Guzik TJ,Chen W,et al.Regulation of T cell function by endogenously produced angiotensin II[J].Am J Physiol Regul Integr Comp Physiol,2009,296(2):R208-R216.
[27]Coppo M,Bandinelli M,Berni A,et al.Ang II upregulation of the T-lymphocyte renin-angiotensin system is amplified by low-grade inflammation in human hypertension[J].Am J Hypertens,2011,24(6):716-723.
[28]Marvar PJ,Thabet SR,Guzik TJ,et al.Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension[J].Circ Res,2010,107(2):263-270.
[29]Ma HD,Deng YR,Zhigang Tian,et al.Traditional Chinese Medicine and Immune Regulation[J].Clinical Reviews in Allergy &Immunology,2013,44(3):229-241.
[30]Jiang MH,Zhu L,Jiang JG,et al.Immunoregulatory actions of polysaccharides from Chinese herbal medicine[J].Expert Opin Ther Targets,2010,14(12):1367-1402.
[31]Lee JH,Han YM.Ginsenoside Rg1 helps mice resist to disseminated candidiasis by Th1 type differentiation of CD4+T cell[J].Int Immunopharmacol,2006,6(9):1424-1430.
[32]Kiyohara H,Nagai T,Munakata K.Stimulating effect of Japanese herbal(Kampo)medicine,Hochuekkito on upper respiratory mucosal immune system[J].Evid Based Complement Alternat Med,2006,3(4):459-467.
[33]Chen X,Yang L,Howard OM,et al.Dendritic cells as a pharmacological target of traditional Chinese medicine[J].Cell Mol Immunol,2006,3(6):401-410.
[34]Lin YL,Liang YC,Lee SS,et al.Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NFkappaB and p38 mitogen-activated protein kinase pathways[J].J Leukoc Biol,2005,78:533-543.
[35]Gao Y-Q,Yao Y,Li M.Effect of bushen recipe on the immune effector molecules of natural killer cells in patients with chronic hepatitis B[J].Chin J Integr Trad West Med,2010,30(7):710-713.
[36]Burns JJ,Zhao LJ,Taylor EW,et al.The influence of traditional herbal formulas on cytokine activity[J].Toxicology,2010,278(1):140-159.
[37]Huang XX,Yamashiki M,Nakatani K,et al.Semi-quantitative analysis of cytokine mRNA expression induced by the herbal medicine Sho-saiko-to(TJ-9)using a Gel Doc system[J].J Clin Lab Anal,2001,15(4):199-209.
[38]Zhang RP,Zhang XP,Ruan YF,et al.Protective effect of Radix Astragali injection on immune organs of rats with obstructive jaundice and its mechanism[J].World J Gastroenterol,2009,15(23):2862-2869.
[39]Lin WW,Karin M.A cytokine-mediated link between innate immunity,inflammation,and cancer[J].J Clin Invest,2007,117(5):1175-1183.
[40]Li BQ,F(xiàn)u T,Gong WH,et al.The flavonoid baicalin exhibits antiinflammatory activity by binding to chemokines[J].Immunopharmacology,2000,49(3):295-306.
[41]Itani HA,McMaster WG Jr,et al.Activation of human T cells in hypertension:studies of humanized mice and hypertensive humans[J].Hypertension,2016,68(1):123-132.
[42]Dorffel Y,Latsch C,Stuhlmuller B,et al.Preactivated peripheral blood monocytes in patients with essential hypertension[J].Hypertension,1999,34(1):113-117(1999).
[43]Loperena R,Van Beusecum JP,Itani HA,et al.Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation:roles of STAT3,interleukin 6 and hydrogen peroxide[J].Cardiovasc.Res,2018,114(11):1547-1563.
[44]Huan T,Meng Q,Saleh MAet al.Integrative network analysis reveals molecular mechanisms of blood pressure regulation[J].Mol Syst.Biol,2015,11(1):799.
[45]Tian N,Gu JW,Jordan S,et al.Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension[J].Am J Physiol Heart Circ Physiol,2007,292(2):H1018-H1025.
[46]Bravo Y,Quiroz Y,F(xiàn)errebuz A,et al.Mycophenolate mofetil administration reduces renal inflammation,oxidative stress,and arterial pressure in rats with lead-induced hypertension[J].Am J Physiol Renal Physiol,2007,293(2):F616-F623.
[47]Lembo G.From clinical observations to molecular mechanisms and back to patients:the successful circuit of the CANTOS study[J].Cardiovasc Res,2018,114(1):e3-e5.
[48]Leslie M.Restraining immunity could lower high blood pressure[J].Science,2018,359(6379):966-967.
[49]楊萬勇,蔣靜靜.個(gè)性化治療方案聯(lián)合中醫(yī)治療干預(yù)對高血壓患者免疫功能及血壓的影響[J].中華中醫(yī)藥學(xué)刊,2017,035(012):3211-3213.
(2019-09-28收稿 責(zé)任編輯:蒼寧)