劉晨
摘要 細(xì)胞核內(nèi)存在復(fù)雜的亞核結(jié)構(gòu),它們?cè)诮Y(jié)構(gòu)和空間分布上有所區(qū)別,以參與特定的生物學(xué)進(jìn)程。paraspeckle是建立在長(zhǎng)非編碼RNA(lncRNA)NEAT1上的不規(guī)則核體,NEAT1和paraspeckle蛋白在空間上排列形成核殼狀。paraspeckle及其成分通過(guò)將特定的蛋白質(zhì)和/或轉(zhuǎn)錄本保留在其核內(nèi),在許多細(xì)胞過(guò)程中控制基因表達(dá),進(jìn)而影響細(xì)胞進(jìn)程,包括分化和一些應(yīng)激反應(yīng)。通過(guò)對(duì)近年來(lái)關(guān)于paraspeckle研究成果的歸納總結(jié),綜述了paraspeckle的結(jié)構(gòu)及形成過(guò)程等方面的研究進(jìn)展,為進(jìn)一步探究paraspeckle調(diào)控生理學(xué)過(guò)程的機(jī)制提供一定的理論基礎(chǔ)。
關(guān)鍵詞 核體;paraspeckle;結(jié)構(gòu);形成
中圖分類(lèi)號(hào) Q26 ?文獻(xiàn)標(biāo)識(shí)碼 A ?文章編號(hào) 0517-6611(2020)19-0004-05
doi:10.3969/j.issn.0517-6611.2020.19.002
Abstract There are complex subnuclear structures within the nucleus that differ in structure and spatial distribution to participate in specific biological processes. Paraspeckle is an irregular nucleosome built on NEAT1, a long noncoding RNA. NEAT1 and paraspeckle proteins are arranged in space to form nucleosomes. Paraspeckle and its components control gene expression in many cellular processes, including differentiation and some stress responses, by retaining specific proteins and/or transcripts in nucleus. By summarizing the research results of paraspeckle in recent years, this paper reviewed the research progress in the structure and formation process of paraspeckle, providing a theoretical basis for further exploring the mechanism of paraspeckle regulating physiological processes.
Key words Nuclear bodies;Paraspeckle;Structure;Formation
細(xì)胞核是一個(gè)大而復(fù)雜的細(xì)胞器,它是高度結(jié)構(gòu)化的、具有復(fù)雜的內(nèi)部結(jié)構(gòu),但其特征尚未完全闡明。細(xì)胞核的一個(gè)特征是:存在不同的亞核體,這些核體包含了一些特定的離散的蛋白質(zhì)和核酸,它們參與了特定的細(xì)胞核進(jìn)程[1]。大多數(shù)亞核小體存在于染色質(zhì)之間的區(qū)域,包括Cajal小體、PML小體和nuclear speckles,直徑0.2~2.0 μm,包含多個(gè)核調(diào)節(jié)因子,如DNA結(jié)合蛋白質(zhì)和/或RNA結(jié)合蛋白質(zhì),參與基因表達(dá)的不同階段,包括轉(zhuǎn)錄、RNA加工、輸出和存儲(chǔ)這些因子等過(guò)程[2-3]。
paraspeckle是由Visa、Puvion- dutilleul、Bachellerie和Puvion(1993)首次發(fā)現(xiàn)的非膜質(zhì)核體,電子顯微鏡檢測(cè)到,它們是處于染色質(zhì)顆粒相關(guān)帶的電子致密結(jié)構(gòu)。2002年,一項(xiàng)研究用質(zhì)譜法對(duì)純化的人核仁進(jìn)行蛋白質(zhì)組學(xué)分析,共鑒定出271種蛋白,其中約30%為新蛋白[4]。后續(xù)分析發(fā)現(xiàn)了其中一種新蛋白并不富集于核仁,而是彌散分布在核漿內(nèi),并集中于一些亞核斑點(diǎn)[5]。因?yàn)樗鼈儽话l(fā)現(xiàn)定位于染色質(zhì)間接近但不同于nuclear speckles,因此這些斑點(diǎn)被命名為paraspeckle。定位于這些結(jié)構(gòu)的新蛋白隨后被命名為paraspeckle protein 1(PSPC1)。2009年,4個(gè)研究組各自獨(dú)立地發(fā)現(xiàn)了NEAT1 lncRNA(或稱(chēng)為MENε/β),最初叫nuclear enriched abundant transcript 1,隨后改稱(chēng)為nuclear paraspeckle assembly transcript 1,是paraspeckle一個(gè)重要的結(jié)構(gòu)性組分[6-9]。
paraspeckle最初被描述為富含DBHS(drosophila behavior human splicing)家族RNA結(jié)合蛋白的核體[1]。DBHS蛋白家族的成員已經(jīng)被證明可以結(jié)合雙鏈和單鏈DNA和RNA,并與許多不同的復(fù)合物發(fā)生交聯(lián)[10]。DBHS家族蛋白參與RNA產(chǎn)生和加工的許多方面,包括轉(zhuǎn)錄起始、轉(zhuǎn)錄終止和剪接[11-16]。在分子水平上,paraspeckle被認(rèn)為可以將蛋白質(zhì)或轉(zhuǎn)錄本隔離到核內(nèi),充當(dāng)調(diào)節(jié)核質(zhì)中活性分子水平的分子海綿[17-18],從而調(diào)節(jié)多種細(xì)胞進(jìn)程及生理過(guò)程。
paraspeckle是由其結(jié)構(gòu)性RNA NEAT1和多個(gè)RNA結(jié)合蛋白組成的大型核糖核蛋白復(fù)合物。NEAT1和paraspeckle蛋白在空間上排列以形成有序結(jié)構(gòu)[19]。大多數(shù)核物質(zhì)表現(xiàn)出液滴狀特征,與周?chē)暮速|(zhì)相分離,并能融合形成較大的液滴[20-21]。液滴通過(guò)液-液相分離(LLPS)進(jìn)行組裝,這是通過(guò)形成多個(gè)分子間多價(jià)相互作用來(lái)完成的[22-24]。核體包含多個(gè)具有內(nèi)在無(wú)序區(qū)域的RNA結(jié)合蛋白,這些區(qū)域使RNA結(jié)合和誘導(dǎo)LLPS,因此是非膜性核體形成的驅(qū)動(dòng)力[20-21]。從paraspeckle蛋白的相互作用網(wǎng)絡(luò)圖中發(fā)現(xiàn),RBM14(RNA結(jié)合蛋白14)是一種重要的paraspeckle組件,它通過(guò)其朊樣結(jié)構(gòu)域(PLD)介導(dǎo)了一種關(guān)鍵的相互作用,將其他幾種重要蛋白連接到網(wǎng)絡(luò)中,對(duì)paraspeckle的形成至關(guān)重要[25]。筆者通過(guò)查閱核體paraspeckle結(jié)構(gòu)及形成方面的文獻(xiàn),對(duì)paraspeckle的結(jié)構(gòu)、組分及裝備等方面進(jìn)行了綜述,為進(jìn)一步研究paraspeckle生物發(fā)生過(guò)程及其生物學(xué)功能提供了一定的理論依據(jù)。
1 paraspeckle的結(jié)構(gòu)特征及功能
paraspeckle是一種體積小、大小不規(guī)則、分布不均勻的亞核體。在哺乳動(dòng)物組織和細(xì)胞中,paraspeckle廣泛分布,大多數(shù)鼠源和人源細(xì)胞系和組織被證明含有paraspeckle,包括轉(zhuǎn)化和原代細(xì)胞系,胚胎成纖維細(xì)胞和致瘤活組織[5,7-9,26]。根據(jù)細(xì)胞類(lèi)型的不同,paraspeckle的數(shù)量在每個(gè)核5~20個(gè)斑點(diǎn)(例如,HeLa包括13~17個(gè)斑點(diǎn)/核,NIH3T3細(xì)胞包括5~10個(gè)斑點(diǎn)/核)[7]。paraspeckle被發(fā)現(xiàn)存在于染色質(zhì)間區(qū)域,夾在nuclear speckles和染色質(zhì)間。電鏡研究和熒光圖像顯示,paraspeckle大小范圍為0.5~1.0 μm直徑,并呈現(xiàn)不規(guī)則的腸樣形狀[27]。
DBHS RNA結(jié)合蛋白家族成員在paraspeckle中特別豐富,包括含非POU域八聚體結(jié)合蛋白(NONO)、脯氨酸和谷氨酸富集剪接因子(SFPQ)和PSPC1,在paraspeckle中特別豐富[28-29]。paraspeckle是依賴(lài)于RNAPⅡ轉(zhuǎn)錄的RNase敏感結(jié)構(gòu),這表明它們的維持需要RNAs[30]。Neat1是一種哺乳動(dòng)物特異性的lncRNA,是paraspeckle的結(jié)構(gòu)組成部分。Neat1的缺失會(huì)導(dǎo)致該核體的解體[6-9]。Neat1的2種亞型由一個(gè)共同的啟動(dòng)子誘導(dǎo)形成的,長(zhǎng)(小鼠為20 kb)的Neat1_2亞型是paraspeckle形成所需,而短(小鼠為3.2 kb)的Neat1_1亞型對(duì)其結(jié)構(gòu)功能的維持是非必需的[31-32]。Neat1_2在paraspeckle里的排列是有序的,5′和3′的末端位于邊緣,Neat1_2的中部位于paraspeckle中央?yún)^(qū)[33]。觀察結(jié)果表明,Neat1_2呈放射狀排列在香腸狀paraspeckle的橫平面上,為paraspeckle蛋白的組裝提供了一個(gè)結(jié)構(gòu)支架。使用結(jié)構(gòu)光照明顯微鏡對(duì)這些核物質(zhì)進(jìn)行精細(xì)的結(jié)構(gòu)分析,發(fā)現(xiàn)呈現(xiàn)良好的核殼類(lèi)球狀結(jié)構(gòu),蛋白和RNA轉(zhuǎn)錄本沿徑向取向的Neat1_2轉(zhuǎn)錄本有序分布[34]。對(duì)paraspeckle結(jié)構(gòu)維持至關(guān)重要的蛋白定位于核心或斑塊,而不是paraspeckle的外殼[31],說(shuō)明前一種成分起著結(jié)構(gòu)上的作用,而外殼成分與核質(zhì)成分結(jié)合,發(fā)揮其功能。
paraspeckle已知的主要功能與其RNA成分有關(guān)。 Paraspeckle被認(rèn)為可以調(diào)節(jié)多種細(xì)胞過(guò)程,包括高A-to-I編輯水平的mRNAs的核保留[6,26],通過(guò)SFPQ的隔離來(lái)控制轉(zhuǎn)錄[17],以及對(duì)特定細(xì)胞中聚肌苷-聚胞苷酸雙鏈核苷酸的免疫反應(yīng)[18]。此外,paraspeckle是由病毒感染、蛋白酶體抑制和分化引起的應(yīng)激反應(yīng)性結(jié)構(gòu)[9,17-18]。從生理學(xué)上講,NEAT1是參與小鼠雌性生殖的特定組織的發(fā)育和各種癌癥進(jìn)程所必需的[35-38]。特別是,據(jù)報(bào)道,一部分Neat1基因敲除的雌性小鼠卵巢黃體的形成受損,這種Neat1顯著表達(dá)的結(jié)構(gòu)參與了妊娠期孕酮的生成。在懷孕期間缺乏黃體的形成會(huì)導(dǎo)致不育和/或雌性可育懷孕更少[37]。一些含有PLD的paraspeckle蛋白(FUS、TDP-43等)[31,39]已知會(huì)導(dǎo)致肌萎縮性脊髓側(cè)索硬化癥(ALS)的突變[40-44]。在ALS運(yùn)動(dòng)神經(jīng)元中也可見(jiàn)到paraspeckle,在額顳葉變性相關(guān)情況下NEAT1表達(dá)上調(diào)[39,45]。
2 paraspeckle的組成成分
2.1 NEAT1/Men ε/β RNA
現(xiàn)在已經(jīng)知道,特別是對(duì)哺乳動(dòng)物來(lái)說(shuō),基因組的大部分是轉(zhuǎn)錄的,以產(chǎn)生蛋白質(zhì)編碼和非蛋白編碼RNA[46]。近年來(lái),對(duì)非編碼RNA的定義及功能的研究大量呈現(xiàn)。在2007年的一項(xiàng)針對(duì)核非編碼RNA種類(lèi)定義的研究中,描述了2種豐富廣泛表達(dá)的核富集常染色體非編碼轉(zhuǎn)錄本,稱(chēng)為NEAT1(也稱(chēng)為Men ε/β)和NEAT2(也稱(chēng)為MALAT-1)[47]。RNA-FISH顯示MALAT-1定位于核斑點(diǎn),而NEAT1則在臨近核斑點(diǎn)的亞核斑點(diǎn)(顯示為paraspeckle)處被發(fā)現(xiàn),NEAT1和MALAT-1 非編碼RNAs由RNA Pol Ⅱ產(chǎn)生,獨(dú)立于蛋白編碼基因。NEAT1有2個(gè)亞型:NEAT1_1和NEAT1_2(之前稱(chēng)為Men ε和Men β),它們共享5′端3~4 kb的序列,即NEAT1_1,更長(zhǎng)的亞型NEAT1_2含有額外的約20 kb的RNA[48]。NEAT1_2 RNA的3′末端經(jīng)剪切產(chǎn)生一個(gè)特別的tRNA樣分子[9,49]。NEAT1_1在其3′端具有典型的聚腺苷酸信號(hào)(PAS)。而NEAT1_2的tRNA樣結(jié)構(gòu)會(huì)被RNase P識(shí)別、剪切,暴露出一個(gè)基因組編碼的oligo(a)序列和一個(gè)獨(dú)特的3′端三重螺旋結(jié)構(gòu)(3′TH)。剪切得到的tRNA樣小分子不穩(wěn)定,迅速降解[50]。3′TH是體內(nèi)外穩(wěn)定NEAT1_2的關(guān)鍵[49,51-52],但3′TH質(zhì)粒對(duì)paraspeckle的組裝不是必需的[31]。
利用CRISPR-Cas9介導(dǎo)的敲除試驗(yàn)對(duì)人的NEAT1_2進(jìn)行研究,可以將其劃分為3個(gè)功能不同的結(jié)構(gòu)域,分別負(fù)責(zé)NEAT1的穩(wěn)定、亞型選擇和paraspeckle裝配,都是形成paraspeckle所必需的。位于5′(0~1 kb)和3′末端(3′TH)的結(jié)構(gòu)域是NEAT1穩(wěn)定所必需的,值得注意的是,5′端1 kb區(qū)域被確定為NEAT1穩(wěn)定和paraspeckle形成所需的其他功能區(qū)域[52]。NEAT1_1的多聚腺苷酸化位點(diǎn)(PAS)上游(2.1~2.8 kb)和下游(4.0~5.1 kb)2個(gè)區(qū)域促進(jìn)了NEAT1_2的表達(dá),抑制了NEAT1_1的表達(dá)。當(dāng)PAS完好時(shí),該結(jié)構(gòu)域發(fā)揮作用,這表明該結(jié)構(gòu)域抑制了PAS依賴(lài)的聚腺苷酸的合成,從而促進(jìn)了NEAT1_2的合成。此外還有報(bào)道,NEAT1_1聚腺苷酸的調(diào)節(jié)是通過(guò)一種獨(dú)特的機(jī)制發(fā)生的,即CPSF6/Nudt21與靠近PAS的CUGA序列簇結(jié)合,從而促進(jìn)NEAT1_1的聚腺苷酸化。HNRNPK通過(guò)與位于CUGA簇和PAS之間的嘧啶延伸結(jié)合,干擾聚腺苷酸化。PAS附近域的作用與依賴(lài)于HNRNPK的機(jī)制之間的關(guān)系尚不清楚,NEAT1的亞型轉(zhuǎn)換可能至少受2種不同的機(jī)制控制,每種機(jī)制都依賴(lài)于特定的細(xì)胞類(lèi)型[19]。BLAST算法分析比較NEAT1_2序列顯示,在3種哺乳動(dòng)物中出現(xiàn)了一些不同長(zhǎng)度和相似性的重復(fù)序列,一些重復(fù)序列與已知的LINE和SINE元件有重疊,即NEAT1_2的一個(gè)相對(duì)較大的中間區(qū)域(8.0~16.6 kb),缺失分析顯示其對(duì)paraspeckle組裝來(lái)說(shuō)是必需的,該結(jié)構(gòu)域與5′及3′末端結(jié)構(gòu)域組成的NEAT1_2突變體(mini-NEAT1)能夠形成一個(gè)結(jié)構(gòu)有序的paraspeckle[52]。進(jìn)一步的缺失分析表明,中間結(jié)構(gòu)域至少包含3個(gè)功能子域(9.8~12.0、120~130、15.4~16.6 kb)。中間結(jié)構(gòu)域和外部區(qū)域以及中間結(jié)構(gòu)域本身之間似乎存在復(fù)雜的多重功能冗余[52]。一些lncRNAs(如XIST)據(jù)報(bào)道含有重復(fù)序列延伸,這些重復(fù)序列具有重要的功能作用[53-54],這可能提示了NEAT1_2含有重復(fù)遺傳元件的中間區(qū)域?yàn)楹螌?duì)paraspeckle的組裝發(fā)揮關(guān)鍵作用。
Mao等[51]使用基因組整合報(bào)告系統(tǒng)表明,RNAPⅡ從其基因組位點(diǎn)轉(zhuǎn)錄NEAT1可以在轉(zhuǎn)錄位點(diǎn)誘導(dǎo)paraspeckle的從頭形成。另一方面,人工聚集的NEAT1不能誘導(dǎo)paraspeckle形成,表明paraspeckle是在其基因組位點(diǎn)與新生的NEAT1共同轉(zhuǎn)錄形成的[55]。NEAT1轉(zhuǎn)錄受各種內(nèi)外部條件、病原體和化學(xué)物質(zhì)的調(diào)節(jié)[9,17,28,35,38,56]。最近,對(duì)NEAT1調(diào)控子的基因組大范圍篩選發(fā)現(xiàn)了paraspeckle和線粒體之間的交叉調(diào)控,該交叉調(diào)控受ATF2轉(zhuǎn)錄調(diào)控下游因子對(duì)NEAT1的調(diào)控[57]。
2.2 paraspeckle蛋白
迄今為止,已知超過(guò)40種蛋白在paraspeckle中積累,大部分是富集RNA識(shí)別基序(RRMs)、鋅指結(jié)構(gòu)域和K同源域的豐富的核RNA結(jié)合蛋白[31,58]。根據(jù)每種蛋白缺失時(shí)引起的paraspeckle破壞的程度,可以將這些蛋白分為3類(lèi)[31]:第1類(lèi)蛋白質(zhì)對(duì)paraspeckle的結(jié)構(gòu)維持至關(guān)重要,它們被進(jìn)一步細(xì)分為Ia類(lèi)蛋白和Ib類(lèi)蛋白,Ia類(lèi)蛋白是生成或穩(wěn)定Neat1_2(如SFPQ、NONO和RBM14)所必需的,Ib類(lèi)蛋白不影響Neat1_2的量(如FUS/TLS和BRG1)[8,25,31];第2類(lèi)蛋白(如TARDBP)的缺失導(dǎo)致具有paraspeckle的細(xì)胞數(shù)量大幅減少;第3類(lèi)蛋白(如PSPC1)對(duì)paraspekcle的形成沒(méi)有明顯的影響[31]。所有的paraspeckle蛋白都具有RNA結(jié)合能力,但不一定參與共同的生物學(xué)過(guò)程[34]。
PLD正逐漸成為基因調(diào)控的重要模塊,一個(gè)新興的概念是PLD允許蛋白質(zhì)“功能聚集”,形成高階組裝體和顯微鏡下可見(jiàn)的核糖核蛋白顆粒[59]。將蛋白質(zhì)和RNA濃縮在一個(gè)有限的空間中被認(rèn)為可以產(chǎn)生更有效的基因調(diào)控過(guò)程。Hennig等[25]對(duì)已知的以及一些推定的paraspeckle蛋白進(jìn)行了酵母雙雜交篩選,得到了一個(gè)根據(jù)paraspeckle蛋白之間相互作用繪制的網(wǎng)絡(luò)圖,在相互作用網(wǎng)絡(luò)中,PLD蛋白過(guò)度表達(dá):網(wǎng)絡(luò)中66%的蛋白具有PLD(19/29),而55%的起始蛋白具有PLD(26/47)。其中,RBM14 PLD介導(dǎo)了一種關(guān)鍵的相互作用,將其他幾種重要蛋白連接到網(wǎng)絡(luò)中。酵母雙雜交和免疫共沉淀試驗(yàn)證實(shí),RBM14 PLD與NONO的強(qiáng)烈相互作用是必需的,而且這種相互作用不依賴(lài)于RNA[25]。此外,在對(duì)RNA結(jié)合蛋白FUS的研究中發(fā)現(xiàn),其PLD包含許多重復(fù)的[G/S]Y[G/S][60-61],負(fù)責(zé)將FUS定位于paraspeckle[62]。PLD在體外以水凝膠的形式表達(dá),形成網(wǎng)狀網(wǎng)絡(luò)[63-64],而FUS重復(fù)序列中的中心酪氨酸對(duì)水凝膠的形成和胞質(zhì)中應(yīng)激顆粒的靶向作用至關(guān)重要[63]。RBM14與FUS相似,均對(duì)paraspeckle的形成至關(guān)重要。
3 paraspeckle的裝配形成
paraspeckle是由lncRNA NEAT1及一些蛋白質(zhì)通過(guò)蛋白-RNA相互作用、蛋白-蛋白相互作用構(gòu)建而成的巨大核糖核蛋白復(fù)合物。
NONO和SFPQ與NEAT1_2的功能交互啟動(dòng)了paraspeckle組裝[19,52]。NONO和SFPQ在細(xì)胞中形成一種主要的異質(zhì)二聚體,NONO中特有的NOPS結(jié)構(gòu)域負(fù)責(zé)其與DBHS家族蛋白的二聚[65]。主要締合的NONO/SFPQ二聚體隨后可通過(guò)卷曲螺旋(CC)域引發(fā)聚合,最終可能覆蓋整個(gè)NEAT1_2 結(jié)構(gòu)性RNA。PAR-CLIP數(shù)據(jù)顯示,PSP結(jié)合位點(diǎn)廣泛覆蓋整個(gè)NEAT1_2區(qū)域,3個(gè)子域包含多個(gè)NONO和SFPQ的突出結(jié)合峰[52]。此外,先前的透射電鏡研究表明,SFPQ可以通過(guò)CC域聚合形成高階復(fù)合物[66]。即NEAT1_2的子域作為NONO/SFPQ二聚體的主要結(jié)合位點(diǎn),使后續(xù)聚合成為可能,并形成NEAT1_2核糖核蛋白復(fù)合物的基礎(chǔ)[20]。
LLPS是由具有低復(fù)雜性結(jié)構(gòu)域(LCDs)的蛋白質(zhì)完成的[20]。LCDs缺乏明確的三維結(jié)構(gòu),為多價(jià)弱粘著分子間相互作用,如靜電、pi堆積和疏水相互作用提供了基礎(chǔ)[22,24,67]。在一個(gè)閾值濃度以上,形成多價(jià)相互作用的蛋白質(zhì)可以自組裝并經(jīng)歷LLPS,從而形成大量的無(wú)膜體,如Cajal小體[52]。最近有報(bào)道表明NEAT1 RNA片段可以促進(jìn)FUS液滴在非特異性RNAs緩沖液中體外成核[68]。大多數(shù)paraspeckle蛋白包含被歸類(lèi)為含有PLD的LCDs,這可以有效地誘導(dǎo)LLPS[25,28,52]。paraspeckle蛋白能快速地進(jìn)出paraspeckle,因此paraspeckle具有相分離體的特征之一——高度的動(dòng)態(tài)性。結(jié)構(gòu)性RNA NEAT1極有可能為含LCDs的蛋白(如FUS和RBM14)提供多個(gè)結(jié)合位點(diǎn)以促進(jìn)其局部濃度,并最終在其自身的轉(zhuǎn)錄位點(diǎn)附近誘導(dǎo)LLPS,以形成paraspeckle[20]。
此外,最近的證據(jù)表明,分子間RNA-RNA相互作用在核糖核蛋白顆粒的形成中起作用,重復(fù)的RNAs會(huì)形成獨(dú)特的核體樣斑點(diǎn)[69-71]。且藥物導(dǎo)致NONO與paraspeckle解離后,仍可檢測(cè)到較弱的NEAT1斑點(diǎn)[52]。最近的RNA結(jié)構(gòu)mappings已經(jīng)確定了NEAT1_2分子內(nèi)的大量RNA-RNA相互作用,這些相互作用可能發(fā)生在轉(zhuǎn)錄位點(diǎn)或NEAT1高度集中的paraspeckle內(nèi)[72]。這些結(jié)果都表明獨(dú)立于蛋白的NEAT1 RNA-RNA相互作用也參與了paraspeckle的形成。
4 展望
目前,包括paraspeckle中的NEAT1_2 lncRNA在內(nèi)的8個(gè)參與構(gòu)建核體lncRNAs可被分類(lèi)為結(jié)構(gòu)性RNAs[73-79],均可以通過(guò)局部隔離特定的PLD蛋白來(lái)集中和觸發(fā)LLPS。最近Hirose等[19]根據(jù)結(jié)構(gòu)性RNA候選基因的半提取特征開(kāi)發(fā)了一種轉(zhuǎn)錄組范圍的篩選方法。通過(guò)對(duì)HeLa細(xì)胞進(jìn)行轉(zhuǎn)錄組水平的分析,發(fā)現(xiàn)了45個(gè)具有半可提取特征的RNAs,其中前10個(gè)最豐富的RNAs在核斑點(diǎn)中均表現(xiàn)出明顯的定位[20,67]。這些發(fā)現(xiàn)表明在人類(lèi)轉(zhuǎn)錄組中存在不明的結(jié)構(gòu)性RNAs,進(jìn)一步探索位于功能域的結(jié)構(gòu)性RNA元件將為結(jié)構(gòu)性RNA功能機(jī)制提供更多的見(jiàn)解。
NEAT1_1亞型對(duì)于paraspeckle的形成是必不可少的,其作用至今仍知之甚少。NEAT1_1和NEAT1_2共有的5′端基因結(jié)構(gòu)使得這2種亞型之間的功能關(guān)系難以詳細(xì)分析。最近的研究發(fā)現(xiàn),HeLa細(xì)胞中NEAT1_1的實(shí)際含量比NEAT1_2低10倍,說(shuō)明NEAT1_1并不是paraspeckle的主要成分[67]?;蚪M編輯介導(dǎo)的每個(gè)NEAT1亞型缺失進(jìn)一步發(fā)現(xiàn),NEAT1_1定位于許多被稱(chēng)為“microspeckles”的non-paraspeckle斑點(diǎn),它們可能具有獨(dú)立于paraspeckle的功能[80],有待進(jìn)一步探索。
調(diào)節(jié)核糖核蛋白顆粒的形成正在成為癌癥和神經(jīng)退行性疾病的潛在治療應(yīng)用。特別相關(guān)的是肌萎縮性側(cè)索硬化癥,它與很多核內(nèi)含PLD蛋白的細(xì)胞質(zhì)聚集體有關(guān),在許多情況下是由含PLD蛋白的突變引起的[25,81-82]?,F(xiàn)在已知有6種paraspeckle蛋白(FUS、TDP-43、SS18L1、HNRNPA1、TAF15和EWSR1)在發(fā)生突變時(shí)會(huì)導(dǎo)致ALS,其他的paraspeckle蛋白可能是新的ALS基因的候選對(duì)象。PLD介導(dǎo)的功能性聚集在ALS RNA結(jié)合蛋白中的重要性越來(lái)越受到重視,這為進(jìn)一步研究如何在疾病中干擾這些過(guò)程打開(kāi)了大門(mén)。不同PLD中的重復(fù)基序,以及這些重復(fù)基序中的差異如何與核糖核蛋白復(fù)合物和其他裝配物的功能聚合相關(guān)仍然是一個(gè)需要探索的問(wèn)題。
參考文獻(xiàn)
[1] PLATANI M,LAMOND A I.Nuclear organisation and subnuclear bodies[J].Progress in molecular and subcellular biology,2004,35:1-22.
[2] MAO Y S,ZHANG B,SPECTOR D L.Biogenesis and function of nuclear bodies[J].Trends in genetics,2011,27(8):295-306.
[3] STANK D,F(xiàn)OX A H.Nuclear bodies:News insights into structure and function[J].Current opinion in cell biology,2017,46:94-101.
[4] ANDERSEN J S,LYON C E,F(xiàn)OX A H,et al.Directed proteomic analysis of the human nucleolus[J].Current biology,2002,12(1):1-11.
[5] FOX A H,LAM Y W,LEUNG A K L,et al.Paraspeckles:A novel nuclear domain[J].Current biology,2002,12(1):13-25.
[6] CHEN L L,CARMICHAEL G G.Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells:Functional role of a nuclear noncoding RNA[J].Molecular cell,2009,35(4):467-478.
[7] CLEMSON C M,HUTCHINSON J N,SARA S A,et al.An architectural role for a nuclear noncoding RNA:NEAT1 RNA is essential for the structure of paraspeckles[J].Molecular cell,2009,33(6):717-726.
[8] SASAKI Y T F,IDEUE T,SANO M,et al.MEN ε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles[J].Proceedings of the national academy of sciences,2009,106(8):2525-2530.
[9] SUNWOO H,DINGER M E,WILUSZ J E,et al.MEN ε/β nuclearretained noncoding RNAs are upregulated upon muscle differentiation and are essential components of paraspeckles[J].Genome research,2009,19(3):347-359.
[10] SHAVTAL Y,ZIPORI D.PSF and p54nrb/NonOmultifunctional nuclear proteins[J].FEBS Letters,2002,531(2):109-114.
[11] PATTON J G,PORRO E B,GALCERAN J,et al.Cloning and characterization of PSF,a novel premRNA splicing factor[J].Genes & development,1993,7(3):393-406.
[12] YANG Y S,HANKE J H,CARAYANNOPOULOS L,et al.NonO,a nonPOUdomaincontaining,octamerbinding protein,is the mammalian homolog of Drosophila nonAdiss[J].Molecular & cellular biology,1993,13(9):5593-5603.
[13] PENG R,DYE B T,PREZ I,et al.PSF and p54nrb bind a conserved stem in U5 snRNA[J].RNA,2002,8(10):1334-1347.
[14] KAMEOKA S,DUQUE P,KONARSKA M M.p54nrb associates with the 5′ splice site within large transcription/splicing complexes[J].The EMBO Journal,2004,23(8):1782-1791.
[15] ITO T,WATANABE H,YAMAMICHI N,et al.Brm transactivates the telomerase reverse transcriptase(TERT)gene and modulates the splicing patterns of its transcripts in concert with p54nrb[J].Biochemical journal,2008,411(1):201-209.
[16] KANEKO S,ROZENBLATTROSEN O,MEYERSON M,et al.The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate premRNA 3′ processing and transcription termination[J].Genes & development,2007,21(14):1779-1789.
[17] HIROSE T,VIRNICCHI G,TANIGAWA A,et al.NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies[J].Molecular biology of the cell,2014,25(1):169-183.
[18] IMAMURA K,IMAMACHI N,AKIZUKI G,et al.Long noncoding RNA NEAT1dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli[J].Molecular cell,2014,53(3):393-406.
[19] HIROSE T,YAMAZAKI T,NAKAGAWA S.Molecular anatomy of the architectural NEAT1 noncoding RNA:The domains,interactors,and biogenesis pathway required to build phaseseparated nuclear paraspeckles[J/OL].Wiley interdisciplinary reviews:RNA,2019,10(6)[2020-01-05].https://doi.org/10.1002/wrna.1545.
[20] SAWYER I A,STURGILL D,DUNDR M.Membraneless nuclear organelles and the search for phases within phases[J/OL].Wiley interdisciplinary reviews:RNA,2019,10(2)[2020-01-05].https://doi.org/10.1002/wrna.1514.
[21] COURCHAINE E M,LU A,NEUGEBAUER K M.Droplet organelles?[J].EMBO Journal,2016,35(15):1603-1612.
[22] ALBERTI S,GLADFELTER A,MITTAG T.Considerations and challenges in studying liquidliquid phase separation and biomolecular condensates[J].Cell,2019,176(3):419-334.
[23] BANANI S F,LEE H O,HYMAN A A,et al.Biomolecular condensates:Organizers of cellular biochemistry[J].Nature reviews molecular cell biology,2017,18(5):285-298.
[24] SHIN Y,BRANGWYNNE C P.Liquid phase condensation in cell physiology and disease[J].Science,2017,357(6357):1-11.
[25] HENNIG S,KONG G,MANNEN T,et al.Prionlike domains in RNA binding proteins are essential for building subnuclear paraspeckles[J].The journal of cell biology,2015,210(4):529-539.
[26] PRASANTH K V,PRASANTH S G,XUAN Z Y,et al.Regulating gene expression through RNA nuclear retention[J].Cell,2005,123(2):249-263.
[27] CARDINALE S,CISTERNA B,BONETTI P,et al.Subnuclear localization and dynamics of the premRNA 3′ end processing factor mammalian cleavage factor I 68kDa subunit[J].Molecular biology of the cell,2007,18(4):1282-1292.
[28] FOX A H,NAKAGAWA S,HIROSE T,et al.Paraspeckles:Where long noncoding RNA meets phase separation[J].Trends in biochemical sciences,2017,43(2):124-135.
[29] NAKAGAWA S,YAMAZAKI T,HIROSE T.Molecular dissection of nuclear paraspeckles:Towards understanding the emerging world of the RNP milieu[J].Open biology,2018,8(10):2046-2441.
[30] FOX A H,BOND C S,LAMOND A I.P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNAdependent manner[J].Molecular biology of the cell,2005,16(11):5304-5315.
[31] NAGANUMA T,NAKAGAWA S,TANIGAWA A,et al.Alternative 3′end processing of long noncoding RNA initiates construction of nuclear paraspeckles[J].The EMBO Journal,2012,31(20):4020-4034.
[32] NAKAGAWA S,NAGANUMA T,SHIOI G,et al.Paraspeckles are subpopulationspecific nuclear bodies that are not essential in mice[J].Journal of cell biology,2011,193(1):31-39.
[33] SOUQUERE S,BEAUCLAIR G,HARPER F,et al.Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies[J].Molecular biology of the cell,2010,21(22):4020-4027.
[34] WEST J A,MITO M,KUROSAKA S,et al.Structural,superresolution microscopy analysis of paraspeckle nuclear body organization[J].Journal of cell biology,2016,214(7):817-830.
[35] MELLO S S,SINOW C,RAJ N,et al.Neat1 is a p53inducible lincRNA essential for transformation suppression[J].Genes & development,2017,31(11):1095-1108.
[36] STANDAERT L,ADRIAENS C,RADAELLI E,et al.The long noncoding RNA Neat1 is required for mammary gland development and lactation[J].RNA,2014,20(12):1844-1849.
[37] NAKAGAWA S,SHIMADA M,YANAKA K,et al.The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice[J].Development,2014,141(23):4618-4627.
[38] ADRIAENS C,STANDAERT L,BARRA J,et al.p53 induces formation of NEAT1 lncRNAcontaining paraspeckles that modulate replication stress response and chemosensitivity[J].Nature medicine,2016,22(8):861-868.
[39] NISHIMOTO Y,NAKAGAWA S,HIROSE T,et al.The long noncoding RNA nuclearenriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis[J].Molecular brain,2013,6(1):1-18.
[40] VANCE C,ROGELJ B,HORTOBGYI T,et al.Mutations in FUS,an RNA processing protein,cause familial amyotrophic lateral sclerosis type 6[J].Science,2009,323(5918):1208-1211.
[41] COUTHOUIS J,HART M P,JAME S,et al.A yeast functional screen predicts new candidate ALS disease genes[J].Proceedings of the national academy of sciences of the United States of America,2011,108(52):20881-20890.
[42] COUTHOUIS J,HART M P,ERION R,et al.Evaluating the role of the FUS/TLSrelated gene EWSR1 in amyotrophic lateral sclerosis[J].Human molecular genetics,2012,21(13):2899-2911.
[43] CHESI A,STAAHL B T,JOVICˇIC' A,et al.Exome sequencing to identify de novo mutations in sporadic ALS trios[J].Nature neuroscience,2013,16(7):851-855.
[44] KIM H J,KIM N C,WANG Y D,et al.Mutations in prionlike domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS[J].Nature,2013,495:467-473.
[45] TOLLERVEY J R,CURK T,ROGELJ B,et al.Characterizing the RNA targets and positiondependent splicing regulation by TDP43[J].Nature neuroscience,2011,14(4):452-458.
[46] CARNINCI P,KASUKAWA T,KATAYAMA S,et al.The transcriptional landscape of the mammalian genome[J].Science,2005,309(5740):1559-1563.
[47] HUTCHINSON J N,ENSMINGER A W,CLEMSON C M,et al.A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains[J].BMC Genomics,2007,8(1):1-16.
[48] FOX A H,LAMOND A I.Paraspeckles[J].Cold spring harbor perspectives in biology,2010,2(7):1-14.
[49] WILUSZ J E,F(xiàn)REIER S M,SPECTOR D L.3′ end processing of a long nuclearretained noncoding RNA yields a tRNAlike cytoplasmic RNA[J].Cell,2008,135(5):919-932.
[50] YAMAZAKI T,HIROSE T.The building process of the functional paraspeckle with long noncoding RNAs[J].Frontiers in bioscience,2015,7(1):1-41.
[51] MAO Y S,SUNWOO H,ZHANG B,et al.Direct visualization of the cotranscriptional assembly of a nuclear body by noncoding RNAs[J].Nature cell biology,2011,13(1):95-101.
[52] YAMAZAKI T,SOUQUERE S,CHUJO T,et al.Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation[J].Molecular cell,2018,70(6):1038-1053.
[53] CHU C,ZHANG Q C,DA ROCHA S T,et al.Systematic discovery of Xist RNA binding proteins[J].Cell,2015,161(2):404-416.
[54] WUTZ A,RASMUSSEN T P,JAENISCH R.Chromosomal silencing and localization are mediated by different domains of Xist RNA[J].Nature genetics,2002,30(2):167-174.
[55] SHEVTSOV S P,DUNDR M.Nucleation of nuclear bodies by RNA[J].Nature cell biology,2011,13(2):167-173.
[56] CHAKRAVARTY D,SBONER A,NAIR S S,et al.The oestrogen receptor alpharegulated lncRNA NEAT1 is a critical modulator of prostate cancer[J].Nature communications,2014,5:1-16.
[57] WANG Y,HU S B,WANG M R,et al.Genomewide screening of NEAT1 regulators reveals crossregulation between paraspeckles and mitochondria[J].Nature cell biology,2018,20(10):1145-1158.
[58] FONG KW,LI Y J,WANG W,et al.Wholegenome screening identifies proteins localized to distinct nuclear bodies[J].The journal of cell biology,2013,203(1):149-164.
[59] TORETSKY J A,WRIGHT P E.Assemblages:Functional units formed by cellular phase separation[J].Journal of cell biology,2014,206(5):579-588.
[60] KWON I,KATO M,XIANG S H,et al.Phosphorylationregulated binding of RNA polymerase II to fibrous polymers of lowcomplexity domains[J].Cell,2013,155(5):1049-1060.
[61] SCHWARTZ J C,WANG X Y,PODELL E R,et al.RNA seeds higherorder assembly of FUS protein[J].Cell reports,2013,5(4):918-925.
[62] SHELKOVNIKOVA T A,ROBINSON H K,SOUTHCOMBE J A,et al.Multistep process of FUS aggregation in the cell cytoplasm involves RNAdependent and RNAindependent mechanisms[J].Human molecular genetics,2014,23(19):5211-5226.
[63] KATO M,HAN T W,XIE S H,et al.Cellfree formation of RNA granules:Low complexity sequence domains form dynamic fibers within hydrogels[J].Cell,2012,149(4):753-767.
[64] HAN T W,KATO M,XIE S H,et al.Cellfree formation of RNA granules:Bound RNAs identify features and components of cellular assemblies[J].Cell,2012,149(4):768-779.
[65] KNOTT G J,BOND C S,F(xiàn)OX A H.The DBHS proteins SFPQ,NONO and PSPC1:A multipurpose molecular scaffold[J].Nucleic acids research,2016,44(9):3989-4004.
[66] LEE M,SADOWSKA A,BEKERE I,et al.The structure of human SFPQ reveals a coiledcoil mediated polymer essential for functional aggregation in gene regulation[J].Nucleic acids research,2015,43(7):3826-3840.
[67] CHUJO T,YAMAZAKI T,KAWAGUCHI T,et al.Unusual semiextractability as a hallmark of nuclear bodyassociated architectural noncoding RNAs[J].The EMBO Journal,2017,36(10):1447-1462.
[68] MAHARANA S,WANG J,PAPADOPOULOS D K,et al.RNA buffers the phase separation behavior of prionlike RNA binding proteins[J].Science,2018,360(6391):918-921.
[69] JAIN A,VALE R D.RNA phase transitions in repeat expansion disorders[J].Nature,2017,546(7657):243-247.
[70] VAN TREECK B,PARKER R.Emerging roles for intermolecular RNARNA interactions in RNP assemblies[J].Cell,2018,174(4):791-802.
[71] VAN TREECK B,PROTTER D S W,MATHENY T,et al.RNA selfassembly contributes to stress granule formation and defining the stress granule transcriptome[J].Proceedings of the national academy of saciences,2018,115(11):2734-2739.
[72] LIN Y Z,SCHMIDT B F,BRUCHEZ M P,et al.Structural analyses of NEAT1 lncRNAs suggest longrange RNA interactions that may contribute to paraspeckle architecture[J].Nucleic acids research,2018,46(7):3742-3752.
[73] AUDAS T E,AUDAS D E,JACOB M D,et al.Adaptation to stressors by systemic protein amyloidogenesis[J].Developmental cell,2016,39(2):155-168.
[74] HALL L L,BYRON M,CARONE D M,et al.Demethylated HSATII DNA and HSATII RNA foci sequester PRC1 and MeCP2 into cancerspecific nuclear bodies[J].Cell reports,2017,18(12):2943-2956.
[75] BIAMONTI G,VOURC′H C.Nuclear stress bodies[J].Cell biology,2010,2(6):1-12.
[76] YAP K,MUKHINA S,ZHANG G,et al.A short tandem repeatenriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival[J].Molecular cell,2018,72(3):525-540.
[77] DUMBOVIC' G,BIAYNA J,BANU'S J,et al.A novel long noncoding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer[J].Nucleic acids research,2018,46(11):5504-5524.
[78] PRASANTH K V,RAJENDRA T K,LAL A K,et al.Omega specklesA novel class of nuclear speckles containing hnRNPs associated with noncoding hsromega RNA in Drosophila[J].Journal of cell science,2000,113(Pt19):3485-3497.
[79] YAMASHITA A,WATANABE Y,NUKINA N,et al.RNAassisted nuclear transport of the meiotic regulator Mei2p in fission yeast[J].Cell,1998,95(1):115-123.
[80] LI R H,HARVEY A R,HODGETTS S I,et al.Functional dissection of NEAT1 using genome editing reveals substantial localisation of the NEAT1_1 isoform outside paraspeckles[J].RNA,2017,23(6):872-881.
[81] DONNELLY C J,ZHANG P W,PHAM J T,et al.RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention[J].Neuron,2013,80(2):415-428.
[82] KWON I,XIANG S H,KATO M,et al.Polydipeptides encoded by the C9orf72 repeats bind nucleoli,impede RNA biogenesis,and kill cells[J].Science,2014,345(6201):1139-1145.